Bäcklund transformations of n-dimensional constant torsion curves

By S. Z. NÉMETH (Cluj-Napoca)

Abstract

The Bäcklund transformation of two surfaces of \mathbf{R}^{3} with the same constant negative Gaussian curvature transforms an asymptotic line of one surface into an asymptotic line of the other. Since by Enneper the asymptotic lines of such a surface have constant torsion, it is natural to restrict the Bäcklund transformations to such curves. This idea was developed by Annalisa Calini and Thomas Ivey in [2]. We shall prove the converse of their theorem and generalize the transformation for the n-dimensional case.

0. Introduction

By the work of Bianchi and Lie it is possible to compute the Gaussian curvature of the focal surfaces of a line congruence in terms of the coefficients of the first fundamental form for the spherical representation and the distance between the corresponding limit points of these surfaces (see [3]).

Bäcklund proved that for pseudospherical congruences satisfying the two additional conditions that the distance r between corresponding limit points is constant and that the normals of the focal surfaces at these points form a constant angle θ, the curvatures must be equal to the same negative constant $-\sin ^{2} \theta / r^{2}$ (see [3]). By Ennepers relation between the first, second and third fundamental forms of a surface of negative Gaussian curvature the relation $\tau^{2}=-K$ between the torsion τ of an asymptotic line
and the curvature K holds. When the curvature is constant the torsion cannot change. Bearing in mind that under pseudospherical congruences asymptotic lines correspond, these provide a method for restricting the Bäcklund transformation to constant torsion curves. This was done by Annalisa Calini and Thomas Ivey in [2]. They constructed a constant torsion curve from a given one. We prove the converse of their theorem, namely: If there is a correspondence ν between the points of two unit speed curves $\mathbf{c}, \tilde{\mathbf{c}}$ having the property that the line joining the corresponding points $\mathbf{c}(s)$ and $\tilde{\mathbf{c}}(s)=\nu(\mathbf{c}(s))$ is the intersection of the osculating planes of these curves, and this intersection has the same angle with the curves, the line segment $\mathbf{c}(s) \tilde{\mathbf{c}}(s)$ has constant length r and the binormals in corresponding points form a constant angle θ, then the curves have the same constant torsion $\sin \theta / r$.

We could not find a connection between the sectional curvature of an n-dimensional manifold of constant negative curvature in the $2 n-1$ dimensional euclidean space and the curvatures of its asymptotic lines in order to restrict the generalized Bäcklund transformation (see [4], and [5]) to curves in $2 n$ - 1 -dimensional euclidean spaces.

However if we consider just the transformation of Annalisa Calini and Thomas Ivey [2] for 3-dimensional constant torsion curves we can generalize it for higher dimensions.

1. Bäcklund transformations of 3 -dimensional constant torsion curves

In [3] A. Calini and T. Ivey constructed a curve of constant torsion from a given one. We shall prove that under some assumptions made for a transformation between two curves they must have the same constant torsion.

Theorem 1.1. Suppose that ν is a transformation between two curves \mathbf{c} and $\tilde{\mathbf{c}}$ of \mathbf{R}^{3} with $\tilde{\mathbf{c}}(s)=\nu(\mathbf{c}(s))$, where s is the arc length of \mathbf{c}, such that in corresponding points we have:
(1) The line joining these points is the intersection of the osculating planes of the curves, such that the line segment $\mathbf{c}(s) \tilde{\mathbf{c}}(s)$ has constant length r.
(2) The vector $\tilde{\mathbf{c}}(s)-\mathbf{c}(s)$ forms the same angle $\beta \neq \pi / 2$ with the tangent vectors of the curves.
(3) The binormals of the curves form the same constant angle $\theta \neq 0$.

