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On the Schnirelmann density of sumsets

By PÁL HEGEDŰS (Budapest), GÁBOR PIROSKA (Budapest)
and IMRE Z. RUZSA (Budapest)

Abstract. A classical result of Schnirelmann asserts that σ(A + B) ≥ σ(A) +
σ(B)−σ(A)σ(B) for arbitrary sets of integers, provided at least one of them contains 0.
We establish the best possible bound that can be asserted in this case, in particular we
describe all cases of equality in Schinrelmann’s theorem.

1. Introduction

Let A and B be sets of nonnegative integers with positive Schnirel-
mann densities σ(A) = α and σ(B) = β, respectively. Schnirelmann
proved that

(1.1) σ(A + B) ≥ α + β − αβ,

provided at least one of A and B contains 0. Under the stronger assump-
tion that 0 ∈ A ∩B, Mann strengthened (1.1) to

(1.2) σ(A + B) ≥ min(α + β, 1).

For a proof and history of (1.1) and (1.2) see, for instance, Halberstam–

Roth [2]. Lepson [3] showed that in (1.2) equality can hold for any α

and β (see also [1] for a related result). By writing

S(α, β) = inf{σ(A + B) : σ(A) = α, σ(B) = β, 0 ∈ A}
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and

M(α, β) = inf{σ(A + B) : σ(A) = α, σ(B) = β, 0 ∈ A ∩B},
we can restate these results as

(1.3) α + β − αβ ≤ S(α, β) ≤ M(α, β) = min(α + β, 1).

It was also known that equality can hold in (1.1) for certain values of
α and β. However, if α + β > 1, then we have S(α, β) = M(α, β) = 1,
as also shown already by Schnirelmann, thus in both inequalities of (1.3)
equality can actually occur.

In this paper we give a formula for S(α, β) and describe the cases of
equality in inequalities (1.3).

Theorem 1. For all α, β we have

(1.4) S(α, β) = inf
n≥0

dαne+ dβ(n + 1)e
n + 1

.

Definition 1.1. Let α, β be positive real numbers satisfying α+β ≤ 1.
We call (α, β) a Schnirelmann pair if S(α, β) = α + β − αβ, and a Mann
pair if S(α, β) = α + β.

Theorem 2. The numbers (α, β) form a Schnirelmann pair if and only
if they can be expressed as

α =
k

n
, β =

1
n + 1

with certain integers n ≥ 2 and 1 ≤ k ≤ n− 1.

In Section 2 we prove Theorem 1, in Section 3 we give two proofs of
Theorem 2, one based on and one independent of Theorem 1. Mann pairs
are described in Section 4.

2. The optimal estimate

We introduce the following convention. For any set of integers we use
the same letter to denote its counting function, that is, for a set A we
write

A(x) = |A ∩ [1, x]|.
We need the following result of van der Corput (see [2]).
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Lemma 2.1. Let A,B be sets of nonnegative integers both contain-

ing 0 and put C = A + B. If for a nonnegative number η we have

(2.1) 1 + A(m) + B(m) ≥ η(m + 1) for m = 0, 1, . . . , n,

then 1 + C(n) ≥ η(n + 1).

Proof of Theorem 1. Denote the right side of (1.4) by γ. First
we show that S(α, β) ≥ γ. Since σ(B) > 0, we have 1 ∈ B. Write
B′ = B−1; thus 0 ∈ B′. We will apply the above lemma to the sets A, B′;
the requirement that both contain 0 is hence fulfilled.

Next we show that the sets A,B′ satisfy (1.1) with η = γ. Indeed, by
the definition of the Schnirelmann density we have A(m) ≥ αm, and since
it must be an integer, we have

A(m) ≥ dαme.

We have

B′(m) = |B′ ∩ [1,m]| = |B ∩ [2,m + 1]| = B(m + 1)− 1 ≥ β(m + 1)− 1,

and again this is an integer, thus

B′(m) ≥ dβ(m + 1)e − 1.

On adding these inequalities we find

1 + A(m) + B′(m) ≥ dαme+ dβ(m + 1)e ≥ γ(m + 1)

by the definition of γ.
An application of the Lemma to the sets A, B′ yields that their sum

C ′ = A + B′ satisfies
1 + C ′(n) ≥ γ(n + 1)

for all n.
Since C = A+B is connected to C ′ via C = C ′+1, we conclude that

C(n) = |C ∩ [1, n]| = |C ′ ∩ [0, n− 1]| = 1 + C ′(n− 1) ≥ γn

for all n, which is equivalent to saying σ(C) ≥ γ.
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To show that S(α, β) ≤ γ, suppose first that the infimum in the
Definition (1.4) is a minimum, and let n be any integer satisfying

γ =
dαne+ dβ(n + 1)e

n + 1
.

Consider the sets

A0 = {0, 1, . . . , dαne} ∪ {n + 1, n + 2, . . . }

and

B0 = {1, . . . , dβ(n + 1)e} ∪ {n + 2, n + 3, . . . }.

These sets satisfy

σ(A0) =
dαne

n
≥ α

and

σ(B0) =
dβ(n + 1)e

n + 1
≥ β.

