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Normal contact CR-submanifolds
of a quasi-Sasakian manifold

By CONSTANTIN CALIN (lasi)

Abstract. We obtain geometric characterisations of a normal contact CR~sub-
manifolds of a quasi-Sasakian manifold by means of a new tensor S, called torsion tensor
(see (2.5)). Finally an example of normal contact CR-submanifold of a quasi-Sasakian
manifold is given.

0. Introduction

The concept of CR-submanifold of a Kahlerian, manifold has been de-
fined by A. BEJANCU [3] and it is studied by, many authors [10], [13]. Later
A. BEjancu and N. PAPAGHIUC [5] introduced and studied the notion of
semi-invariant submanfold of a Sasakian manifold. These submanifolds are
closely related to CR-submanifolds in a Kahlerian manifold. However, the
existence of the structure vector field implies some important changes. Ex-
tensions of CR-submanifolds of a Sasakian manifold have also been studied
by M. Kon and K. YANO [13].

The purpose of the present paper is to define what we call normal
CR-submanifolds of a Quasi-Sasakian manifold and to obtain fundamen-
tal results on their geometry. In the first section we recall some results
and formulae for later use. In the second section, we prove some impor-
tant properties of a normal contact CR-submanifolds of a Quasi-Sasakian
manifold and we close this section with an example of a normal contact
CR-submanifolds of a Quasi-Sasakian manifold. In the last section we
give some results of a cosymplectic CR-submanifolds of a quasi-Sasakian
manifold.
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1. Preliminaries

Let M be a real 2n + 1-dimensional differentiable manifold and 1 &
and 7 be a tensor field of type (1,1), a vector field, a 1-form, respectively,
and a Riemannian metric g, on M satisfying:

fP=-I+ne& nE=1 f=0, na&f=0,
9(X,Y) = g(fX, fY) +n(X)n(Y),

(1.1)

where I is the identity on the tangent bundle TM of M and X , Y the
vector fields tangent to M.

We say that M is an almost contact metric manifold and (f,&,n)is an
almost contact metric structure on M (c.f. D. E. BLAIR [6]). Throughout
the paper, all manifolds and maps are differentiable of, class C*°. We
denote by F(M) the algebra of the differentiable function on M and by
I'(E) the F(M)-module of sections of a vector, bundle E over M. We use
the same notations for any other manifold involved in the study.

Next, we define the fundamental 2-form €2 of M , by,

Q(X,Y) = g(X, fY), VX,Y e(TM).
The Nijenhuis tensor Ny of f is defined by
Np(X,Y) = [fX, [Y]+ fP[X, Y] = fIf X, Y] = f[X, [Y],VX,Y € D(TM).

We say that the almost contact structure (f, &, n) is normal if the, following
condition is satisfied,

Ny(X,Y)+2dn(X,Y)E =0, VX,Y e I(TM).

Finally we say that M is a quasi-Sasakian manifold, if it is , endowed
with a normal almost contact metric structure (f,£,n,¢g) and, the funda-
mental 2-form € is closed. Quasi-Sasakian manifold has been, introduced
by D. E. BLAIR [6]. A characterisation of a Quasi-Sasakian, manifold by
means of covariant derivative of f has been given by, S. KANEMAKI [9] as

follows: M is a quasi-Sasakian manifold if and, only if it is endowed with
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an almost contact metric structure, (f,£,n,g) and a tensor field F' of type
(1,1) such as,

) (Vxf)Y =n(Y)FX — g(FX,Y)& fFX = FfX;
‘ g(FX,Y) = g(X,FY),VYX,YT(TM),

where V is the Levi-Civita connection with respect to the metric, tensor g.
From (1.2) we deduce (see [7])

(1.3) Vxé=fFXVX,Y € T(TM).

Now, let M be an m-dimensional Riemannian manifold isometrically, im-
mersed in M, and suppose that the structure vector field £ of M be tangent
to M. We denote by TM and T M~ the tangent bundle to M and, respec-
tively, the normal bundle to M. Also we denote by {¢} the, 1-dimensional
distribution spanned by £ on M.

