Publ. Math. Debrecen 53 / 3-4 (1998), 271–279

Bäcklund transformations of *n*-dimensional constant torsion curves

By S. Z. NÉMETH (Cluj-Napoca)

Abstract. The Bäcklund transformation of two surfaces of \mathbb{R}^3 with the same constant negative Gaussian curvature transforms an asymptotic line of one surface into an asymptotic line of the other. Since by Enneper the asymptotic lines of such a surface have constant torsion, it is natural to restrict the Bäcklund transformations to such curves. This idea was developed by ANNALISA CALINI and THOMAS IVEY in [2]. We shall prove the converse of their theorem and generalize the transformation for the *n*-dimensional case.

0. Introduction

By the work of Bianchi and Lie it is possible to compute the Gaussian curvature of the focal surfaces of a line congruence in terms of the coefficients of the first fundamental form for the spherical representation and the distance between the corresponding limit points of these surfaces (see [3]).

Bäcklund proved that for pseudospherical congruences satisfying the two additional conditions that the distance r between corresponding limit points is constant and that the normals of the focal surfaces at these points form a constant angle θ , the curvatures must be equal to the same negative constant $-\sin^2 \theta/r^2$ (see [3]). By Ennepers relation between the first, second and third fundamental forms of a surface of negative Gaussian curvature the relation $\tau^2 = -K$ between the torsion τ of an asymptotic line

Mathematics Subject Classification: 53A04.

Key words and phrases: Bäcklund transformation, constant torsion curves.

This note is part of the activity of the author as a Ph.D. student at the Eötvös University, Budapest.

and the curvature K holds. When the curvature is constant the torsion cannot change. Bearing in mind that under pseudospherical congruences asymptotic lines correspond, these provide a method for restricting the Bäcklund transformation to constant torsion curves. This was done by ANNALISA CALINI and THOMAS IVEY in [2]. They constructed a constant torsion curve from a given one. We prove the converse of their theorem, namely: If there is a correspondence ν between the points of two unit speed curves $\mathbf{c}, \tilde{\mathbf{c}}$ having the property that the line joining the corresponding points $\mathbf{c}(s)$ and $\tilde{\mathbf{c}}(s) = \nu(\mathbf{c}(s))$ is the intersection of the osculating planes of these curves, and this intersection has the same angle with the curves, the line segment $\mathbf{c}(s)\tilde{\mathbf{c}}(s)$ has constant length r and the binormals in corresponding points form a constant angle θ , then the curves have the same constant torsion $\sin \theta/r$.

We could not find a connection between the sectional curvature of an *n*-dimensional manifold of constant negative curvature in the 2n - 1dimensional euclidean space and the curvatures of its asymptotic lines in order to restrict the generalized Bäcklund transformation (see [4], and [5]) to curves in 2n - 1-dimensional euclidean spaces.

However if we consider just the transformation of Annalisa Calini and Thomas Ivey [2] for 3-dimensional constant torsion curves we can generalize it for higher dimensions.

1. Bäcklund transformations of 3-dimensional constant torsion curves

In [3] A. Calini and T. Ivey constructed a curve of constant torsion from a given one. We shall prove that under some assumptions made for a transformation between two curves they must have the same constant torsion.

Theorem 1.1. Suppose that ν is a transformation between two curves **c** and $\tilde{\mathbf{c}}$ of \mathbf{R}^3 with $\tilde{\mathbf{c}}(s) = \nu(\mathbf{c}(s))$, where s is the arc length of **c**, such that in corresponding points we have:

- (1) The line joining these points is the intersection of the osculating planes of the curves, such that the line segment $\mathbf{c}(s)\tilde{\mathbf{c}}(s)$ has constant length r.
- (2) The vector $\tilde{\mathbf{c}}(s) \mathbf{c}(s)$ forms the same angle $\beta \neq \pi/2$ with the tangent vectors of the curves.

(3) The binormals of the curves form the same constant angle $\theta \neq 0$. Then the torsions of the curves are equal to the same constant $\sin \theta/r$.

