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More on finite rank elements

By GORAZD LEŠNJAK (Maribor)

Abstract. Recently, B. Aupetit and H. du T. Mouton have shown that the
trace and determinant on a semisimple Banach algebra could be defined in a purely
spectral and analytic way. Here, these notions are based on an equivalent approach
using the representation theory which was given by M. Bre�sar and P. �Semrl. Applying
their point of view it is possible to extend several (in)equalities on rank, trace and
determinant.

1. Introduction

Different concepts of finite dimensional or finite rank elements of Ba-
nach algebras have been introduced by several authors ([7], [1], [6], [5],
[4], . . . ). Aupetit and Mouton [2] have recently given the definition of
rank for elements of a unital semisimple complex Banach algebra A. They
proved that the subset of A consisting of all elements with finite rank coin-
cides with the socle of A, i.e. the sum of all minimal left (respectively, of all
minimal right) ideals of A. We denote this set by soc(A). If there are no
minimal one-sided ideals in A then by convention soc(A) = {0}. In their
paper [3] Brešar and Šemrl gave the following definition of rank which
enabled them to unify different approaches by proving their equivalence.

Definition. The element 0 ∈ soc(A) has rank 0. An element a ∈
soc(A)\{0} has rank one if it belongs to some minimal left ideal of A. An
element a ∈ soc(A) has rank n > 1 if it belongs to the sum of n minimal
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left ideals, but does not belong to any sum of less than n minimal left
ideals.

In order to clarify the structure of finite rank elements they applied
the representation theory. The following shortened version of the main
theorem in [3] is the starting point for our considerations.

Theorem 1. Let n ∈ N. For an element a in a semisimple unital

complex Banach algebra A the following assertions are equivalent:

(A) a has rank n;

(B) the left ideal Aa is a sum of n minimal left ideals, but is not a sum

of less than n minimal left ideals of A,

(C) σ(xa) contains at most n nonzero points for every x ∈ A and there

exists x0 ∈ A such that σ(x0a) contains n nonzero points;

(D) a satisfies

(1) there exists primitive ideals P1, . . . , Pk (Pi 6= Pj whenever i 6= j)

of A such that a ∈ P for every primitive ideal P /∈ {P1, . . . , Pk},
(2) if πi, i = 1, . . . , k, are continuous irreducible representations of A
on Banach spaces Xi such that Ker πi = Pi, then πi(a) are finite rank

operators and n = rank π1(a) + . . . + rank πk(a).

Here we wrote σ(a) for the spectrum of a. Recall that an element
a of an algebra B is indecomposable if it cannot be written in the form
a = b + c with nonzero elements b and c of B satisfying bBc = 0. In [3] it
is shown that a nonzero indecomposable element of soc(A) belongs to all
primitive ideals of A except one. The last assertion of the above theorem
and Lemma 2.6 in [3] can be combined in the following characterization.

Proposition 2. An element a in a semisimple unital complex Banach

algebra A has rank n if and only if there exist (unique) indecomposable

nonzero elements a1, a2, . . . , ak in A such that

i) a = a1 + a2 + . . . + ak,

ii) aiAaj = 0 whenever i 6= j,

iii) πi(a) = πi(ai) is a finite rank operator for i = 1, 2, . . . , k, with πi being

the continuous irreducible representation of A on a Banach space Xi

such that Ker πi = Pi is the primitive ideal not containing ai.

iv) n = rank π1(a1) + rank π2(a2) + . . . + rank πk(ak).

Aupetit and Mouton [2] defined the rank by the condition (C) in
Theorem 1. In the same article they gave definitions of the trace of a and
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the determinant of 1 + a for an element a ∈ soc(A) by introducing first
the multiplicity of an element in σ(a). Then they deduced the validity
of basic properties which are known to hold true for these notions in ma-
trix algebras. For example, they verified the subadditivity of rank ([2],
Theorem 2.14), the additivity of trace and the multiplicity of determinant
([2], Theorem 3.3). Their intricate arguments are based on the fact that
spectrum is an analytic multifunction.

It is the aim of this note to prove and extend their results by exploiting
the above definition and the representation given by the above theorem.
For example, the subadditivity of rank is an immediate consequence of the
definition. As this paper rests heavily on the results in [3] we follow the
notation given there wherever it is possible.

2. Preliminaries

We begin with some definitions and basic facts from [2]. The rank of
an element a in soc(A) will be denoted by rank(a) and the cardinality of
the set S by ]S.