The submanifold M is called contact CR-submanifold if it is endowed
with the pair of distributions (D, D) satisfying (cf. [3])

i) TM = D 1 D+ @ {¢} and D, D+ and {¢} are orthogonal on each
other,

ii) the distribution D is invariant by f, i.e. we have fD C D,
iii) the distribution D+ is anti-invariant by f, i.e. fD C TM~*
Throughout the paper we denote by 2p (resp. ¢) the dimension of
D (resp. D*). Thus, if p = 0 (resp. ¢ = 0) then CR-submanifold is an
anti-invariant submanifold tangent to £ (resp. an invariant submanifold).
An anti-holomorphic submanifold is a CR-submanifold which satisfyies:
dimTM = ¢ (see [4]). The CR-submanifold M is called a proper CR-
submanifold if it is neither an invariant submanifold nor an anti-invariant
submanifold.

The projection morphisms of TM to D and D+ are denoted by P and

Q, respectively, and we have,

(1.4) X =PX +QX +n(X)¢, VX eIl (TM).
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The vector fields fX, fN and FZ are decomposed into tanget parts, tX,
BN, aZ and normal parts wX, CN, 87, as follows

(1.5) fX=tX+wX VX eIl(TM),
(1.6) fN =BN +CN, VYN eI(TM"),
(1.7) FZ=aZ+pZ, NZecT(TM).

It is easy to say that ¢ and C are f-structures in the sense of K. YANO [12]
on TM and TM+, respectively.

Next, from general theory of Riemannian submanifolds recall the
Gauss and Weingarten formulae

(1.8) VxY =VxY +h(X,Y) VXY e (TM),
(19) VxN=—-AyX +V%N, VX eD(TM),N eT(TM"),

where h is the fundamental form, Ay is the shape operator with respect
to the normal section N, V and V+* are the connections induced by V on
TM and TM, respectively.

The Nijenhuis tensor of ¢ is given by

Ny(X,Y) = [t X, tY] + ?[X, Y] — t[X,tY] — t[tX, Y],

(1.10)
VX,Y € D(TM).

We say that a contact CR-submanifold M of a quasi-Sasakian manifold is
mixed geodesic if h(X,Z) =0 for any X € ['(D), Z € T'(D%)

Because ¢ is a Killing vector field (see [9]) and by using (1.3), (1.5)
and (1.7) we deduce

dn(X,Y) = g(Y,Vx€) = g(X, fFY) = g(BY,wX) + Q(aX,Y),
VX,Y € I(TM).

Finally, we recall some fundamental results from [7] for later use.

Lemma 1.1 [7]. Let M be a contact CR-submanifold of a quasi-
Sasakian manifold M. Then we have

(Vxt)Y = A,y X + Bh(X,Y) + n(Y)aX — g(FX,Y)E,

(1.11)
VX,Y € D(TM),
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and
(Vxw)Y =Ch(X,Y) — h(X,tY) +n(Y)5X,

(1.12)
VX,Y € T(TM),

where (Vxt)Y = VxtY —tVxY and (Vxw)Y = VxwY —w(VxY).
Theorem 1.1 [7|. Let M be a contact CR-submanifold of a quasi-
Sasakian manifold M. The distribution D is integrable if and only if

(1.13) FD* 1 fD*.

Theorem 1.2. [7]. Let M be a contact CR-submanifold of a quasi-
Sasakian manifold M. The distribution D+ @& {¢} is integrable.

2. Normal contact CR-submanifold of a quasi-Sasakian manifold

The purpose of this section is to study the fundamental properties of
a normal contact CR-submanifold. The triplet (¢,w,n) is called contact
CR-structure on M. First by using (1.1) and (1.5) we infer

(2.1) g(X,Y) = g(tX, 1Y) + g(wX,wY) + n(X)n(Y), VX,Y € (TM).