PROOF. Denote by $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ the Frenet frame of \mathbf{c} and by $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$ that of $\tilde{\mathbf{c}}$ in the corresponding points $\mathbf{c}(s)$ and $\tilde{\mathbf{c}}(s)$. If we denote by \mathbf{f}_1 the unit vector of $\tilde{\mathbf{c}}(s) - \mathbf{c}(s)$, then we can complete $\mathbf{f}_1, \mathbf{e}_3$ and $\mathbf{f}_1, \tilde{\mathbf{e}}_3$ to the positively oriented orthonormal frames $(\mathbf{f}_1, \mathbf{f}_2, \mathbf{e}_3)$ and $(\mathbf{f}_1, \tilde{\mathbf{f}}_2, \tilde{\mathbf{e}}_3)$ respectively. Let $\mathbf{f}_3 = \mathbf{e}_3$, $\tilde{\mathbf{f}}_3 = \tilde{\mathbf{e}}_3$ and $-\beta$ be the angle between \mathbf{f}_1 and \mathbf{e}_1 . Then the angle between \mathbf{f}_1 and $\tilde{\mathbf{e}}_1$ is also $-\beta$. Thus we can obtain the frames $(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ and $(\mathbf{f}_1, \tilde{\mathbf{f}}_2, \tilde{\mathbf{f}}_3)$ by rotating the frames $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ and $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$ around \mathbf{e}_3 and $\tilde{\mathbf{e}}_3$ respectively with angle $-\beta$. Analytically this can be written as:

(1.1)
$$\begin{cases} \mathbf{f}_1 = \cos\beta \mathbf{e}_1 + \sin\beta \mathbf{e}_2, \\ \mathbf{f}_2 = -\sin\beta \mathbf{e}_1 + \cos\beta \mathbf{e}_2, \\ \mathbf{f}_3 = \mathbf{e}_3, \end{cases}$$

and

(1.2)
$$\begin{cases} \mathbf{f}_1 = \cos\beta \tilde{\mathbf{e}}_1 + \sin\beta \tilde{\mathbf{e}}_2, \\ \tilde{\mathbf{f}}_2 = -\sin\beta \tilde{\mathbf{e}}_1 + \cos\beta \tilde{\mathbf{e}}_2, \\ \tilde{\mathbf{f}}_3 = \tilde{\mathbf{e}}_3. \end{cases}$$

Since $\mathbf{f}_3 = \mathbf{e}_3$, $\mathbf{f}_3 = \tilde{\mathbf{e}}_3$ and the angle between \mathbf{e}_3 , $\tilde{\mathbf{e}}_3$ is the constant θ , we can obtain the frame $(\mathbf{f}_1, \tilde{\mathbf{f}}_2, \tilde{\mathbf{f}}_3)$ by rotating the frame $(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ around \mathbf{f}_1 with angle θ . Thus we have:

(1.3)
$$\begin{cases} \tilde{\mathbf{f}}_2 = \cos\theta \mathbf{f}_2 - \sin\theta \mathbf{f}_3, \\ \tilde{\mathbf{f}}_3 = \sin\theta \mathbf{f}_2 + \cos\theta \mathbf{f}_3. \end{cases}$$

Using (1.1), (1.2) and (1.3) we can express $\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3$ in terms of $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ as follows:

(1.4)
$$\begin{cases} \tilde{\mathbf{e}}_1 = \mathbf{e}_1 + (1 - \cos\theta)\sin\beta(\cos\beta\mathbf{e}_2 - \sin\beta\mathbf{e}_1) + \sin\theta\sin\beta\mathbf{e}_3, \\ \tilde{\mathbf{e}}_2 = \mathbf{e}_2 - (1 - \cos\theta)\cos\beta(\cos\beta\mathbf{e}_2 - \sin\beta\mathbf{e}_1) - \sin\theta\cos\beta\mathbf{e}_3, \\ \tilde{\mathbf{e}}_3 = \cos\theta\mathbf{e}_3 + \sin\theta(\cos\beta\mathbf{e}_2 - \sin\beta\mathbf{e}_1). \end{cases}$$

Bearing in mind that the distance between $\mathbf{c}(s)$ and $\tilde{c}(s)$ is the constant r and $\mathbf{f}_1 = \cos \beta \mathbf{e}_1 + \sin \beta \mathbf{e}_2$, we have:

(1.5)
$$\tilde{\mathbf{c}}(s) = \mathbf{c}(s) + r(\cos\beta\mathbf{e}_1 + \sin\beta\mathbf{e}_2).$$

Differentiating $(\tilde{\mathbf{c}} - \mathbf{c})^2 = r^2$ we obtain $2(\tilde{\mathbf{c}} - \mathbf{c})(|\tilde{\mathbf{c}}|\tilde{\mathbf{e}}_1 - \mathbf{e}_1) = 0$. Since $\tilde{\mathbf{c}} - \mathbf{c} = r\mathbf{f}_1$, this yields $|\dot{\tilde{\mathbf{c}}}|\cos\beta - \cos\beta = 0$, so that $\tilde{\mathbf{c}}$ is also of unit speed.

Using the Frenet formulae for $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ it is easy to see that $\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3$ given by (1.4) satisfy the Frenet formulae if and only if: $\tilde{K}_1 = K_1 - 2C \sin \beta$, $\tilde{K}_2 = K_2$ and $d\beta/ds = C \sin \beta - K_1$, where K_1 , \tilde{K}_1 and K_2 , \tilde{K}_2 are the curvatures and torsions of \mathbf{c} and $\tilde{\mathbf{c}}$ respectively, and $C = K_2 \tan \theta/2$.

By (1.5) we have:

$$\tilde{\mathbf{e}}_1 = \left(1 - rK_2 \tan\frac{\theta}{2}\sin^2\beta\right)\mathbf{e}_1 + rK_2 \tan\frac{\theta}{2}\sin\beta\cos\beta\mathbf{e}_2 + rK_2\sin\beta\mathbf{e}_3.$$

Comparing this with $(1.4)_1$ we obtain $K_2 = \sin \theta / r$. Thus the the curves **c** and $\tilde{\mathbf{c}}$ have the same constant torsion

$$\tilde{K}_2 = K_2 = \frac{\sin\theta}{r},$$

and the transformation can be given by

$$\tilde{\mathbf{c}} = \mathbf{c} + \frac{2C}{C^2 + K_2^2} (\cos\beta \mathbf{e}_1 + \sin\beta \mathbf{e}_2)$$

where

$$\frac{d\beta}{ds} = C\sin\beta - K_1.$$

The last two equations are the defining relations of the transformation given by A. CALINI and T. IVEY in Theorem 1.1 of [3]. Examples for such transformation are given in [3].

2. Bäcklund transformations of *n*-dimensional constant torsion curves

From now on we mean by the torsion of a curve its last curvature. Let **c** and $\tilde{\mathbf{c}}$ be two curves in \mathbf{R}^n , with curvatures K_1, \ldots, K_{n-1} and $\tilde{K}_1, \ldots, \tilde{K}_{n-1}$ respectively. Then the main theorem of Section 1 can be generalized as follows:

Theorem 2.1. Suppose that ν is a transformation between **c** and $\tilde{\mathbf{c}}$ with $\tilde{\mathbf{c}}(s) = \nu(\mathbf{c}(s))$, where s is the arclength of **c** such that for correspond-

275

ing points we have:

- (1) The line joining these points is contained in the intersection of the osculating hyperplanes and the line segment $\mathbf{c}(s)\tilde{\mathbf{c}}(s)$ has constant length r.
- (2) (a) The angle between the vectors \mathbf{f}_1 and \mathbf{e}_{n-1} is complementary to the angle between the vectors \mathbf{e}_1 and \mathbf{f}_{n-1} , where \mathbf{f}_1 is the unit vector of $\tilde{\mathbf{c}}(s) - \mathbf{c}(s)$, $(\mathbf{f}_1, \ldots, \mathbf{f}_{n-2})$ and $(\mathbf{f}_1, \ldots, \mathbf{f}_{n-2}, \mathbf{f}_{n-1}, \mathbf{e}_n)$ are positively oriented frames of the intersection of the osculating planes and the whole space respectively and $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ is the Frenét frame of \mathbf{c} .

(b) $\langle \mathbf{e}_1, \mathbf{f}_1 \rangle \neq 0$, where $\langle ., . \rangle$ is the standard scalar product of \mathbf{R}^n .

(3) The Frenét frame of $\tilde{\mathbf{c}}$ can be obtained from that of \mathbf{c} by a rotation with constant angle $\theta \neq 0$ around a plane which contains \mathbf{e}_n .

