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Solutions of linear recursive systems

By BÉLA ZAY*(Eger)

Peter R. J. Asveld [1], [2], furthermore Marjorie Bicknell–
Johnson and Gerald Bergum [3] investigated sequences determined by
initial values and linear recursive systems. The Problem H–351 of the
Fibonacci Quarterly, proposed by V. E. Hoggatt, Jr. [4], considers a
similar question: Determine the sequences U = {Un}∞n=1, V = {Vn}∞n=1
with U1 = V1 = F1 = F2 = 1 and

(1)
Un+1 − Un − Vn − Fn+1 = 0, −Un+1 + Vn+1 − Vn = 0,

Fn+2 − Fn+1 − Fn = 0, for any n ≥ 1.

The purpose of this paper is to investigate a generalization of these prob-
lems.

For a given integer r ≥ 1 let X(j) =
{

x
(j)
n

}∞
n=0

(1 ≤ j ≤ r) be

sequences of real numbers with initial terms x
(j)
0 , x

(j)
1 , . . . , x

(j)
mj−1 (1 ≤ j ≤

r) and let ci,j,t (1 ≤ i, j ≤ r; 0 ≤ t ≤ mj) be fixed real numbers. Suppose
that the sequences satisfy the equation system

m1∑
t=0

c1,1,tx
(1)
n+t +

m2∑
t=0

c1,2,tx
(2)
n+t + · · ·+

mr∑
t=0

c1,r,tx
(r)
n+t = 0

m1∑
t=0

c2,1,tx
(1)
n+t +

m2∑
t=0

c2,2,tx
(2)
n+t + · · ·+

mr∑
t=0

c2,r,tx
(r)
n+t = 0(2)

...
m1∑
t=0

cr,1,tx
(1)
n+t +

m2∑
t=0

cr,2,tx
(2)
n+t + · · ·+

mr∑
t=0

cr,r,tx
(r)
n+t = 0
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for any natural number n. We assume that

(3) det(ci,j,mj
) 6= 0,

where det(ci,j,mj
) is the determinant of the r × r matrix with entries

ci,j,mj
(0 ≤ i, j ≤ r). By (2) and (3) the sequences X(j) are uniquely

determined since the initial terms are given. We shall show that these
sequences also satisfy a linear recurrence relation.

Let M be the set of operators A = A(a0, a1, . . . , am),
B = B(b0, b1, . . . , bk), . . . , defined on the set of sequences of real numbers
X = {Xn}∞n=0, Y = {Yn}∞n=0 , . . . , so that

A(X ) = X ′ = {x′n}∞n=0 =

{
m∑

i=0

aixn+i

}∞

n=0

B(X) = X ′′ = {x′′n}∞n=0 =

{
k∑

i=0

bixn+i

}∞

n=0

...

where a0, a1, . . . , am; b0, b1, . . . , bk, . . . are fixed real numbers. Let X+Y =
{xn + yn}∞n=0 and aX = {axn}∞n=0 for a real number a.

It can easily be checked that

(4) A(aX + bY ) = aA(X) + bA(Y )

for any operator A of M and for any real numbers a and b, that is each ele-
ment of M is a linear operator. We define the addition and multiplication
of operators by

(A + B)(X) = A(X) + B(X)(5)
and

(A ·B)(X) = A(B(X))(6)

for any sequence X of real numbers.
Let T be the mapping of the set M of operators onto the set R[x] of

polynomials with real coefficients defined by

T (A) =
m∑

i=0

aix
i

where the operator A is determined by the real numbers a0, a1, . . . , am.
The following auxiliary result will be proved at the and of the paper.
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Lemma. The mapping T is an isomorphism between the structures
(M, +, ·) and (R[x], +, ·).

Using the notation of operators, equation system (2) can be written
in the form

(7)

C1,1

(
x(1)

)
+ C1,2

(
x(2)

)
+ · · ·+ C1,r

(
x(r)

)
= 0∗

C2,1

(
x(1)

)
+ C2,2

(
x(2)

)
+ · · ·+ C2,r

(
x(r)

)
= 0∗

...

Cr,1

(
x(1)

)
+ Cr,2

(
x(2)

)
+ · · ·+ Cr,r

(
x(r)

)
= 0∗

where Ci,j ∈ M (1 ≤ i, j ≤ r) is an operator determined by the constants
ci,j,1, ci,j,2, . . . , ci,j,mj and 0∗ is the sequence of zeros.

Let Z be the zero element of the ring (M, +, ·), i.e. Z(X) = 0∗ for any
sequence X (Z is determined by zeros).