Then the torsions of the curves are equal to the same constant $\sin \theta / r$.
Proof. Denote by $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ the Frenet frame of \mathbf{c} and by $\left(\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}\right)$ that of $\tilde{\mathbf{c}}$ in the corresponding points $\mathbf{c}(s)$ and $\tilde{\mathbf{c}}(s)$. If we denote by \mathbf{f}_{1} the unit vector of $\tilde{\mathbf{c}}(s)-\mathbf{c}(s)$, then we can complete $\mathbf{f}_{1}, \mathbf{e}_{3}$ and $\mathbf{f}_{1}, \tilde{\mathbf{e}}_{3}$ to the positively oriented orthonormal frames ($\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{e}_{3}$) and ($\mathbf{f}_{1}, \tilde{\mathbf{f}}_{2}, \tilde{\mathbf{e}}_{3}$) respectively. Let $\mathbf{f}_{3}=\mathbf{e}_{3}, \tilde{\mathbf{f}}_{3}=\tilde{\mathbf{e}}_{3}$ and $-\beta$ be the angle between \mathbf{f}_{1} and \mathbf{e}_{1}. Then the angle between \tilde{f}_{1} and $\tilde{\mathbf{e}}_{1}$ is also $-\beta$. Thus we can obtain the frames $\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ and $\left(\mathbf{f}_{1}, \tilde{\mathbf{f}}_{2}, \tilde{\mathbf{f}}_{3}\right)$ by rotating the frames $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ and $\left(\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}\right)$ around \mathbf{e}_{3} and $\tilde{\mathbf{e}}_{3}$ respectively with angle $-\beta$. Analytically this can be written as:

$$
\left\{\begin{array}{l}
\mathbf{f}_{1}=\cos \beta \mathbf{e}_{1}+\sin \beta \mathbf{e}_{2}, \tag{1.1}\\
\mathbf{f}_{2}=-\sin \beta \mathbf{e}_{1}+\cos \beta \mathbf{e}_{2}, \\
\mathbf{f}_{3}=\mathbf{e}_{3},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mathbf{f}_{1}=\cos \beta \tilde{\mathbf{e}}_{1}+\sin \beta \tilde{\mathbf{e}}_{2}, \tag{1.2}\\
\tilde{\mathbf{f}}_{2}=-\sin \beta \tilde{\mathbf{e}}_{1}+\cos \beta \tilde{\mathbf{e}}_{2} \\
\tilde{\mathbf{f}}_{3}=\tilde{\mathbf{e}}_{3}
\end{array}\right.
$$

Since $\mathbf{f}_{3}=\mathbf{e}_{3}, \tilde{\mathbf{f}}_{3}=\tilde{\mathbf{e}}_{3}$ and the angle between $\mathbf{e}_{3}, \tilde{\mathbf{e}}_{3}$ is the constant θ, we can obtain the frame ($\mathbf{f}_{1}, \tilde{\mathbf{f}}_{2}, \tilde{\mathbf{f}}_{3}$) by rotating the frame $\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ around \mathbf{f}_{1} with angle θ. Thus we have:

$$
\left\{\begin{array}{l}
\tilde{\mathbf{f}}_{2}=\cos \theta \mathbf{f}_{2}-\sin \theta \mathbf{f}_{3}, \tag{1.3}\\
\tilde{\mathbf{f}}_{3}=\sin \theta \mathbf{f}_{2}+\cos \theta \mathbf{f}_{3} .
\end{array}\right.
$$

Using (1.1), (1.2) and (1.3) we can express $\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}$ in terms of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ as follows:

$$
\left\{\begin{array}{l}
\tilde{\mathbf{e}}_{1}=\mathbf{e}_{1}+(1-\cos \theta) \sin \beta\left(\cos \beta \mathbf{e}_{2}-\sin \beta \mathbf{e}_{1}\right)+\sin \theta \sin \beta \mathbf{e}_{3}, \tag{1.4}\\
\tilde{\mathbf{e}}_{2}=\mathbf{e}_{2}-(1-\cos \theta) \cos \beta\left(\cos \beta \mathbf{e}_{2}-\sin \beta \mathbf{e}_{1}\right)-\sin \theta \cos \beta \mathbf{e}_{3}, \\
\tilde{\mathbf{e}}_{3}=\cos \theta \mathbf{e}_{3}+\sin \theta\left(\cos \beta \mathbf{e}_{2}-\sin \beta \mathbf{e}_{1}\right) .
\end{array}\right.
$$

Bearing in mind that the distance between $\mathbf{c}(s)$ and $\tilde{c}(s)$ is the constant r and $\mathbf{f}_{1}=\cos \beta \mathbf{e}_{1}+\sin \beta \mathbf{e}_{2}$, we have:

$$
\begin{equation*}
\tilde{\mathbf{c}}(s)=\mathbf{c}(s)+r\left(\cos \beta \mathbf{e}_{1}+\sin \beta \mathbf{e}_{2}\right) . \tag{1.5}
\end{equation*}
$$

Differentiating $(\tilde{\mathbf{c}}-\mathbf{c})^{2}=r^{2}$ we obtain $2(\tilde{\mathbf{c}}-\mathbf{c})\left(|\dot{\tilde{\mathbf{c}}}| \tilde{\mathbf{e}}_{1}-\mathbf{e}_{1}\right)=0$. Since $\tilde{\mathbf{c}}-\mathbf{c}=r \mathbf{f}_{1}$, this yields $|\dot{\tilde{\mathbf{c}}}| \cos \beta-\cos \beta=0$, so that $\tilde{\mathbf{c}}$ is also of unit speed.