Then the curves have the same constant torsion $\sin \theta/r$. Moreover for $n \ge 4$ we have that

$$K_1 = \tilde{K}_1, \ldots, K_{n-3} = \tilde{K}_{n-3}.$$

PROOF. From (3) we have $\tilde{E} = A^T \Theta A E$, where $E^T = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ and $\tilde{E}^T = (\tilde{\mathbf{e}}_1, \dots, \tilde{\mathbf{e}}_n)$ are the Frenét frames of \mathbf{c} and $\tilde{\mathbf{c}}$,

$$\Theta = \begin{vmatrix} I_{n-2} & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{vmatrix}$$

and $A \in SO(n)$ such that $a_{in} = a_{ni} = \delta_{in}$, where δ_{ij} is the Kronecker symbol. In terms of the entries this can be written as:

(2.1)
$$\begin{cases} \tilde{\mathbf{e}}_i = \sum_{j=1}^{n-1} [\delta_{ij} - a_{n-1,i} a_{n-1,j} (1 - \cos \theta)] \mathbf{e}_j - a_{n-1,i} \sin \theta \mathbf{e}_n; \\ i = \overline{1, n-1}, \\ \tilde{\mathbf{e}}_n = \sin \theta \sum_{j=1}^{n-1} a_{n-1,j} \mathbf{e}_j + \cos \theta \mathbf{e}_n. \end{cases}$$

Since the first n-2 columns and rows of Θ form an identity matrix and $a_{in} = a_{ni} = \delta_{in}$, $A\tilde{E} = \Theta AE$ implies that the first n-2 rows of AE are equal to the first n-2 columns of $A\tilde{E}$ and form the basis ($\mathbf{f}_1, \ldots, \mathbf{f}_{n-2}$) for the intersection of the osculating hyperplanes. Thus $F^T = (\mathbf{f}_1, \ldots, \mathbf{f}_{n-1}, \mathbf{e}_n)$, where F = AE.

By (2)(a) we also have

(0)
$$a_{1,n-1} = -a_{n-1,1},$$

where $A = (a_{ij})_{1 \le i,j \le n}$. Differentiating (2.1) and using the Frenét formulae for $E, \tilde{E} = (\tilde{\mathbf{e}}_1, \ldots, \tilde{\mathbf{e}}_n)$ satisfies the Frenét formulae of $\tilde{\mathbf{c}}$ if and only if the following groups of relations hold:

(I)
$$a_{n-1,2} = a_{n-1,n-1} = 0, \quad \text{if } n \ge 4,$$

 $\tilde{K}_{n-2} = K_{n-2} + 2K_{n-1} \tan \frac{\theta}{2} a_{n-1,n-2},$
(II)
$$\begin{cases} a_{n-1,1}^{\cdot} = -K_1 a_{n-1,2} + K_{n-1} a_{n-1,n-1} a_{n-1,1} \tan \frac{\theta}{2}, \\ a_{n-1,j}^{\cdot} = K_j a_{n-1,j+1} - K_{j-1} a_{n-1,j-1} \\ + K_{n-1} a_{n-1,n-1} a_{n-1,j} \tan \frac{\theta}{2}; \quad j = \overline{2, n-2}, \\ a_{n-1,n-1} = -K_{n-2} a_{n-1,n-2} - K_{n-1} \tan \frac{\theta}{2} (1 - a_{n-1,n-1}^2), \end{cases}$$
(III) $K_i = \tilde{K}_i; \quad i = \overline{1, n-3}, \quad \text{if } n \ge 4.$

Since the distance between corresponding points is the constant r, we have

(2.2)
$$\tilde{\mathbf{c}} = \mathbf{c} + r\mathbf{f}_1.$$

Using F = AE we have

$$\mathbf{f}_1 = \sum_{j=1}^{n-1} a_{1j} \mathbf{e}_j,$$

which implies

$$\tilde{\mathbf{c}} = \mathbf{c} + r \sum_{j=1}^{n-1} a_{1j} \mathbf{e}_j.$$

We have already seen that the first n-2 rows of $A\tilde{E}$ coincide with the first n-2 columns of AE. Thus

