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Weak topology and Markov–Kakutani
theorem on hyperspace

By THAKYIN HU (Taipei) and JUI-CHI HUANG (Taipei)

Abstract. Let K be a weakly compact convex subset of a Banach space X. One
version of the Markov–Kakutani Theorem states that if F : (K, τw) → (K, τw) is a
commutative family of continuous linear transformations, then F has a common fixed
point in K. Suppose now CC(X) is the collection of all non-empty compact convex
subsets of X. We shall define a certain weak topology Jw on CC(X) and get the
above-mentioned version of the Markov–Kakutani Theorem extended to the hyperspace
(CC(X),Jw).

1. Introduction

The classical Markov–Kakutani Theorem states that if K is a com-
pact, convex subset of a topological linear space E, then every commutative
family F of continuous linear transformations of K into K must have a
common fixed point in K. Since a linear transformation between Banach
spaces is continuous if and only if it is weakly continuous, it follows that
if K is a weakly compact convex subset of a Banach space X, then every
commutative family F of weakly continuous linear transformations of K

into K must have a common fixed point in K. In this paper, we shall have
the above-mentioned version of the Markov–Kakutani theorem extended
to the hyperspace CC(X), where CC(X) is the collection of all non-empty
compact convex subsets of X.
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2. Notations and preliminaries

Let X be a Banach space, X∗ its topological dual, and CC(X) the
collection of all non-empty compact convex subsets of X. For A, B ∈
CC(X), define N(A; ε) = {x ∈ X : ‖x − a‖ < ε for some a ∈ A} and
h(A,B) = inf{ε > 0 : A ⊂ N(B; ε) and B ⊂ N(A; ε)} where h is known as
the Hausdorff metric induced by the norm on X. Suppose A, B ∈ CC(X)
and α is a scalar, then it is known that both λA = {λa : a ∈ A} and
A + B = {a + b : a ∈ A, b ∈ B} belong to CC(X). Thus CC(X) carries
an “affine” structure on it in a natural way. (CC(X), h) is known as the
hyperspace over X and it has been investigated by several mathematicians
from different view-points ([1], [2], [4]). We now define a subset K ⊂
CC(X) to be convex if for A1, A2, . . . , An ∈ K and α1, α2, . . . , αn ∈ [0, 1]
with

∑n
i=1 αi = 1, we have

∑n
i=1 αiAi ∈ K; also a mapping T : CC(X) →

CC(X) is said to be affine if T (
∑n

i=1 αiAi) =
∑n

i=1 αiT (Ai).

Lemma 1. Let A, B, C, D ∈ CC(X). We have

(a) h(αA, αB) = |α|h(A,B), where α is a scalar;

(b) h(A + C, B + D) ≤ h(A, B) + h(C,D);
(c) for each x∗ ∈ X∗ and A1, A2, . . . , An ∈ CC(X),

x∗(
∑n

i=1 αiAi) =
∑n

i=1 αix
∗(Ai),

where α1, α2, . . . , αn ∈ [0, 1] with
∑n

i=1 αi = 1;

(d) A = B if and only if x∗(A) = x∗(B) for each x∗ ∈ X∗.

The proofs of (a), (b) and (c) follow immediately from the definitions
and the proof of (d) is a simple application of the Hahn–Banach theorem
and shall be omitted.

Next, we let Z denote the complex plane, CC(Z) denote the collection
of all non-empty compact, convex subsets of Z and h the natural Hausdorff
metric on CC(Z). Note that for any x∗ ∈ X∗ and A ∈ CC(X), it follows
from the linearity and continuity of x∗ that x∗(A) is a non-empty compact,
convex subset of Z, i.e. x∗(A) ∈ CC(Z). We shall now prove the following

Lemma 2. Suppose A, B ∈ CC(X), then h(x∗(A), x∗(B)) ≤
‖x∗‖h(A,B) for each x∗ ∈ X∗. Thus x∗ : (CC(X), h) → (CC(Z), h) is
continuous (for simplicity the same h is used to denote different Hausdorff
metrics on CC(X) and CC(Z).).

Proof. Let r > h(A, B). Then A ⊂ N(B; r) and B ⊂ N(A; r).
Hence for each a ∈ A, there exists b ∈ B such that ‖a − b‖ < r and
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consequently ‖x∗(a) − x∗(b)‖ = ‖x∗(a − b)‖ ≤ ‖x∗‖‖a − b‖ < ‖x∗‖r,
which in turn implies that x∗(A) ⊂ N(x∗(B); ‖x∗‖r). Similarly x∗(B) ⊂
N(x∗(A); ‖x∗‖r). Hence h(x∗(A), x∗(B)) ≤ ‖x∗‖r, which implies that
h(x∗(A), x∗(B)) ≤ ‖x∗‖h(A, B) and the proof is complete.