Let us fix an element a ∈ soc(A) with rank(a) = n. In [2], Theo-
rem 2.2, it is shown that the set E(a) = {x ∈ A : ]σ(xa) \ {0} = n} is
a dense open subset of A. Moreover, for any open subset ∆ of C whose
boundary is an oriented regular contour Γ satisfying Γ ∩ σ(a) = ∅ there
exists a neighbourhood U of 1 ∈ A such that the finite number ]σ(xa)∩∆
is the same for all x ∈ E(a)∩U . In the case when ∆ is a disc with α ∈ σ(a)
as its centre and diameter small enough this value is called (see [2]) the
multiplicity of a at α and denoted by m(α, a). To simplify calculations it
will be convenient to have m(α, a) = 0 for an α /∈ σ(a).

Definition [2]. The trace of an element a ∈ soc(A) is the number

tr(a) =
∑

λ∈σ(a)

λm(λ, a)

and the determinant of 1 + a is given by

det(1 + a) =
∏

λ∈σ(a)

(1 + λ)m(λ,a).

Let us return to Proposition 2 above and fix an index i ∈ {1, 2, . . . , k}.
The operator πi(a) = πi(ai) in B(Xi) has finite rank ri. Thus, in every
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direct sum decomposition Xi = Ui⊕Vi with Ui finite dimensional, contain-
ing Im(πi(ai)) and such that Ker(πi(ai)) ⊃ Vi, the subspace Ui is πi(ai)-
invariant and closed. Hence, the restriction Ai = πi(ai)|Ui is an endomor-
phism of the finite dimensional vector space Ui satisfying σ(Ai) \ {0} =
σ(πi(ai)) \ {0}. It can be identified with an appropriate matrix, say [Ai],
which depends on the basis choosen in Ui. The rank (spectrum, trace,
determinant) of this operator is equal to the rank (spectrum, trace, deter-
minant) of the corresponding matrix with no regard to the basis of Ui. If it
suits our purposes we can replace Ui with any finite dimensional subspace
Wi of Xi containing Ui.

Recall that for an endomorphism A of a finite dimensional complex
linear space (or any corresponding matrix [A]) the algebraic multiplicity
n(λ,A) of an element λ in σ(A) (or in σ([A])) is equal to the exponent at
the factor (t−λ) in its characteristic polynomial. Let us define n(λ,A) = 0
for λ /∈ σ(A). We write Tr(A) and Det(I +A) for the usual trace of A and
the usual determinant of I + A where I stands for the identity.

Proposition 3. Let a be an element of the socle of A and a = a1 +
. . . + ak its unique decomposition as given in the Proposition 2. Then the

following equalities hold:

(a) rank(a)=
∑

i rank(ai)=
∑

i rank(π(ai)) =
∑

i rank(Ai) =
∑

i rank[Ai],
(b) for each nonzero λ in σ(a) one has

m(λ, a) =
∑

i

m(λ, ai) =
∑

i

m(λ, πi(ai)) =
∑

i

m(λ,Ai)

=
∑

i

m(λ, [Ai]) =
∑

i

n(λ, [Ai]) =
∑

i

n(λ,Ai),

(c) tr(a) =
∑

i tr(ai) =
∑

i tr(πi(ai)) =
∑

i Tr(Ai) =
∑

i Tr[Ai],
(d) the determinant of 1 + a is equal to the following products:

∏

i

det(1+ai) =
∏

i

det(1+πi(ai)) =
∏

i

Det(I+Ai) =
∏

i

Det([I+Ai]).

Proof. In each assertion the equality at the right hand side is well
known. Also, the equalities in (a) are rewritten from the above proposition.

To proceed, take any x ∈ E(a). Then xa = x(a1 + . . . + ak) =
xa1 + . . . + xak is the decomposition of xa guaranteed by Proposition 2.
By Theorem 2.2 in [3] it follows that σ(xa) \ {0} =

⋃
i(σ(xai) \ {0}). This
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further implies rank(a) = ]σ(xa)\{0} ≤ ∑
i ]σ(xai)\{0} ≤

∑
i rank(ai) =

rank(a) which shows that x ∈ E(ai) for all i ∈ {1, . . . , k} and that the
sets σ(xai) \ {0} are disjoint.