Using the Frenet formulae for $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ it is easy to see that $\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}$ given by (1.4) satisfy the Frenet formulae if and only if: $\tilde{K}_{1}=K_{1}-2 C \sin \beta$, $\tilde{K}_{2}=K_{2}$ and $d \beta / d s=C \sin \beta-K_{1}$, where K_{1}, \tilde{K}_{1} and K_{2}, \tilde{K}_{2} are the curvatures and torsions of \mathbf{c} and $\tilde{\mathbf{c}}$ respectively, and $C=K_{2} \tan \theta / 2$.

By (1.5) we have:

$$
\tilde{\mathbf{e}}_{1}=\left(1-r K_{2} \tan \frac{\theta}{2} \sin ^{2} \beta\right) \mathbf{e}_{1}+r K_{2} \tan \frac{\theta}{2} \sin \beta \cos \beta \mathbf{e}_{2}+r K_{2} \sin \beta \mathbf{e}_{3} .
$$

Comparing this with $(1.4)_{1}$ we obtain $K_{2}=\sin \theta / r$. Thus the the curves c and $\tilde{\mathbf{c}}$ have the same constant torsion

$$
\tilde{K}_{2}=K_{2}=\frac{\sin \theta}{r},
$$

and the transformation can be given by

$$
\tilde{\mathbf{c}}=\mathbf{c}+\frac{2 C}{C^{2}+K_{2}^{2}}\left(\cos \beta \mathbf{e}_{1}+\sin \beta \mathbf{e}_{2}\right),
$$

where

$$
\frac{d \beta}{d s}=C \sin \beta-K_{1} .
$$

The last two equations are the defining relations of the transformation given by A. Calini and T. Ivey in Theorem 1.1 of [3]. Examples for such transformation are given in [3].

2. Bäcklund transformations of n-dimensional constant torsion curves

From now on we mean by the torsion of a curve its last curvature. Let \mathbf{c} and $\tilde{\mathbf{c}}$ be two curves in \mathbf{R}^{n}, with curvatures K_{1}, \ldots, K_{n-1} and $\tilde{K}_{1}, \ldots, \tilde{K}_{n-1}$ respectively. Then the main theorem of Section 1 can be generalized as follows:

Theorem 2.1. Suppose that ν is a transformation between \mathbf{c} and $\tilde{\mathbf{c}}$ with $\tilde{\mathbf{c}}(s)=\nu(\mathbf{c}(s))$, where s is the arclength of \mathbf{c} such that for correspond-
ing points we have:
(1) The line joining these points is contained in the intersection of the osculating hyperplanes and the line segment $\mathbf{c}(s) \tilde{\mathbf{c}}(s)$ has constant length r.
(2) (a) The angle between the vectors \mathbf{f}_{1} and \mathbf{e}_{n-1} is complementary to the angle between the vectors \mathbf{e}_{1} and \mathbf{f}_{n-1}, where \mathbf{f}_{1} is the unit vector of $\tilde{\mathbf{c}}(s)-\mathbf{c}(s),\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{n-2}\right)$ and $\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{n-2}, \mathbf{f}_{n-1}, \mathbf{e}_{n}\right)$ are positively oriented frames of the intersection of the osculating planes and the whole space respectively and $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ is the Frenét frame of \mathbf{c}.
(b) $\left\langle\mathbf{e}_{1}, \mathbf{f}_{1}\right\rangle \neq 0$, where $\langle.,$.$\rangle is the standard scalar product of \mathbf{R}^{n}$.
(3) The Frenét frame of $\tilde{\mathbf{c}}$ can be obtained from that of \mathbf{c} by a rotation with constant angle $\theta \neq 0$ around a plane which contains \mathbf{e}_{n}.
Then the curves have the same constant torsion $\sin \theta / r$. Moreover for $n \geq 4$ we have that