By using (2.1) we deduce
Lemma 2.1. Let M be a contact CR-submanifold of a quasi-Sasakian
manifold M. Then we have

(2.2) QX 1Y) = Q(X,Y), VX,Y € I(TM).

By using the same method as in [10], we derive
Theorem 2.1. Let M be a contact CR-submanifold of a quasi-
Sasakian manifold M. Then the covariant derivative of t is given by
29((Vxt)Y, Z) = 3dQUX, tY,tZ)—3dQUX, Y, Z)+g(N,(Y, Z), tX)
+2¢g(dw(tY, Z),wX) — 29(dw(tZ,Y),wX)
(2.3) —2¢9(dw(tZ,X),wY) + 2g(dw(tY, X),wZ)
+2n(Y)dn(X,tZ) — 2n(Z)dn(X, 1Y),
VX,Y,Z € T(TM).



262 Constantin Calin

By means of a contact CR-structure (¢, w, ), we define the tensor field
S on M, by
S(X,Y)=N(X,Y) —2Bdw(X,Y) + {Q(aY, X) — Q(aX,Y)}E,

(2.4)
VX,Y € T(TM).

The tensor field S is called the torsion tensor of a contact CR-structure.
We say that the contact CR-submanifold M is normal contact CR-sub-
manifold if the tensor S vanishes identically on M. By using (1.10) and
by taking into account that V is a torsion-free linear connection, (2.4)
becomes

S(X,Y) = (Vixt)Y —(Vay ) X +t{(Vy 1) X —(Vx )Y }+{Q(aY, X)
(2.5) — Q(aX,Y)} + B{h(X,tY) — h(tX,Y)
+n(X)BY —n(Y)pX}, VXY eT'(TM).

By straightforward calculation and using (1.5), (1.6), (1.7), (1.11), (1.12)
and (2.5) we infer

Lemma 2.2. Let M be a contact CR-submanifold of a quasi-Sasakian
manifold M. Then we have

S(X,Y)=(Awy ot—to Ay —n(Y)aow) X
(2.6) —(Aux ot—to Ayx—n(X)aow)Y, VXY e '(TM).

Theorem 2.2. The contact CR-submanifold M of a quasi-Sasakian
manifold M is normal if and only if the distribution D~ is integrable and

(2.7) AytX =tA,y X, VX eT(D), Y eT(D?h).

PROOF. It is easy to see that if X, Y € I'(D) or X,Y € I'(D+) or
X =¢and Y € I'(D), we obtain S(X,Y) = 0. Next, for X = £ and
Y € T'(D4), by using (2.6) we deduce

(2.8) S Y)=awY —tA,vE.
Thus by using (1.5) and (2.8) we infer

(2.9) g(S(,Y), Z2) = g(fY,FZ), YY,ZecT(D4Y).
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Now let X € I'(D) and Y € I'(D%). By using (1.5) and (2.6) we deduce
(2.10) S(X,Y) = AuytX —tAv X.

Finally, our assertion follow form (2.9) and (2.10).

Remark 2.1. From the proof of the Theorem 2.2 we see that S(X,Y)
= 0 VX, Y € I(TM) if and only if S(X,Y) = 0, VX € T'(D @ {¢}),
Y e I(D4).

Corollary 2.1. Let M be a contact CR-submanifold of a quasi-
Sasakian manifold M. Then M is normal contact CR-submanifold if and
only if F(TM) C u @ D+, and

(2.11) h(X,tY)+ h(tX,Y) CT(u), VX,Y €I'(D),
(2.12) h(tX,W) eT'(n), VX eD(D), WeT(Dh).

where y is the complement orthogonal of f(D1) in TM*.

PROOF. Let X,Y € I'(D) and Z,W € I'(D+). By using (1.3) and
(2.10) we infer

(2.13)  g(AuztX —tA,zX,Y) = g(h(tX,Y) + h(X,tY),wZ),
(2.14)  g(AuztX —tAuz X, W) = g(h(tX,W),wZ),

(2.15)  g(AuztX —tA,zX,€) = g(Vix€, fZ) = g(fX, FZ)
=—g(FfX,Z).

