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Solutions of linear recursive systems

By BELA ZAY*(Eger)

PeETER R. J. ASVELD [1], [2], furthermore MARJORIE BICKNELL—
JOHNSON and GERALD BERGUM [3] investigated sequences determined by
initial values and linear recursive systems. The Problem H-351 of the
Fibonacci Quarterly, proposed by V. E. HOGGATT, Jr. [4], considers a

similar question: Determine the sequences U = {U ooV =AValoo
with U1 V1 F1 F2 =1 and
Un+1 - Un - Vn - Fn+1 - 0; _Un+1 + Vn—|—1 - Vn = 07

(1)

Foyo—Foy1— F,=0, forany n > 1.

The purpose of this paper is to investigate a generalization of these prob-

lems. e

For a given integer r > 1 let XU) = {xm} (1 <j <r)be
n=0

sequences of real numbers with initial terms x(()] ), xgj ) yee ,x%i_l (1<5<

r) and let ¢; j+ (1 <4,57 <r; 0 <t <m;) be fixed real numbers. Suppose
that the sequences satisfy the equation system

my
E :Cl,l,txn+t+ § :Cl,2,t$n+t+ E Clrtxn+t 0
t=0 t=0

mi ma
1 2 r

(2) S eoaaall, + > ol o+ Z Coitily =0
= t=0 t=0
m1 m,

(r) _ 0

Cr,l,tanrt + Cr 2 twnth + -+ Crirtlpitt =

t=0 t=0
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for any natural number n. We assume that

where det(c; j,m;) is the determinant of the r x r matrix with entries
Cijm; (0 < 4,7 < 7). By (2) and (3) the sequences X0U) are uniquely
determined since the initial terms are given. We shall show that these
sequences also satisfy a linear recurrence relation.

Let M be the set of operators A = A(ag,a,...,an),

B = B(bg,b1,...,bx),..., defined on the set of sequences of real numbers
X ={Xp} 0 Y =AY} ",,..., so that
AX) =X ={a},2y = {Z az’$n+i}
1=0 n=0
k oo
B(X)=X"={al!}20, = {Z bixnﬂ}
=0 n=0
where ag, a1, ...,amn; bg,b1,...,bg,... are fixed real numbers. Let X+Y =

{zn +yn} o and aX = {az,}, ., for a real number a.
It can easily be checked that

(4) A(aX +bY) = aA(X) + bA(Y)

for any operator A of M and for any real numbers a and b, that is each ele-
ment of M is a linear operator. We define the addition and multiplication
of operators by

(5) (A+ B)(X) = A(X) + B(X)
and
(6) (A-B)(X) = A(B(X))

for any sequence X of real numbers.
Let T be the mapping of the set M of operators onto the set R[x| of
polynomials with real coefficients defined by

m
T(A) = Z a;z"
i=0
where the operator A is determined by the real numbers ag,aq,...,am,.

The following auxiliary result will be proved at the and of the paper.
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Lemma. The mapping T is an isomorphism between the structures
(Ma +, ) and (R[J:L +, )

Using the notation of operators, equation system (2) can be written
in the form

Cha (x(1)> +Cho <$(2)> +- 4+ Oy (:c“")) =0

Ca1 (13(1)> + Ca2 ($(2)> ++ Cop (iﬂ(r)) =0

Cra <gg(1)> + Cr2 (x(2)> ot Chp (x(r)> — 0

where C; j € M (1 <4, <r) is an operator determined by the constants
Cij1s Cij,25+ -+, Cij,m; and 0% is the sequence of zeros.

Let Z be the zero element of the ring (M, +, ), i.e. Z(X) = 0* for any
sequence X (Z is determined by zeros).

Using the above notation our main result is as follows:

Theorem. Let X () (1 < j < r) be sequences determined uniquely
by their initial terms and by (2) and (3). Then these sequences satisfy the
recursive relation

(8) (et (Cip)) (X)) =0* (1<) <),
furthermore
(9) (det (Cix)) # Z,

where det (C; ) € M is the determinant of the r X r matrix with entries
Oi,k: e M, (1 <i,k< T).

Before proving the Theorem we show some consequences and appli-
cations of our result.

If A= A(ao,...,an) is an operator and A(X) = 0* for a sequence X
of real numbers, then X is a linear recursive sequence of order m since

aan—i—m + CLm—lAXvn—&—m—l + -4+ aOXn =0

for any n > 0, furthermore the characteristic polynomial of this sequence
is
U™ + Q1™ - Farx 4 ag = T(A),

where T is the isomorphism defined in the Lemma. So, as a consequence
of our theorem we have
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Corollary. Let X () (1 < j <) be sequences such as in the Theorem.
Then these are linear recursive sequences of order maximum

m=mj+mg+---+my
and their common characteristic polynomial is
T (det (Cij)) = det (T'(Ci5)) -

As an application of the theorem we show the way of solving the
system (1). From U; = V; = F; = F5 =1, by (1), the initial terms of the
sequences are Uy = Vo =Fy=0,U1 =1, U,=3,U3=9; V1 =1, V, =4,
Vs=13and Fy =F, =1, F3=2. Inourcaser =3, XM =U, X® =V,
XG) = F:m; =my =1, mg =2 and