Recall now that the weak topology τw on X is defined to be the weak-
est topology on X which makes each x∗ : (X, τw) → (Z, | |) continuous.
Now that we have, by Lemma 2, that each x∗ : (CC(X), h) → (CC(Z), h)
is continuous, we may define Jw to be the weakest topology on the hyper-
space CC(X) such that each x∗ : (CC(X),Jw) → (CC(Z), h) is contin-
uous. The notion of weak convergence has been studied by some mathe-
maticians ([3], [5], [6]) and this paper has been inspired by their work; in
particular by the paper of F. S. De Blasi and J. Myjak [3]. However,
our approach is somewhat different from theirs. We shall use the notation
W(A; x∗1, . . . , x∗n; ε) = {B ∈ CC(X) | h(x∗i B, x∗i A) < ε for i = 1, 2, . . . , n}
to denote a Jw-neighborhood of A in CC(X).

Lemma 3. Suppose S, T : (CC(X),Jw) → (CC(X),Jw) are contin-

uous and α is a scalar. Then S + T : (CC(X),Jw) → (CC(X),Jw) and

αS : (CC(X),Jw) → (CC(X),Jw) are also continuous where

(S + T )(A) = SA + TA and (αS)A = αSA.

Proof. To show that S + T is continuous at A we let
W(SA+TA;x∗1, x

∗
2, . . . , x∗n; ε) be a Jw-neighborhood of SA+TA. Since S

is continuous at A, for W1(SA; x∗1, x
∗
2, . . . , x∗n; ε

2 ) which is a Jw-neighbor-
hood of SA, there exists a Jw-neighborhood U(A) such that B ∈ U(A)
implies SB ∈ W1. Similarly, for W2(TA;x∗1, x

∗
2, . . . , x∗n; ε

2 ), there exists a
Jw-neighborhood V(A) such that B ∈ V(A) implies TB ∈ W2. Conse-
quently for B ∈ U ∩ V we have SB ∈ W1, TB ∈ W2 and it follows from
Lemma 1 that

h(x∗i (SB + TB), x∗i (SA + TA)) = h(x∗i (SB) + x∗i (TB),

x∗i (SA) + x∗i (TA)) ≤ h(x∗i (SB),

x∗i (SA)) + h(x∗i (TB), x∗i (TA)) <
ε

2
+

ε

2
= ε;

i.e., (S + T )(B) ∈ W proving that (S + T ) is continuous at A. It can be
proved in a similar fashion, that αA : (CC(X),Jw) → (CC(X),Jw).
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Theorem. Let X be a Banach space and K Jw-compact, convex sub-

set of (CC(X),Jw). Suppose F is a commutative family of continuous

affine mappings of (K,Jw) into itself. Then F has a common fixed point

in K.

Proof. For each T ∈ F and each integer n, let Tn = ( 1
n )

∑n−1
k=0 T k,

where T 0 = I is the identity mapping. It follows that Tn(K) ⊂ K. If follows
from Lemma 3 that Tn is Jw-continuous and consequently Tn(K) is Jw-
compact. The commutativity of F implies that Tn(Sm(K))=Sm(Tn(K)) ⊂
Tn(K) ∩ Sm(K). Consequently, {Tn(K) : n = 1, 2, . . . , T ∈ F} is a family
of Jw-compact subsets of K with finite intersection property and hence
has non-empty intersection, i.e.,

⋂
Tn(K) 6= φ where the intersection is

taken over n = 1, 2, . . . , and T ∈ F . Let A0 ∈
⋂

Tn(K). We claim that
TA0 = A0 for all T ∈ F . Assume the contrary, then there exists T ∈ F
with TA0 6= A0 which implies that h(x∗(TA0), x∗(A0)) > 0 for some
x∗ ∈ X∗ by Lemma 1. For each n, A0 ∈ Tn(K) implies the existence of
some Bn ∈ K with A0 = 1

n

∑n−1
k=0 T k(Bn). T is affine implies that TA0 =

( 1
n )

∑n
k=1 T k(Bn). Since x∗ : (CC(X),Jw) → (CC(Z), h) is continuous

and K is Jw-compact, it follows that x∗(K) is a compact subset of the
metric space (CC(Z), h) and hence totally bounded which in turn implies
that diam (K) = sup{h(x∗(A), x∗(B)) : A, B ∈ K} < ∞. It follows now
from the lemmas that

h(x∗(TA0), x∗(A0)) = h

(
x∗

(
1
n

n∑

k=1

T kBn

)
, x∗

(
1
n

n−1∑

k=0

T kBn

))
=

1
n

h
(
x∗(TBn) + x∗(T 2Bn) + · · ·+ x∗(TnBn),

x∗(Bn) + x∗(TBn) + · · ·+ x∗(Tn−1Bn)
) ≤ 1

n
h
(
x∗(Bn), x∗(TnBn)

)

≤ 1
n

diam(K).

Diam (K) < ∞ and that n is arbitrary implies that h(x∗(TA0), x∗(A0))=0.
This is a contradiction. Thus TA0 = A0 for all T ∈ F and the proof is
complete.

Remark. Suppose K consists of singletons. Then we obtain the version
of the Markov–Kakutani Theorem mentioned in the introduction of this
paper.
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