By using Theorem 2.2, our assertion follow from (2.13)—(2.15). From
Corollary 2.1 we deduce

Corollary 2.2. Let M be an anti-holomorphic submanifold of a quasi-
Sasakian manifold M. Then M is normal contact CR-submanifold if and
only if F(TM) C D and

h(X,tY)+h(tX,Y)=0, VX,Y eI'(D),
and
h(tX,W)=0, VX cT(D), WeT(D"h).

By using Corollary 2.2 we deduce
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Corollary 2.3. Each normal contact anti-holomorphic CR-submani-
fold M is mixed geodesic.

We say that a CR-submanifold M of a quasi-Sasakian manifold M of
a quasi-Sasakian manifold M is (D @ {¢}, D) contact CR-product (resp.
(D* @ {€}, D) contact CR-prodoct if the distributions D & {¢} and D+,
(resp. D+ @ {¢} and D) are integrable and their leaves are totally geodesic
in M. From [8] we recall the following result

Lemma 2.3. Let M be a contact CR-submanifold of a quasi-Sasakian
manifold M. Then M is (D ® {¢}, D+) contact CR-product if and only if

fDt L FD*, and Bh(X,U) =0, VX eI(D), UecI(TM).

Lemma 2.4 [8]. Let M be a contact CR-submanifold of a quasi-

Sasakian manifold M. Then M is (D+ & {¢}, D) contact CR-product
if and only if

WX,U)eT(y), and D L FD, VX € I(D), U € T(TM).

From Corollary 2.1 and Lemma 2.3 it follows

Corollary 2.4. Each (D @ {{}, D) contact CR-product of a quasi-
Sasakian manifold M so that fD+ | F(TM) is a normal contact CR-
submanifold.

By using Corollary 2.1 and Lemma 2.4 we obtain

Corollary 2.5. Fach (D+ @ {¢}, D) contact CR-product of a quasi-
Sasakian manifold M, so that D 1 F(TM), is a normal contact CR sub-
manifold.

We say that M is totally contact-umbilical submanifold if there exists
a normal vector field H such that the second fundamental form of M is
given by

MX,Y) = g(fX, fY)H + n(X)h(Y,§) + n(Y)h(X,E), VX,V € (TM).

Then by using Corollary 2.1 we deduce
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Corollary 2.6. Fach totally contact umbilical CR-submanifold M of
a quasi-Sasakian manifold M with fD 1 F(TM) is a normal contact
CR-sumanifold.

Next, suppose {E1, ..., E,;} is a local field of orthonormal frames, for
the anti-invariant distribution D+. Denote by A; the shape operator with
respect to V; = fE;,i=1,...,q. Then from Theorem 2.2 we have

Corollary 2.7. The contact CR-submanifold M of a quasi-Sasakian
manifold M is normal if and only if the distribution D= is integrable and

(2.16) AitX =tA; X, VX eT'(D).

By using (1.2), (1.5) and (1.6), for X € I'(T'M), we deduce
(2.17) VxE; =tA;X — BV5V; + g(FX,V;)¢, VX € T(TM),
(2.18)  V%Vi =w(VxE;) +Ch(X,E;), VX €T (TM).

It is well known that X is a Killing vector field if and only if
(2.19) 9(VzX,Y)+g9(VyX,Z)=0, VY, ZecT(TM).

If Y,Z € I'(D), so that (2.19) hold then we say that X is a D-Killing
vector field.

Theorem 2.3. Let M be a contact CR-submanifold of a quasi-
Sasakian manifold M. Then M is normal contact CR-submanifold if and
only if E;, i =1,...,q, are D-Killing vector fields and distribution D is
integrable.

PROOF. By using (2.17) we deduce
(2.20)  g(VxEi, Y)+g(VyEi, X)=g(tA; X — AtX,Y), V¥X,Y e (D).

Now our assertion follow form (2.20) and Corollary (2.7).

