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Bäcklund transformations of n-dimensional
constant torsion curves

By S. Z. NÉMETH (Cluj-Napoca)

Abstract. The Bäcklund transformation of two surfaces of R3 with the same
constant negative Gaussian curvature transforms an asymptotic line of one surface into
an asymptotic line of the other. Since by Enneper the asymptotic lines of such a
surface have constant torsion, it is natural to restrict the Bäcklund transformations to
such curves. This idea was developed by Annalisa Calini and Thomas Ivey in [2].
We shall prove the converse of their theorem and generalize the transformation for the
n-dimensional case.

0. Introduction

By the work of Bianchi and Lie it is possible to compute the Gauss-
ian curvature of the focal surfaces of a line congruence in terms of the
coefficients of the first fundamental form for the spherical representation
and the distance between the corresponding limit points of these surfaces
(see [3]).

Bäcklund proved that for pseudospherical congruences satisfying the
two additional conditions that the distance r between corresponding limit
points is constant and that the normals of the focal surfaces at these points
form a constant angle θ, the curvatures must be equal to the same nega-
tive constant − sin2 θ/r2 (see [3]). By Ennepers relation between the first,
second and third fundamental forms of a surface of negative Gaussian cur-
vature the relation τ2 = −K between the torsion τ of an asymptotic line
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and the curvature K holds. When the curvature is constant the torsion
cannot change. Bearing in mind that under pseudospherical congruences
asymptotic lines correspond, these provide a method for restricting the
Bäcklund transformation to constant torsion curves. This was done by
Annalisa Calini and Thomas Ivey in [2]. They constructed a constant
torsion curve from a given one. We prove the converse of their theorem,
namely: If there is a correspondence ν between the points of two unit
speed curves c, c̃ having the property that the line joining the correspond-
ing points c(s) and c̃(s) = ν(c(s)) is the intersection of the osculating
planes of these curves, and this intersection has the same angle with the
curves, the line segment c(s)c̃(s) has constant length r and the binormals
in corresponding points form a constant angle θ, then the curves have the
same constant torsion sin θ/r.

We could not find a connection between the sectional curvature of
an n-dimensional manifold of constant negative curvature in the 2n − 1-
dimensional euclidean space and the curvatures of its asymptotic lines in
order to restrict the generalized Bäcklund transformation (see [4], and [5])
to curves in 2n− 1-dimensional euclidean spaces.

However if we consider just the transformation of Annalisa Calini
and Thomas Ivey [2] for 3-dimensional constant torsion curves we can
generalize it for higher dimensions.

1. Bäcklund transformations of 3-dimensional
constant torsion curves

In [3] A. Calini and T. Ivey constructed a curve of constant torsion
from a given one. We shall prove that under some assumptions made for
a transformation between two curves they must have the same constant
torsion.

Theorem 1.1. Suppose that ν is a transformation between two curves

c and c̃ of R3 with c̃(s) = ν(c(s)), where s is the arc length of c, such

that in corresponding points we have:

(1) The line joining these points is the intersection of the osculating

planes of the curves, such that the line segment c(s)c̃(s) has constant

length r.

(2) The vector c̃(s)−c(s) forms the same angle β 6= π/2 with the tangent

vectors of the curves.
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(3) The binormals of the curves form the same constant angle θ 6= 0.
Then the torsions of the curves are equal to the same constant sin θ/r.

Proof. Denote by (e1, e2, e3) the Frenet frame of c and by (ẽ1, ẽ2, ẽ3)
that of c̃ in the corresponding points c(s) and c̃(s). If we denote by f1 the
unit vector of c̃(s) − c(s), then we can complete f1, e3 and f1, ẽ3 to the
positively oriented orthonormal frames (f1, f2, e3) and (f1, f̃2, ẽ3) respec-
tively. Let f3 = e3, f̃3 = ẽ3 and −β be the angle between f1 and e1. Then
the angle between f1 and ẽ1 is also −β. Thus we can obtain the frames
(f1, f2, f3) and (f1, f̃2, f̃3) by rotating the frames (e1, e2, e3) and (ẽ1, ẽ2, ẽ3)
around e3 and ẽ3 respectively with angle −β. Analytically this can be
written as:

(1.1)





f1 = cos βe1 + sin βe2,

f2 = − sin βe1 + cosβe2,

f3 = e3,

and

(1.2)





f1 = cos βẽ1 + sin βẽ2,

f̃2 = − sin βẽ1 + cosβẽ2,

f̃3 = ẽ3.

Since f3 = e3, f̃3 = ẽ3 and the angle between e3, ẽ3 is the constant θ, we
can obtain the frame (f1, f̃2, f̃3) by rotating the frame (f1, f2, f3) around f1
with angle θ. Thus we have:

(1.3)
{

f̃2 = cos θf2 − sin θf3,

f̃3 = sin θf2 + cos θf3.

Using (1.1), (1.2) and (1.3) we can express ẽ1, ẽ2, ẽ3 in terms of e1, e2, e3

as follows:

(1.4)





ẽ1 = e1 + (1− cos θ) sin β(cos βe2 − sin βe1) + sin θ sin βe3,

ẽ2 = e2 − (1− cos θ) cos β(cos βe2 − sin βe1)− sin θ cosβe3,

ẽ3 = cos θe3 + sin θ(cosβe2 − sin βe1).