Using the above notation our main result is as follows:

Theorem. Let X(j) (1 ≤ j ≤ r) be sequences determined uniquely
by their initial terms and by (2) and (3). Then these sequences satisfy the
recursive relation

(8) (det (Ci,k))
(
X(j)

)
= 0∗ (1 ≤ j ≤ r),

furthermore

(9) (det (Ci,k)) 6= Z,

where det (Ci,k) ∈ M is the determinant of the r × r matrix with entries
Ci,k ∈ M , (1 ≤ i, k ≤ r).

Before proving the Theorem we show some consequences and appli-
cations of our result.

If A = A(a0, . . . , am) is an operator and A(X) = 0∗ for a sequence X
of real numbers, then X is a linear recursive sequence of order m since

amXn+m + am−1Xn+m−1 + · · ·+ a0Xn = 0

for any n ≥ 0, furthermore the characteristic polynomial of this sequence
is

amxm + am−1x
m−1 + · · ·+ a1x + a0 = T (A),

where T is the isomorphism defined in the Lemma. So, as a consequence
of our theorem we have
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Corollary. Let X(j) (1 ≤ j ≤ r) be sequences such as in the Theorem.
Then these are linear recursive sequences of order maximum

m = m1 + m2 + · · ·+ mr

and their common characteristic polynomial is

T (det (Ci,j)) = det (T (Ci,j)) .

As an application of the theorem we show the way of solving the
system (1). From U1 = V1 = F1 = F2 = 1, by (1), the initial terms of the
sequences are U0 = V0 = F0 = 0, U1 = 1, U2 = 3, U3 = 9; V1 = 1, V2 = 4,
V3 = 13 and F1 = F2 = 1, F3 = 2. In our case r = 3, X(1) = U , X(2) = V ,
X(3) = F ; m1 = m2 = 1, m3 = 2 and

det
(
ci,j,mj

)
=

∣∣∣∣∣
1 0 0

−1 1 0
0 0 1

∣∣∣∣∣ = 1 6= 0

The operators Ci,j(1 ≤ i, j ≤ 3) are C1,1(−1, 1), C1,2(−1, 0), C1,3(0,−1, 0),
C2,1(0,−1), C2,2(−1,−1), C2,3(0, 0, 0) = C3,1(0, 0) = C3,2(0, 0) = 0∗,
C3,3(−1,−1, 1) and so, by the Corollary, U,V,F are linear recursive se-
quences of order maximum 4 with characteristic polynomial

f(x) = det (T (Ci,j)) =

∣∣∣∣∣
x− 1 −1 −1
−x x− 1 0
0 0 x2 − x− 1

∣∣∣∣∣ =

=
(
x2 − 3x + 1

) · (x2 − x− 1
)

The roots of f(x) are

α1 =
1 +

√
5

2
, α2 =

1−√5
2

, α3 =
3 +

√
5

2
, and α4 =

3−√5
2

and so, as it is well-known, the terms of the sequences can be expressed as

x(j)
n = ajα

n
1 + bjα

n
2 + cjα

n
3 + djα

n
4 (j = 1, 2, 3)

where aj , bj , cj , dj are fixed real numbers, depending on the initial terms,
and they can be calculated by solving a linear equation system generated
for n = 0, 1, 2 and 3. This way for the sequence V we get

a2 = −5 + 2
√

5
10

, b2 =
2
√

5− 5
10

, c2 =
2
√

5 + 5
10

, d2 =
5− 2

√
5

10
and for the sequence F we obtain

a3 =
√

5
5

, b3 = −
√

5
5

, c3 = d3 = 0.
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Thus F satisfies also a second order linear recursive relation with charac-
teristic polynomial

(x− α1)(x− α2) = x2 − x− 1,

hence F is really the Fibonacci sequence.
Another example shows a common generalization of the problems in-

vestigated in [1], [2] and [3].
Let X(1) be a sequence of real numbers defined by the initial terms

X
(1)
0 , X

(1)
1 , . . . , X

(1)
m−1 and by the formula

(10)
m∑

i=0

aix
(1)
n+i +

k∑

i=1

qi(n)αn
i = 0 (n ≥ 0),

where a0, a1, . . . , am (am 6= 0) and α1, α2, . . . , αk are fixed real numbers,
and qi(x) are given polynomials with real coefficients of degree (ri−1) ≥ 0
for i = 1, 2, . . . , k. It is known that the sequence

X(2) =
{

x(2)
n

}∞
n=0

=

{
k∑

i=1

qi(n)αn
i

}∞

n=0

is a linear recursive sequence of order r1 + r2 + · · ·+ rk with characteristic
polynomial

q(x) =
k∏

i=1

(x− αi)ri .

So there is an operator B ∈ M such that B
(
X(2)

)
= 0∗ and T (B) = q(x).