(2.3)
$$\langle \mathbf{f}_1, \tilde{\mathbf{e}}_1 \rangle = \langle \mathbf{f}_1, \mathbf{e}_1 \rangle = a_{11}.$$

Differentiating $(\tilde{\mathbf{c}} - \mathbf{c})^2 = r^2$ we obtain $2\langle \tilde{\mathbf{c}} - \mathbf{c}, |\dot{\tilde{\mathbf{c}}}|\tilde{\mathbf{e}}_1 - \mathbf{e}_1 \rangle = 0$, which by (2.2) and (2.3) becomes $|\dot{\tilde{\mathbf{c}}}| = 1$, hence $\tilde{\mathbf{c}}$ is also of unit speed. Differentiating (2.3) and using the Frenét formulae for \mathbf{e}_i we obtain

$$\tilde{\mathbf{e}}_{1} = (1 + ra_{11} - rK_{1}a_{12})\mathbf{e}_{1} + r\sum_{j=2}^{n-2} (a_{1j} - K_{j}a_{1,j+1} + K_{j-1}a_{1,j-1})\mathbf{e}_{j} + r(a_{1,n-1} + a_{1,n-2}K_{n-2})\mathbf{e}_{n-1} + ra_{1,n-1}K_{n-1}\mathbf{e}_{n}.$$

Comparing this with (2.1) and using $a_{1,n-1} = -a_{n-1,1}$, we obtain

(IV)
$$\begin{cases} K_1 = \frac{ra_{11}^{\cdot} + a_{n-1,1}^2(1 - \cos \theta)}{ra_{12}}, \\ K_j = \frac{a_{1j}^{\cdot} + a_{n-1,1}a_{n-1,j}(1 - \cos \theta) + K_{j-1}a_{1,j-1}}{a_{1,j+1}}; \\ j = \overline{2, n-2}, \\ K_{n-1} = \frac{\sin \theta}{r}. \end{cases}$$

In conclusion, (III) and $(IV)_3$ are exactly the assertions of our theorem.

For n > 4 if we fix a unit speed curve **c** in \mathbb{R}^n with a given constant torsion, the system (0) + (I) + (II) + (IV) is underdetermined.

But this system is equivalent to the conditions (1), (2), (3) of Theorem 3.1. In conclusion, for every curve $\mathbf{c} \subset \mathbf{R}^n$; n > 4 with $K_{n-1} = a$, where a is a given constant, and every vector $\mathbf{v} \in T_{\mathbf{c}(0)}\mathbf{R}^n$, we can find an infinite number of curves $\tilde{\mathbf{c}} \subset \mathbf{R}^n$ satisfying the conditions (1), (2), (3) of Theorem 3.1 and such that $\sin \theta = ar$ and $\tilde{\mathbf{c}}(0) - \mathbf{c}(0) = \mathbf{v}$, where $T_{\mathbf{c}(0)}\mathbf{R}^n$ is the tangent space of \mathbf{R}^n in $\mathbf{c}(0)$.

Remark 2.2. The case n = 4 is a special one, since for this dimension the condition (I) implies that the matrix A must be of the form

$$A = \begin{bmatrix} 0 & \cos\beta & -\sin\beta & 0\\ 0 & \sin\beta & \cos\beta & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix},$$

hence the discussion of this case reduces to the 3-dimensional one.

Example 2.3. The following example will be given for n = 5. Let $r > 0, a, b, c, \theta$, be five constants, such that

$$4(a^2 + b^2)\sin^4\frac{\theta}{2} = c^2r^2.$$

Consider the curve $\mathbf{c}: s \mapsto \exp(s \Omega)$, where

$$\Omega = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ -a & 0 & b & 0 & 0 \\ 0 & -b & 0 & c & 0 \\ 0 & 0 & -c & 0 & \frac{\sin\theta}{r} \\ 0 & 0 & 0 & -\frac{\sin\theta}{r} & 0 \end{bmatrix}.$$