Bearing in mind that the distance between c(s) and c̃(s) is the constant r
and f1 = cos βe1 + sin βe2, we have:

(1.5) c̃(s) = c(s) + r(cos βe1 + sin βe2).
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Differentiating (c̃ − c)2 = r2 we obtain 2(c̃ − c)( ˙|c̃|ẽ1 − e1) = 0. Since
c̃− c = rf1, this yields ˙|c̃| cos β− cos β = 0, so that c̃ is also of unit speed.

Using the Frenet formulae for e1, e2, e3 it is easy to see that ẽ1, ẽ2, ẽ3

given by (1.4) satisfy the Frenet formulae if and only if: K̃1 = K1−2C sin β,
K̃2 = K2 and dβ/ds = C sin β −K1, where K1, K̃1 and K2, K̃2 are the
curvatures and torsions of c and c̃ respectively, and C = K2 tan θ/2.

By (1.5) we have:

ẽ1 =
(

1− rK2 tan
θ

2
sin2 β

)
e1 + rK2 tan

θ

2
sinβ cos βe2 + rK2 sinβe3.

Comparing this with (1.4)1 we obtain K2 = sin θ/r. Thus the the curves
c and c̃ have the same constant torsion

K̃2 = K2 =
sin θ

r
,

and the transformation can be given by

c̃ = c +
2C

C2 + K2
2

(cos βe1 + sin βe2),

where
dβ

ds
= C sin β −K1.

The last two equations are the defining relations of the transformation
given by A. Calini and T. Ivey in Theorem 1.1 of [3]. Examples for such
transformation are given in [3].

2. Bäcklund transformations of n-dimensional
constant torsion curves

From now on we mean by the torsion of a curve its last curvature.
Let c and c̃ be two curves in Rn, with curvatures K1, . . . , Kn−1 and
K̃1, . . . , K̃n−1 respectively. Then the main theorem of Section 1 can be
generalized as follows:

Theorem 2.1. Suppose that ν is a transformation between c and c̃
with c̃(s) = ν(c(s)), where s is the arclength of c such that for correspond-
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ing points we have:

(1) The line joining these points is contained in the intersection of the

osculating hyperplanes and the line segment c(s)c̃(s) has constant

length r.

(2) (a) The angle between the vectors f1 and en−1 is complementary to

the angle between the vectors e1 and fn−1, where f1 is the unit vector

of c̃(s)−c(s), (f1, . . . , fn−2) and (f1, . . . , fn−2, fn−1, en) are positively

oriented frames of the intersection of the osculating planes and the

whole space respectively and (e1, . . . , en) is the Frenét frame of c.

(b) 〈e1, f1〉 6= 0, where 〈., .〉 is the standard scalar product of Rn.

(3) The Frenét frame of c̃ can be obtained from that of c by a rotation

with constant angle θ 6= 0 around a plane which contains en.

Then the curves have the same constant torsion sin θ/r. Moreover for

n ≥ 4 we have that

K1 = K̃1, . . . , Kn−3 = K̃n−3.

Proof. From (3) we have Ẽ = AT ΘAE, where ET = (e1, . . . , en)
and ẼT = (ẽ1, . . . , ẽn) are the Frenét frames of c and c̃,

Θ =

∣∣∣∣∣∣

In−2 0 0
0 cos θ − sin θ

0 sin θ cos θ

∣∣∣∣∣∣

and A ∈ SO(n) such that ain = ani = δin, where δij is the Kronecker
symbol. In terms of the entries this can be written as:

(2.1)





ẽi =
n−1∑
j=1

[δij − an−1,ian−1,j(1− cos θ)]ej − an−1,i sin θen;

i = 1, n− 1,

ẽn = sin θ
n−1∑
j=1

an−1,jej + cos θen.

Since the first n − 2 columns and rows of Θ form an identity matrix
and ain = ani = δin, AẼ = ΘAE implies that the first n − 2 rows
of AE are equal to the first n − 2 columns of AẼ and form the ba-
sis (f1, . . . , fn−2) for the intersection of the osculating hyperplanes. Thus
FT = (f1, . . . , fn−1, en), where F = AE.
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By (2)(a) we also have

(0) a1,n−1 = −an−1,1,

where A = (aij)1≤i,j≤n. Differentiating (2.1) and using the Frenét formu-
lae for E, Ẽ = (ẽ1, . . . , ẽn) satisfies the Frenét formulae of c̃ if and only if
the following groups of relations hold:

an−1,2 = an−1,n−1 = 0, if n ≥ 4,(I)

K̃n−2 = Kn−2 + 2Kn−1 tan
θ

2
an−1,n−2,





˙an−1,1 = −K1an−1,2 + Kn−1an−1,n−1an−1,1 tan
θ

2
,

˙an−1,j = Kjan−1,j+1 −Kj−1an−1,j−1

+Kn−1an−1,n−1an−1,j tan
θ

2
; j = 2, n− 2,

˙an−1,n−1 = −Kn−2an−1,n−2 −Kn−1 tan
θ

2
(1− a2

n−1,n−1),

(II)

Ki = K̃i; i = 1, n− 3, if n ≥ 4.(III)

Since the distance between corresponding points is the constant r, we have

(2.2) c̃ = c + rf1.