The Lie derivative of t with respect to Y € I'(T'M) is given by
(2.21) (Lyt)X = [Y,tX]| —t]Y, X], VX eD(TM).
Now we define a new tensor field S* by

(2.22) S*(Y,X) = (Lyt)X, VX € D(TM).
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By using (2.4) we deduce

(2.23) S(X,Y)=1t*[X,Y] - t[tX,Y] — Bh(tX,Y) — g(FY,tX)¢,
' VX e (D),Y e ['(Dh).

By using (2.21) and Theorem 1.2 we infer

(2.24) S*(&,Y) =t[6,Y] =0, VY €T'(Dh).

Next from (1.12), we deduce h(tX,Y) = Ch(X,Y)4+w(Vy X), VX € T'(D)
and Y € I'(D1). Thus we obtain Bh(tX,Y) = —Q(Vy X) and by using
(2.24) we deduce

(2.25) S(X,Y)=tS*"(Y,X) + Q(VyX) — g(FY, fX)E.

Theorem 2.4. Suppose that M is a contact CR submanifold of a
quasi-Saskian manifold M so that

(2.26) Q(VxY)=0, VX cT(D),Y ecT(D+{¢}).

M is normal contact CR-submanifold of a Quasi-Sasakian manifold M if
and only if F(TM) L fD*, and

(2.27) S*(Y,X)=0, VX eT(Da{£}), Y el (D).

PROOF. Suppose M be normal. By using Theorem 2.2 and relation
(2.25) we obtain

(2.28) Q(VyX) =0,
(2.29) tS* (Y, X) = 0,
(2.30) g(fX,FY) =0,

for any X € I'(D), Y € I'(D+). By using (2.25) and (2.27) we obtain
Q([X,Y]) = 0 which is equivalent with

(2.31) Q(tX,Y]) =0, VX €T(D), Y eT(Dh).

Now from (2.20), (2.21), (2.23), (2.28) and (2.31) we deduce (2.26). Be-
cause M is normal by using (2.9) and (2.31) we deduce that F(TM) L
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fD* is true. Conversely suppose that (2.26) and F(TM) L fD+ holds
good. By using (2.9) we deduce that S(£,Y) =0, VY € I'(D). By straight-
forward calculation it is easy to see that n([X,Y]) = 0, for X € I'(D®{¢}),
Y € T'(D4). By using (1.4), (2.20) and (2.26) we infer

(2.32) Q(X,Y])) =0, VX eTI(D),Y el(D).
Next from (2.25) and (2.32) it follows
(2.33) Q(VyX)=0.

Finally from (2.9), (2.24), (2.33) and F(TM) L fD*, we deduce that
S(X,Y) =0 forany X € [(D®{£}), Y € T(D1). The proof is complete.

Now, we give an example of normal contact CR-submanifold of a
Quasi-Sasakian manifold.
Let (f,&,n, g) the almost contact structure defined on R® as

00 -1 0 0
oy ' 00 0 —-10
f=fld'®—; [f/]=]1 0 0 0 of,

T ax'] T

01 0 0 0

00 —2y* 0 0

1+4(yH)? 0 0 0 —2¢¢
0 1 00 0

g =gide' @da?;  [gi;] = 0 010 o0 |,

0 001 0
—oy! 00 0 1

£ = % = % = (0,0,0,0,1)%; n = dz — 2y'dx = (—2y',0,0,0,1)!, where
(xt, 2%, 2% 2%, 2%) = (2',22,9%, 42, 2), are the Cartesian coordinates on
R°. S. KANEMAKI in [9] proved that this is a Quasi-Sasaki structure of
rank 3. With respect to this cartesian coordinate let e; = % be a local
field of frames for the tangent bundle to R®. Next let M be a hypersurface