By the Frenét formulae, the curvatures of **c** are $K_1 = a$, $K_2 = b$, $K_3 = c$, $K_4 = r^{-1} \sin \theta$. Integrating the system (0) + (I) + (II) + (IV), we obtain

$$\tilde{\mathbf{c}}(s) = c(s) - \left[\frac{4}{r^3} \frac{b^2}{a^2} \sin^6 \frac{\theta}{2} s - a\alpha(s)\right] e_1$$
$$+\dot{\alpha}(s)e_2 + \left[\left(\frac{2}{r} \frac{b}{a} \sin^2 \frac{\theta}{2} - \frac{4}{r^2} \sin^6 \frac{\theta}{2}\right)s - b\alpha(s)\right] e_3 + \frac{2}{r} \frac{b}{ac} \sin^2 \frac{\theta}{2} e_4,$$

and

$$a_{43} = -\frac{2}{r} \frac{1}{c} \sin^2 \frac{\theta}{2},$$

where α satisfies the following differential equation:

$$\dot{\alpha}^{2}(s) + \left[\frac{4}{r^{3}} \frac{b^{2}}{a^{2}} \sin^{6} \frac{\theta}{2} s - a\alpha(s)\right]^{2} + \left[\left(\frac{1}{r} \frac{2b}{a} \sin^{2} \frac{\theta}{2} - \frac{4}{r^{2}} \sin^{6} \frac{\theta}{2}\right) s - b\alpha(s)\right]^{2} + \frac{1}{r^{2}} \frac{4b^{2}}{a^{2}c^{2}} \sin^{4} \frac{\theta}{2} = 1$$

In particular the constant solutions of this equation can be found explicitly by solving a quadratic polynomial equation.

Using the formulae $\tilde{K}_1 = K_1, \ldots, \tilde{K}_{n-3} = K_{n-3}, \tilde{K}_{n-1} = K_{n-2}$ and $\tilde{K}_{n-2} = K_{n-2} + 2K_{n-1} \tan \frac{\theta}{2} a_{n-1,n-2}$, we obtain

$$\tilde{K}_1 = a, \quad \tilde{K}_2 = b, \quad \tilde{K}_4 = \frac{\sin\theta}{r},$$

and

$$\tilde{K}_3 = c - \frac{8}{r^2} \frac{1}{c} \sin^4 \frac{\theta}{2},$$

respectively.

Hence, if we impose the initial conditions $\tilde{E}(0) = I$, where I is the identical matrix, the Frenét formulae of $\tilde{\mathbf{c}}$ yields

$$\tilde{\mathbf{c}}(s) = \exp s \,\tilde{\Omega},$$

where

$$\tilde{\Omega} = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ -a & 0 & b & 0 & 0 \\ 0 & -b & 0 & c - \frac{1}{c} \frac{8}{r^2} \sin^4 \frac{\theta}{2} & 0 \\ 0 & 0 & -c + \frac{1}{c} \frac{8}{r^2} \sin^4 \frac{\theta}{2} & 0 & \frac{\sin \theta}{r} \\ 0 & 0 & 0 & -\frac{\sin \theta}{r} & 0 \end{bmatrix}$$

References

- A. V. BÄCKLUND, Concerning Surfaces with Constant Negative Curvature, Translated by E. M. Coddington, New Era Printing Co. Lancaster, PA, 1905.
- [2] ANNALISA CALINI and THOMAS IVEY, Bäcklund transformations and knots of constant torsion, (*preprint*).
- [3] L. P. EISENHART, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Company, New York, 1909.
- [4] KETI TENENBLAT and CHUU-LIAN TERNG, Bäcklund theorem for *n*-dimensional submanifolds of \mathbb{R}^{2n-1} , Annals of Mathematics **111** (1980), 477–490.
- [5] CHUU-LIAN TERNG, A higher dimension generalization of the Sine-Gordon equation and its soliton theory, Annals of Mathematics 111 (1980), 491–510.

S. Z. NÉMETH DEPARTMENT OF GEOMETRY, FACULTY OF MATHEMATICS BABEŠ-BOLYAI UNIVERSITY STR. KOGALNICEANU NR. 1. RO-3400 CLUJ-NAPOCA ROMANIA CURRENT ADDRESS: DEPT. OF GEOMETRY, EÖTVÖS UNIVERSITY, RÁKÓCZI ÚT 5, H–1088 BUDAPEST HUNGARY *E-mail:* sznemeth@ludens.elte.hu

(Received May 5, 1997; revised November 27, 1997)