$$
K_{1}=\tilde{K}_{1}, \ldots, K_{n-3}=\tilde{K}_{n-3} .
$$

Proof. From (3) we have $\tilde{E}=A^{T} \Theta A E$, where $E^{T}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ and $\tilde{E}^{T}=\left(\tilde{\mathbf{e}}_{1}, \ldots, \tilde{\mathbf{e}}_{n}\right)$ are the Frenét frames of \mathbf{c} and $\tilde{\mathbf{c}}$,

$$
\Theta=\left|\begin{array}{ccc}
I_{n-2} & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right|
$$

and $A \in S O(n)$ such that $a_{i n}=a_{n i}=\delta_{i n}$, where $\delta_{i j}$ is the Kronecker symbol. In terms of the entries this can be written as:

$$
\left\{\begin{array}{l}
\tilde{\mathbf{e}}_{i}=\sum_{j=1}^{n-1}\left[\delta_{i j}-a_{n-1, i} a_{n-1, j}(1-\cos \theta)\right] \mathbf{e}_{j}-a_{n-1, i} \sin \theta \mathbf{e}_{n} \tag{2.1}\\
i=\overline{1, n-1} \\
\tilde{\mathbf{e}}_{n}=\sin \theta \sum_{j=1}^{n-1} a_{n-1, j} \mathbf{e}_{j}+\cos \theta \mathbf{e}_{n} .
\end{array}\right.
$$

Since the first $n-2$ columns and rows of Θ form an identity matrix and $a_{i n}=a_{n i}=\delta_{i n}, A \tilde{E}=\Theta A E$ implies that the first $n-2$ rows of $A E$ are equal to the first $n-2$ columns of $A \tilde{E}$ and form the basis $\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{n-2}\right)$ for the intersection of the osculating hyperplanes. Thus $F^{T}=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{n-1}, \mathbf{e}_{n}\right)$, where $F=A E$.

By (2)(a) we also have

$$
\begin{equation*}
a_{1, n-1}=-a_{n-1,1}, \tag{0}
\end{equation*}
$$

where $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$. Differentiating (2.1) and using the Frenét formulae for $E, \tilde{E}=\left(\tilde{\mathbf{e}}_{1}, \ldots, \tilde{\mathbf{e}}_{n}\right)$ satisfies the Frenét formulae of $\tilde{\mathbf{c}}$ if and only if the following groups of relations hold:

$$
\begin{gather*}
a_{n-1,2}=a_{n-1, n-1}=0, \quad \text { if } n \geq 4, \tag{I}\\
\tilde{K}_{n-2}=K_{n-2}+2 K_{n-1} \tan \frac{\theta}{2} a_{n-1, n-2}, \\
\left\{\begin{array}{l}
a_{n-1,1}=-K_{1} a_{n-1,2}+K_{n-1} a_{n-1, n-1} a_{n-1,1} \tan \frac{\theta}{2}, \\
a_{n-1, j}=K_{j} a_{n-1, j+1}-K_{j-1} a_{n-1, j-1} \\
+K_{n-1} a_{n-1, n-1} a_{n-1, j} \tan \frac{\theta}{2} ; \quad j=\overline{2, n-2}, \\
a_{n-1, n-1}=-K_{n-2} a_{n-1, n-2}-K_{n-1} \tan \frac{\theta}{2}\left(1-a_{n-1, n-1}^{2}\right), \\
K_{i}=\tilde{K}_{i} ; \quad i=\overline{1, n-3}, \quad \text { if } n \geq 4 .
\end{array}\right.
\end{gather*}
$$

Since the distance between corresponding points is the constant r, we have

$$
\begin{equation*}
\tilde{\mathbf{c}}=\mathbf{c}+r \mathbf{f}_{1} . \tag{2.2}
\end{equation*}
$$

Using $F=A E$ we have

$$
\mathbf{f}_{1}=\sum_{j=1}^{n-1} a_{1 j} \mathbf{e}_{j}
$$

which implies

$$
\tilde{\mathbf{c}}=\mathbf{c}+r \sum_{j=1}^{n-1} a_{1 j} \mathbf{e}_{j} .
$$

We have already seen that the first $n-2$ rows of $A \tilde{E}$ coincide with the first $n-2$ columns of $A E$. Thus

$$
\begin{equation*}
\left\langle\mathbf{f}_{1}, \tilde{\mathbf{e}}_{1}\right\rangle=\left\langle\mathbf{f}_{1}, \mathbf{e}_{1}\right\rangle=a_{11} . \tag{2.3}
\end{equation*}
$$