Write ∆r(z) for the open disc of radius r with its centre at z ∈ C
and let 0 < ρ < 1

2 min{|α − β| : α, β ∈ σ(a) ∪ {0}}. From Theorem 2.4
in [2] we deduce the existence of an open neighbourhood U of 1 such
that for every x ∈ E(a) ∩ U one has σ(xa) ⊂ ⋃

λ∈σ(a) ∆ρ(λ) and for
every λ ∈ σ(a) \ {0} the equality m(λ, a) = ]σ(xa) ∩ ∆ρ(λ) holds true.
Again we have σ(xa)∩∆ρ(λ) =

⋃
i(σ(xai)∩∆ρ(λ)) for each nonzero λ in

σ(a). The sets on the right hand side are disjoint, thus ]σ(xa) ∩∆ρ(λ) =∑
i ](σ(xai) ∩∆ρ(λ)) which shows that m(λ, a) =

∑
i m(λ, ai). It follows

directly from definitions that for every i ∈ {1, . . . , k} the multiplicities
m(λ, ai), m(λ, πi(ai)), m(λ,Ai) and m(λ, [Ai]) coincide for nonzero λ.

It remains to prove m(λ, T ) = n(λ, T ) for any matrix T and any
nonzero λ. We can assume that T is an upper triangular Jordan matrix.
Moreover, suppose that λ1, . . . , λk are all its nonzero eigenvalues with al-
gebraic multiplicities n(λj , T ) = nj for 1 ≤ j ≤ k. Arrange corresponding
Jordan blocks in the upper n = n1 + . . .+nk rows. For small positive r we
now define Mr to be a block-diagonal matrix having the following form.
Upper n rows have only diagonal terms different from zero:

mj,j =





1 + r exp(2πij/n)/λ1, 1 ≤ j ≤ n1,

1 + r exp(2πij/n)/λ2, n1 < j ≤ n1 + n2,

. . . , . . .

1 + r exp(2πij/n)/λk, n− nk < j ≤ n.

The structure of Mr below these rows corresponds to the Jordan cells
of T having zero diagonal, if there are any. Let n0 = rank T − n stands
for the number of nonzero rows in these cells of T . With each of these
Jordan cells of T we associate a block of the same size and at the same
location, with nonzero elements only on the first subdiagonal. If p is the
index of the n+ j-th nonzero row of T we define mp+1,p = r exp(2πij/n0).
It is easy to verify that for r small enough the product MrT is upper
triangular matrix of the same rank as T having rank T distinct nonzero
eigenvalues. Hence, matrices Mr belong to E(T ) for small values of r. For
r < ρ < 1

2 min{|α− β| : α, β ∈ σ(T ) ∪ {0}} and 1 ≤ j ≤ k we have

m(λj , T ) = ]σ(MrT ) ∩∆ρ(λj) = nj = n(λj , T ),
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which finishes the proof of assertion (b).
The trace of a matrix is the sum of all its diagonal entries and it is well

known that it is equal to the sum of all its eigenvalues repeated according
to their algebraic multiplicities. For nonzero elements in the spectrum of
a matrix T these are equal to the numbers m(λ, T ). Thus, the trace TrT
of this matrix is equal to its trace tr T given by the definition above. This
fact together with the following computation proves assertion (c):

tr(a) =
∑

λ∈σ(a)

λm(λ, a) =
∑

λ

λ
∑

1≤i≤k

m(λ, ai)

=
∑

i

∑

λ

λm(λ, ai) =
∑

i

tr(ai).

The last assertion follows easily from the fact that for any matrix its
determinant is equal to the product of its eigenvalues repeated according
to their algebraic multiplicities. For a matrix of the form I + T this gives
the equality Det(I + T ) =

∏
λ∈σ(T )(1 + λ)n(λ,T ). But this expression is

equal to
∏

λ∈σ(T )(1 + λ)m(λ,T ) = det(I + T ). The rest of the proof is a
simple verification based on the assertion (a):

det(1 + a) =
∏

λ∈σ(a)

(1 + λ)m(λ,a) =
∏

λ

(1 + λ)
P

i m(λ,ai)

=
∏

λ

∏

i

(1 + λ)m(λ,ai) =
∏

i

∏

λ

(1 + λ)m(λ,ai) =
∏

i

det(1 + ai). ¤

The main theorem of [3] and the proposition above justify viewing
elements of socle as finite direct sums of finite rank endomorphisms or just
as finite direct sums of matrices. These can be identified in a natural way
with block diagonal matrices.