of R® defined by

(2.34) zt = fiut, u? el ut), i€ {1,2,3,4,5),



268 Constantin Calin

where f?, are smooth functions on a domain D C R*. If the functions f*
satisfy

a1f1+a2f2—|—a3f3+a4f4:a
—alfl— a2 4 aP P+ al f = gy (u?,ut),

2.35
(239) al 1+ @ = o )
@1+l ()P = GaluP ).
where a', a?, a3, a*, a, are real numbers not all null, ¢1, ¢2, ¢3 are smooth

functions defined on a domain D; C R?, then M defined by (2.34) so that
(2.35) hold, is normal contact CR-submanifod. Indeed by straightforward
calculation we deduce that T3, = —4y!, T'l; = 2y, 9, = —1 + 4(y')?,
5 =1, = —1, 'S5 = =2y, and all other I'}; = 0. By using (1.3) we
infer

1 000 0
o, | 0 00 0 0
F=Fld'® 55 [F]={0 0100
0 00 0 0

2' 0 0 0 a

where a = n(F¢).
On the other hand, a local field of frames for the tangent bundle T'M
is ,
o ofr o
ou®  Que Ozt

It is easy to see that:
a) the normal vector bundle TM~ is generated by the normal vector
field N of M defined by: N = (a',a?,a?,a*, 2y'al),
b) the anti-invariant distribution D+ = span{fN},
c) the distribution D = span{z2r, 525},
d) &€= % is tangent to M.

Therefore M is a contact CR-submanifold of M. More, by straight-
forward calculation we deduce

Vio N= fﬁﬁN =0, ie{1,3}

out

and cosequently Ay X = 0, VX € I'(D), which prove that the Corollary 2.7
is verified and our assertion is proved. Next we prove that the set of
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functions and numbers which satisfy (2.35) is not null. Ineed if a! = a? =

> =a’=a=0,a"=1, f*=¢y=¢3=0, ¢ = —u?, fl =u', f2 =1
f2 =3, 5 =2ulu, then (2.35) is verified.

3. Cosymplectic CR-submanifolds of a quasi-Sasakian manifold

Let M be a CR-submanifold of a quasi-Sasakian manifold M. Then we
say that M is cosymplectic CR~-submanifold if M is normal CR-submanifold
and the differentiable form is closed, i.e. dw = 0.

The purpose of this section is to prove

Theorem 3.1. Let M be a cosymplectic CR-submanifold of a quasi-
Sasakian manifold M so that the distribution D is integrable. Then M is
(D, D+ & ¢) CR-product.

PROOF. By using (2.5) we deduce that N;(X,Y) = [QFX,Y) —
Q(FY, X))¢, and from (2.3) we infer

3.1) 9(Vxt)Y, Z) = n(Y)dn(X,tZ) — n(Z)dn(X,tY),
‘ VX,Y,Z € T(TM).
Next, by using (1.13) we deduce

dn(X,tY) = —Q(aX,tY) = —g(aX,t?Y) = g(FX, PY),

(3:2) VXY € I(TM).
and
(33 dn(X,tZ) = —Q(aX,tZ) = —g(aX,t*Z) = g(FX,PZ),

VX,Z e T(TM).
Now, from (3.1), (3.2) and (3.3) we infer
(34)  (Vxt)Y = —g(FX,PY)¢ +q(Y)PaX, VX,Y € D(TM).
From Y € I'(D) and X € I'(T'M) we deduce
(Vxt)Y = —g(FX, PY)E.
Thus by using (1.16), from (3.5) we obtain
Bh(X,Y)=0, VX e[(TM), Y eT(D).

By using Lemma 2.4, our assertion follows from (3.6). Similary we state
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Theorem 3.2. Let M be a cosymplectic CR-submanifold of a quasi-
Saskian manifold M, so that D+ be integrable. Then M is (D @ {¢}, D),
CR-product.

Definition 3.1. We say that the f-structure t is n-parallel if we have
(3.7) (Vxt)Y = —g(FX,PY){+n(Y)PaX, VXY eD(TM).

Then from (3.4) we deduce

Corollary 3.1. Let M be a cosymplectic CR-submanifold of a quasi-
Sasakian manifold M. Then the f-structure t is n-parallel.
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