Let A = A(a0, a1, . . . , am) be an operator of M and let E and Z be the
unit operator, i.e. E = E(1), and the zero operator, respectively. Then
(10) can be written in the form

A
(
X(1)

)
+ E

(
X(2)

)
= 0∗

Z
(
X(1)

)
+ B

(
X(2)

)
= 0∗

From this, by the Theorem and the Corollary, it follows that X(1) is a
linear recursive sequence with characteristic polynomial

T

(∣∣∣∣
A E
Z B

∣∣∣∣
)

= T (A ·B) = T (A) · T (B) =

(
m∑

i=0

aix
i

)
·

k∏

j=1

(x− αj)rj

Now we prove the Lemma and the Theorem.
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Proof of the Lemma. Let X be a sequence of real numbers and
let A = A(a0, a1, . . . , am) and B = B(b0, b1, . . . , bk) be operators of the set
M. Then

A(X) =

{
m∑

i=0

aixn+i

}∞

n=0

and B(X) =

{
k∑

i=0

bixn+i

}∞

n=0

We can suppose that m ≥ k and bi = 0 if k < i ≤ m. By (5) and (6) we
get

(A + B)(X) =

{
m∑

i=0

aixn+i

}∞

n=0

+

{
k∑

i=0

bixn+i

}∞

n=0

=

=

{
m∑

i=0

(ai + bi)xn+i

}∞

n=0

and

(A ·B)(X) = A

({
k∑

t=0

btxn+t

}∞

n=0

)
=





m∑

j=0

aj

k∑
t=0

btx(n+t)+j





∞

n=0

=

=





m+k∑

i=0

∑

j+t=i

aj · bt · xn+i





∞

n=0

Combining the above equations with the definition of the mapping T , we
obtain

T (A + B) =
m∑

i=0

(ai + bi)xi =
m∑

i=0

aix
i +

k∑

i=0

bix
i = T (A) + T (B)

and

T (A ·B) =
m+k∑

i=0

∑

j+t=i

ajbtx
i =

( m∑

j=0

ajx
j

)
·
( k∑

t=0

bjx
t

)
= T (A) · T (B)

follow which proves the Lemma since T is obviously a bijective mapping.

Proof of the Theorem. The Lemma implies that (M, +, ·) is an
Euclidean ring and the usual properties of determinants are valid if the
entries are operators of M .

Let Ai,j be the determinant of the (r − 1) × (r − 1) matrix that we
get from Ci,k(1 ≤ i, k ≤ r) by omitting the ith row and the jth column.
Further, let

Ai,j = (−E)i+jAi,j (1 ≤ i, j ≤ r),
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where E is the unit element of M . Similarly as in the proof of Cramer’s
rule, from (7) with some j (1 ≤ j ≤ r)

A1,j

(
C1,1

(
X(1)

)
+ C1,2

(
X(2)

)
+ · · ·+ C1,r

(
X(r)

))
= A1,j(0∗)

A2,j

(
C2,1

(
X(1)

)
+ C2,2

(
X(2)

)
+ · · ·+ C2,r

(
X(r)

))
= A2,j(0∗)

...

Ar,j

(
Cr,1

(
X(1)

)
+ Cr,2

(
X(2)

)
+ · · ·+ Cr,r

(
X(r)

))
= Ar,j(0∗)

follows. From this system, using (4) and the fact that the multiplication
in the ring of operators is commutative, we get

C1,1A1,j

(
X(1)

)
+ C1,2A1,j

(
X(2)

)
+ · · ·+ C1,rA1,j

(
X(r)

)
= 0∗

C2,1A2,j

(
X(1)

)
+ C2,2A2,j

(
X(2)

)
+ · · ·+ C2,rA2,j

(
X(r)

)
= 0∗

...

Cr,1Ar,j

(
X(1)

)
+ Cr,2A2,j

(
X(2)

)
+ · · ·+ Cr,rAr,j

(
X(r)

)
= 0∗

since A(0∗) = 0∗ for any A ∈ M . Adding the equations of this system by
(5) we obtain the equation

(11)
r∑

t=1

(C1,tA1,j + C2,tA2,j + · · ·+ Cr,tAr,j)
(
X(t)

)
= 0∗.

But
r∑

i=1

Ci,tAi,j =
{

Z if t 6= j

det(Ci,j) if t = j

and so (11) implies (8).
By the Lemma (9) is equivalent to the inequality

(12) det (T (Ci,j)) 6= 0 ,

where 0 is the identically zero polynomial. But the leading coefficient of
the polynomial det (T (Ci,j)) is equal to det

(
ci,j,mj

)
and so (12) follows

from (3). This completes the proof of the theorem.
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