3. Ranks, traces and determinants

The importance of matrix calculus in applied mathematics is just one
of the many reasons why there are so many equalities and inequalities
involving ranks, traces and determinants of matrices. Moreover, some of
these relations inspired great efforts to prove their validity in more general
settings. The propositions above allow us to extend these relations to the
socle of A. To this end, we first define ∼ to be a common substitution for
any of the symbols =, > and ≥.
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Theorem 4. Let A be a unital semisimple complex Banach algebra,

n ∈ N and F a polynomial in m + i + j ∈ N variables. Furthermore, let

p1, . . . , pm, q1, . . . , qi, r1, . . . , rj be polynomials with zero constant term

in n noncommuting variables and denote by f1, . . . , fi, g1, . . . , gj entire

functions having zero at the origin. The relation

F (rank p1(a), . . . , rank pm(a), f1(tr q1(a)), . . . , fi(tr qi(a)),

det(1 + g1(r1(a))), . . . , det(1 + gj(rj(a)))) ∼ 0

is valid for all n-tuples a = (a1, a2, . . . , an) of elements in the socle of A if

and only if the same relation holds true for all n-tuples of square matrices

of the same size with no regard to their size.

Proof. Suppose that a relation of the form above holds for square
matrices and take any elements a1, . . . , an of the soc(A). Let P = {P1, . . .

. . . , Pk} be the set of all primitive ideals in A with the property that for
each of them at least one of a1, . . . , an does not belong to it. Denote
by π1, . . . , πk the corresponding continuous irreducible representations on
some Banach spaces X1, . . . , Xk. According to Proposition 2, elements
a1, . . . , an can be decomposed in finite sums of indecomposable elements
with uniquely determined nonzero components. Hence, for p = 1, . . . , n

we can write ap = ap,1 + . . .+ap,k knowing that for each i ∈ {1, . . . , k} the
endomorphism πi(ap) = πi(ap,i) of the Banach space Xi has a finite rank.
Let Xi = Ui⊕Vi, i = 1, . . . , k, be direct sum decompositions with Ui finite
dimensional, containing all the images Im(πi(ap,i)) for p = 1, . . . , n and
such that Vi ⊂

⋂
p Ker(πi(ap,i)). All these subspaces are πi(ap,i)-invariant

and we can proceed as in Preliminaries to obtain endomorphisms of the
finite dimensional spaces Ui representing our elements. Furthermore, if
bases are chosen in all these spaces we get the corresponding matrices.

Let p be a polynomial in n noncommuting variables with zero con-
stant term. Then p(a) belongs to the socle of A. Homomorphisms of alge-
bras commute with polynomials in one or several variables, hence for each
i ∈ {1, . . . , k} we have πi(p(a)) = p(πi(a1), . . . , πi(an)) = p(πi(a1,i), . . .
. . . , πi(an,i)). This further implies that the spaces Ui are invariant for
elements of the form πi(p(a)) and, consequently, also for entire functions
of such elements. Moreover, if f is an entire function with f(0) = 0,
the matrix corresponding to the endomorphism πi(f(p(a)))|Ui is equal to
the matrix f(p(πi(a1)|Ui, . . . , πi(an)|Ui)). It follows that f(p(a)) can be
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represented by a direct sum of matrices, each of them representing the
same function of a n-tuple of the corresponding indecomposable parts of
elements in a.

By Proposition 2 the values of ranks, traces and determinants for the
elements of socle coincide with the values of ranks, traces and determinants
of the corresponding direct sums of matrices. Hence, if a relation of the
form above is valid for square matrices, then it holds also for direct sums
of matrices and, consequently, for the elements of socle which they are
representing.

The reverse implication is trivial. ¤

The relations in the following corrollary are well known for matrices.
The proof that they are valid for finite rank elements of unital semisimple
algebras has already been given in [2]. Here, we get them by substitut-
ing some simple polynomials of one or two variables and entire functions
f(z) = z or f(z) = ez − 1 in the general form considered above.

Corollary 5. Let a and b be elements in the socle of a unital semisim-

ple complex Banach algebra A. Then the following equalities and inequal-

ities are valid:

(a) rank(a + b) ≤ rank(a) + rank(b),

(b) tr(a + b) = tr(a) + tr(b),

(c) tr(ab) = tr(ba),

(d) det(ea) = etr(a),

(e) det((1 + a)(1 + b)) = det(1 + a) det(1 + b),

(f) det(ea+b) = det(ea) det(eb) = det(eaeb).

At the end let us point out that relations involving also spectral radius
but of more general form (see [2], p. 130 and p. 134) as considered here
could be derived from their validity for square matrices.
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