1 0 0
det (¢ijm,) =|—1 1 0|=1%#0
00 1

The operators C; (1 < ¢,5 < 3) are C1 1(—1,1), C1 2(—1,0), C1,3(0,—1,0),
02,1(07 _1)7 02,2(_17 _1>7 02,3(07 07 O) = 03,1(07 0) - 03,2(070> = 0*7
C33(—1,—1,1) and so, by the Corollary, U,V,F are linear recursive se-
quences of order maximum 4 with characteristic polynomial

z—1 -1 -1
—x x-—1 0
0 0 2 —x—1

:(:U2—3x+1)-(x2—x—1)

f(x) = det (T (Ci ) =

The roots of f(x) are

1++5 1-—

9 27

and so, as it is well-known, the terms of the sequences can be expressed as

S
©
S
S

o] = , and ay =

) = ajof + 005 + cjof +djof  (j=1,2,3)

n

where a;, b;, ¢, d; are fixed real numbers, depending on the initial terms,
and they can be calculated by solving a linear equation system generated
for n =0,1,2 and 3. This way for the sequence V we get

5vh 2vh-5  2Vh4s  5-2V6
0 7 10 7T 10 07T 10
and for the sequence F' we obtain

a2 = C2 2
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Thus F satisfies also a second order linear recursive relation with charac-
teristic polynomial

(x—oy)(x — ) = 2% —x — 1,

hence F' is really the Fibonacci sequence.

Another example shows a common generalization of the problems in-
vestigated in [1], [2] and [3].

Let X be a sequence of real numbers defined by the initial terms
X(gl), X{l), ceey Xy(;)_l and by the formula

m k
(10) Z aix&)_i + Z gi(n)al =0 (n>0),
i=0 i=1
where ag,a1,...,a, (a, #0) and a1, as, ..., af are fixed real numbers,

and ¢;(x) are given polynomials with real coefficients of degree (r; —1) > 0
forv=1,2,... k. It is known that the sequence

k o0
X0 = (s} = { S|
- i=1 n=0

is a linear recursive sequence of order r; +ro + - - - 4+ rp with characteristic

polynomial
k

q(x) = H(:c — ;)"

=1

So there is an operator B € M such that B (X(z)) = 0" and T'(B) = q(z).
Let A = A(ag,aq,...,a,) be an operator of M and let £ and Z be the
unit operator, i.e. E = FE(1), and the zero operator, respectively. Then
(10) can be written in the form

A <X<1>> +E <X<2>> — 0"
Z (X<1>) +B (X<2>) — 0

From this, by the Theorem and the Corollary, it follows that X is a
linear recursive sequence with characteristic polynomial

m

T (‘é g‘) =T(A-B)=T(A)-T(B) = (2;”) , -li[l(x )

Now we prove the Lemma and the Theorem.



132 Béla Zay

PrROOF OF THE LEMMA. Let X be a sequence of real numbers and
let A= A(ag,a1,...,a,)and B = B(by,b1,...,bx) be operators of the set
M. Then

m o0 k >
= {Z aixnﬂ} and B(X) = {Z bixn—l—i}
1=0 n=0 1=0 n=0

We can suppose that m > k and b; = 0 if £ < ¢ < m. By (5) and (6) we
get

m oo k o8]
=0 n=0 i=0 =0

- {Z(ai + bi)xn—m‘}
=0 n=0

and
k > m k >
(A B =A ({Z btxn—i—t} > Zaijt$(n+t)+j =
t n=0 Jj=0 t=0 n=0
m-+k &
= Z Z aj - bt * Tn+i
=0 j+t=t =0

Combining the above equations with the definition of the mapping 7', we
obtain

m m k
T(A+B)=> (a;i+b)z' = aa'+» b’ =T(A)+T(B)
=0 1=0 1=0

and

mk ;
; j;lajbtx - (Z ajxﬂ) : <; bjxt) =T(A) T(B)

follow which proves the Lemma since T is obviously a bijective mapping.

PROOF OF THE THEOREM. The Lemma implies that (M, +,-) is an
Euclidean ring and the usual properties of determinants are valid if the
entries are operators of M.

Let A% be the determinant of the (r — 1) x (r — 1) matrix that we
get from C; (1 < i,k < r) by omitting the i'" row and the j** column.
Further, let
Aij=(—E)TAY (1<i,j<r),

)
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where E is the unit element of M. Similarly as in the proof of Cramer’s
rule, from (7) with some j (1 <j <)

A (cm (X<1>) 4O (X<2>) TG <X(’")>> = A, ;(0%)

Az (Con (XO) 4 Cop (XD) o4 o (X)) = Ag5(07)

Ay (CT,1 (X(1)> +Cys <X<2>> to Oy <X("°)>> = A, (0%)

follows. From this system, using (4) and the fact that the multiplication
in the ring of operators is commutative, we get

Cridr (X(n) 4 C1aAy (X(2>> Fot CreAr (Xm) _ o

CQ,lAZ,j (X(l)) -+ 0272142"7‘ (X(2)> + .-+ CZ,TAQ,j (X(ﬂ) = 0*

Cri1dr; (X(1)> + Cr Az <X(2)> +-+ CrrAy <X(T)> =0

since A(0*) = 0* for any A € M. Adding the equations of this system by
(5) we obtain the equation

T

(]‘1) Z (Cl,tAl,j + CQJAQJ + .-+ C?",tAr,j) <X(t)> = 0*.

t=1

But
Z if t £ j

;C’t 7 {det(C’i,j) ift =

and so (11) implies (8).
By the Lemma (9) is equivalent to the inequality
(12) det (T'(Ci ) # 0,

where 0 is the identically zero polynomial. But the leading coefficient of
the polynomial det (7(C;;)) is equal to det (¢; jm,) and so (12) follows
from (3). This completes the proof of the theorem.
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