Differentiating $(\tilde{\mathbf{c}}-\mathbf{c})^{2}=r^{2}$ we obtain $2\langle\tilde{\mathbf{c}}-\mathbf{c},| \dot{\tilde{\mathbf{c}}}\left|\tilde{\mathbf{e}}_{1}-\mathbf{e}_{1}\right\rangle=0$, which by (2.2) and (2.3) becomes $|\dot{\tilde{\mathbf{c}}}|=1$, hence $\tilde{\mathbf{c}}$ is also of unit speed. Differentiating (2.3) and using the Frenét formulae for \mathbf{e}_{j} we obtain

$$
\begin{aligned}
\tilde{\mathbf{e}}_{1}= & \left(1+r a_{i 1}-r K_{1} a_{12}\right) \mathbf{e}_{1}+r \sum_{j=2}^{n-2}\left(a_{1 j}-K_{j} a_{1, j+1}+K_{j-1} a_{1, j-1}\right) \mathbf{e}_{j} \\
& +r\left(a_{1, n-1}+a_{1, n-2} K_{n-2}\right) \mathbf{e}_{n-1}+r a_{1, n-1} K_{n-1} \mathbf{e}_{n} .
\end{aligned}
$$

Comparing this with (2.1) and using $a_{1, n-1}=-a_{n-1,1}$, we obtain

$$
\left\{\begin{array}{l}
K_{1}=\frac{r a_{i 1}+a_{n-1,1}^{2}(1-\cos \theta)}{r a_{12}} \tag{IV}\\
K_{j}=\frac{a_{i j}+a_{n-1,1} a_{n-1, j}(1-\cos \theta)+K_{j-1} a_{1, j-1}}{a_{1, j+1}} \\
\quad j=\overline{2, n-2}, \\
K_{n-1}= \\
=\frac{\sin \theta}{r}
\end{array}\right.
$$

In conclusion, (III) and (IV) ${ }_{3}$ are exactly the assertions of our theorem.
For $n>4$ if we fix a unit speed curve \mathbf{c} in \mathbf{R}^{n} with a given constant torsion, the system $(0)+(\mathrm{I})+(\mathrm{II})+(\mathrm{IV})$ is underdetermined.

But this system is equivalent to the conditions (1), (2), (3) of Theorem 3.1. In conclusion, for every curve $\mathbf{c} \subset \mathbf{R}^{n} ; n>4$ with $K_{n-1}=a$, where a is a given constant, and every vector $\mathbf{v} \in T_{\mathbf{c}(0)} \mathbf{R}^{n}$, we can find an infinite number of curves $\tilde{\mathbf{c}} \subset \mathbf{R}^{n}$ satisfying the conditions (1), (2), (3) of Theorem 3.1 and such that $\sin \theta=a r$ and $\tilde{\mathbf{c}}(0)-\mathbf{c}(0)=\mathbf{v}$, where $T_{\mathbf{c}(0)} \mathbf{R}^{n}$ is the tangent space of \mathbf{R}^{n} in $\mathbf{c}(0)$.

Remark 2.2. The case $n=4$ is a special one, since for this dimension the condition (I) implies that the matrix A must be of the form

$$
A=\left[\begin{array}{cccc}
0 & \cos \beta & -\sin \beta & 0 \\
0 & \sin \beta & \cos \beta & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

hence the discussion of this case reduces to the 3-dimensional one.

Example 2.3. The following example will be given for $n=5$. Let $r>0, a, b, c, \theta$, be five constants, such that

$$
4\left(a^{2}+b^{2}\right) \sin ^{4} \frac{\theta}{2}=c^{2} r^{2} .
$$

Consider the curve $\mathbf{c}: s \mapsto \exp (s \Omega)$, where

$$
\Omega=\left[\begin{array}{ccccc}
0 & a & 0 & 0 & 0 \\
-a & 0 & b & 0 & 0 \\
0 & -b & 0 & c & 0 \\
0 & 0 & -c & 0 & \frac{\sin \theta}{r} \\
0 & 0 & 0 & -\frac{\sin \theta}{r} & 0
\end{array}\right] .
$$