Using F = AE we have

f1 =
n−1∑

j=1

a1jej ,

which implies

c̃ = c + r

n−1∑

j=1

a1jej .

We have already seen that the first n − 2 rows of AẼ coincide with the
first n− 2 columns of AE. Thus

(2.3) 〈f1, ẽ1〉 = 〈f1, e1〉 = a11.
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Differentiating (c̃ − c)2 = r2 we obtain 2〈c̃ − c, ˙|c̃|ẽ1 − e1〉 = 0, which
by (2.2) and (2.3) becomes ˙|c̃| = 1, hence c̃ is also of unit speed. Differen-
tiating (2.3) and using the Frenét formulae for ej we obtain

ẽ1 = (1 + r ˙a11 − rK1a12)e1 + r

n−2∑

j=2

( ˙a1j −Kja1,j+1 + Kj−1a1,j−1)ej

+ r( ˙a1,n−1 + a1,n−2Kn−2)en−1 + ra1,n−1Kn−1en.

Comparing this with (2.1) and using a1,n−1 = −an−1,1, we obtain

(IV)





K1 =
r ˙a11 + a2

n−1,1(1− cos θ)
ra12

,

Kj =
˙a1j + an−1,1an−1,j(1− cos θ) + Kj−1a1,j−1

a1,j+1
;

j = 2, n− 2,

Kn−1 =
sin θ

r
.

In conclusion, (III) and (IV)3 are exactly the assertions of our theorem.
For n > 4 if we fix a unit speed curve c in Rn with a given constant

torsion, the system (0)+ (I) + (II) + (IV) is underdetermined.
But this system is equivalent to the conditions (1), (2), (3) of Theo-

rem 3.1. In conclusion, for every curve c ⊂ Rn; n > 4 with Kn−1 = a,
where a is a given constant, and every vector v ∈ Tc(0)Rn, we can find an
infinite number of curves c̃ ⊂ Rn satisfying the conditions (1), (2), (3) of
Theorem 3.1 and such that sin θ = ar and c̃(0)− c(0) = v, where Tc(0)Rn

is the tangent space of Rn in c(0).

Remark 2.2. The case n = 4 is a special one, since for this dimension
the condition (I) implies that the matrix A must be of the form

A =




0 cos β − sin β 0
0 sin β cos β 0
1 0 0 0
0 0 0 1


 ,

hence the discussion of this case reduces to the 3-dimensional one.
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Example 2.3. The following example will be given for n = 5. Let
r > 0, a, b, c, θ, be five constants, such that

4(a2 + b2) sin4 θ

2
= c2r2.

Consider the curve c : s 7→ exp(s Ω), where

Ω =




0 a 0 0 0
−a 0 b 0 0
0 −b 0 c 0
0 0 −c 0 sin θ

r

0 0 0 − sin θ
r 0




.

By the Frenét formulae, the curvatures of c are K1 = a, K2 = b, K3 = c,
K4 = r−1 sin θ. Integrating the system (0) + (I)+ (II)+ (IV), we obtain

c̃(s) = c(s)−
[

4
r3

b2

a2
sin6 θ

2
s− aα(s)

]
e1

+α̇(s)e2 +
[(

2
r

b

a
sin2 θ

2
− 4

r2
sin6 θ

2

)
s− bα(s)

]
e3 +

2
r

b

ac
sin2 θ

2
e4,

and

a43 = −2
r

1
c

sin2 θ

2
,

where α satisfies the following differential equation:

α̇2(s) +
[

4
r3

b2

a2
sin6 θ

2
s− aα(s)

]2

+
[(

1
r

2b

a
sin2 θ

2
− 4

r2
sin6 θ

2

)
s− bα(s)

]2

+
1
r2

4b2

a2c2
sin4 θ

2
= 1

In particular the constant solutions of this equation can be found explicitly
by solving a quadratic polinomial equation.

Using the formulae K̃1 = K1, . . . , K̃n−3 = Kn−3, K̃n−1 = Kn−2 and
K̃n−2 = Kn−2 + 2Kn−1 tan θ

2an−1,n−2, we obtain

K̃1 = a, K̃2 = b, K̃4 =
sin θ

r
,
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and
K̃3 = c− 8

r2

1
c

sin4 θ

2
,

respectively.
Hence, if we impose the initial conditions Ẽ(0) = I, where I is the

identical matrix, the Frenét formulae of c̃ yields

c̃(s) = exp s Ω̃,

where

Ω̃ =




0 a 0 0 0
−a 0 b 0 0
0 −b 0 c− 1

c
8
r2 sin4 θ

2 0
0 0 −c + 1

c
8
r2 sin4 θ

2 0 sin θ
r

0 0 0 − sin θ
r 0




.
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