By the Frenét formulae, the curvatures of \mathbf{c} are $K_{1}=a, K_{2}=b, K_{3}=c$, $K_{4}=r^{-1} \sin \theta$. Integrating the system (0) $+(\mathrm{I})+(\mathrm{II})+(\mathrm{IV})$, we obtain

$$
\begin{gathered}
\tilde{\mathbf{c}}(s)=c(s)-\left[\frac{4}{r^{3}} \frac{b^{2}}{a^{2}} \sin ^{6} \frac{\theta}{2} s-a \alpha(s)\right] e_{1} \\
+\dot{\alpha}(s) e_{2}+\left[\left(\frac{2}{r} \frac{b}{a} \sin ^{2} \frac{\theta}{2}-\frac{4}{r^{2}} \sin ^{6} \frac{\theta}{2}\right) s-b \alpha(s)\right] e_{3}+\frac{2}{r} \frac{b}{a c} \sin ^{2} \frac{\theta}{2} e_{4},
\end{gathered}
$$

and

$$
a_{43}=-\frac{2}{r} \frac{1}{c} \sin ^{2} \frac{\theta}{2},
$$

where α satisfies the following differential equation:

$$
\begin{gathered}
\dot{\alpha}^{2}(s)+\left[\frac{4}{r^{3}} \frac{b^{2}}{a^{2}} \sin ^{6} \frac{\theta}{2} s-a \alpha(s)\right]^{2} \\
+\left[\left(\frac{1}{r} \frac{2 b}{a} \sin ^{2} \frac{\theta}{2}-\frac{4}{r^{2}} \sin ^{6} \frac{\theta}{2}\right) s-b \alpha(s)\right]^{2}+\frac{1}{r^{2}} \frac{4 b^{2}}{a^{2} c^{2}} \sin ^{4} \frac{\theta}{2}=1
\end{gathered}
$$

In particular the constant solutions of this equation can be found explicitly by solving a quadratic polinomial equation.

Using the formulae $\tilde{K}_{1}=K_{1}, \ldots, \tilde{K}_{n-3}=K_{n-3}, \tilde{K}_{n-1}=K_{n-2}$ and $\tilde{K}_{n-2}=K_{n-2}+2 K_{n-1} \tan \frac{\theta}{2} a_{n-1, n-2}$, we obtain

$$
\tilde{K}_{1}=a, \quad \tilde{K}_{2}=b, \quad \tilde{K}_{4}=\frac{\sin \theta}{r},
$$

and

$$
\tilde{K}_{3}=c-\frac{8}{r^{2}} \frac{1}{c} \sin ^{4} \frac{\theta}{2},
$$

respectively.
Hence, if we impose the initial conditions $\tilde{E}(0)=I$, where I is the identical matrix, the Frenét formulae of $\tilde{\mathbf{c}}$ yields

$$
\tilde{\mathbf{c}}(s)=\exp s \tilde{\Omega},
$$

where

$$
\tilde{\Omega}=\left[\begin{array}{ccccc}
0 & a & 0 & 0 & 0 \\
-a & 0 & b & 0 & 0 \\
0 & -b & 0 & c-\frac{1}{c} \frac{8}{r^{2}} \sin ^{4} \frac{\theta}{2} & 0 \\
0 & 0 & -c+\frac{1}{c} \frac{8}{r^{2}} \sin ^{4} \frac{\theta}{2} & 0 & \frac{\sin \theta}{r} \\
0 & 0 & 0 & -\frac{\sin \theta}{r} & 0
\end{array}\right] .
$$

References

[1] A. V. Bäcklund, Concerning Surfaces with Constant Negative Curvature, Translated by E. M. Coddington, New Era Printing Co. Lancaster, PA, 1905.
[2] Annalisa Calini and Thomas Ivey, Bäcklund transformations and knots of constant torsion, (preprint).
[3] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Company, New York, 1909.
[4] Keti Tenenblat and Chuu-Lian Terng, Bäcklund theorem for n-dimensional submanifolds of $\mathbf{R}^{2 n-1}$, Annals of Mathematics 111 (1980), 477-490.
[5] Chuu-Lian Terng, A higher dimension generalization of the Sine-Gordon equation and its soliton theory, Annals of Mathematics 111 (1980), 491-510.

```
S. Z. NÉMETH
DEPARTMENT OF GEOMETRY, FACULTY OF MATHEMATICS
BABEŠ-BOLYAI UNIVERSITY
STR. KOGALNICEANU NR. 1.
RO-3400 CLUJ-NAPOCA
ROMANIA
CURRENT ADDRESS:
DEPT. OF GEOMETRY, EÖTVÖS UNIVERSITY, RÁKÓCZI ÚT 5, H-1088 BUDAPEST
HUNGARY
E-mail: sznemeth@ludens.elte.hu
```

(Received May 5, 1997; revised November 27, 1997)