We can select subsets A ⊂ A0 and B ⊂ B0 such that σ(A) = α, σ(B) = β

and 0 ∈ A. These sets satisfy

A + B ⊂ A0 + B0 = {1, 2, . . . , dαne+ dβ(n + 1)e} ∪ {n + 2, . . . },

consequently (by evaluating the counting function at n + 1) we find that

σ(A + B) ≤ σ(A0 + B0) ≤ dαne+ dβ(n + 1)e
n + 1

= γ

as wanted.
Suppose next that the infimum is not attained. In this case we have

s = inf
n≥0

dαne+ dβ(n + 1)e
n + 1

= lim
n→∞

dαne+ dβ(n + 1)e
n + 1

= α + β,

hence the example of [3] for equality in Mann’s theorem serves also as an
example for S(α, β) ≤ γ. ¤
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3. Schnirelmann pairs

We prove Theorem 2. By Theorem 1, α and β form a Schnirelmann
pair if and only if

(3.1) inf
n≥0

dαne+ dβ(n + 1)e
n + 1

= α + β − αβ.

Since the limit of the left side of (3.1) is α + β, in this case there must be
an n such that

dαne+ dβ(n + 1)e
n + 1

= α + β − αβ.

Observe that the value of the left side for n = 0 is 1, so we must have
n ≥ 1. Write

dαne = k, dβ(n + 1)e = l.

We have αn ≤ k and β(n + 1) ≤ l, hence k 6= 0, l 6= 0 and

(3.2) α ≤ k/n, β ≤ l/(n + 1).

By the monotonicity of the function α + β − αβ in both variables (in our
domain), we have

α + β − αβ ≤ k

n
+

l

n + 1
− k

n

l

n + 1
=

k + l

n + 1
− k(l − 1)

n(n + 1)
.

Since l ≥ 1, the last expression is always ≤ (k + l)/(n + 1), and equality
can hold only if l = 1 and both inequalities in (3.2) hold with equality.
This means that α = k/n and β = l/(n + 1) = 1/(n + 1) as claimed. ¤

Now we give another proof for the following slightly weaker result: if
there are sets A,B such that σ(A + B) = α + β −αβ, then α, β are of the
form described in Theorem 2. We think that this proof, which does not
use Theorem 1 but follows Schnirelmann’s original argument instead with
some modifications, is of independent interest. It also yields additional
information on the structure of the extremal sets.

Write S = A + B, γ = σ(S) = α + β − αβ. First we show that there
exists an x such that S(x)/x = γ. Indeed, if S(x) > γx for all x, then

σ(x) = inf S(x)/x = lim inf S(x)/x = d(S).
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By Kneser’s theorem (see [2]) we have either

d(S) ≥ d(A) + d(B) ≥ σ(A) + σ(B) ≥ α + β,

or S has the following structure: for a certain m it is the union of some
residue classes modulo m, with a finite number of integers omitted. The
first case is clearly impossible. In the second case let k be the number of
these residue classes. We have

k ≥ S(m) ≥ γm = d(S)m = k,

thus again there is equality at x = m.
From now on we fix an integer x with the property S(x) = γx. Since

γ < 1, we have x ≥ 2. Observe that x 6∈ S, since x ∈ S would imply
S(x− 1) = S(x)− 1 < γx. This also implies x /∈ B.

Let
1 = b1 < b2 < · · · < br < x (< br+1)

be the elements of B up to x, so that

r = B(x) ≥ βx.

Following Schnirelmann’s argument we observe that the numbers bi

are all in S, as well as all the numbers bi+a with a ∈ A, 1 ≤ a ≤ bi+1−bi−1
for 1 ≤ i ≤ r − 1 and the numbers br + a, a ∈ A, 1 ≤ a ≤ x − br. This
gives

S(x) ≥ r +
r−1∑

i=1

A(bi+1 − bi − 1) + A(x− br)(3.3)

≥ r + α

(
r−1∑

i=1

(bi+1 − bi − 1) + x− br

)

= r + α(x− r) = αx + (1− α)r

≥ αx + (1− α)βx = γx.

If we have equality here, then equality must hold in all the interme-
diate inequalities, thus we have r = βx and

(3.4) A(bi+1 − bi − 1) = α(bi+1 − bi − 1)
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for all i ≤ r − 1. Also

(3.5) A(x− br) = α(x− br).

We have x + 1 ∈ B, since otherwise we would have B(x + 1) = r = βx <
β(x + 1). Thus (3.5) becomes the case i = r of (3.4).

If r = 1, then we have β = 1/x and α = A(x− 1)/(x− 1) from (3.5),
thus we have the claim of the Theorem with n = x − 1. In the sequel we
assume that r ≥ 2.

Write di = bi+1 − bi. We show that this sequence is decreasing for
1 ≤ i ≤ r. Suppose on the contrary that di+1 > di for some 1 ≤ i ≤ r− 1.
Consider the numbers bi + a, a ∈ A lying in [bi+1 + 1, bi+2 − 1], which
correspond to

(3.6) a ∈ A, di + 1 ≤ a ≤ di + di+1 − 1.

These are elements of S up to x, thus must be among those that we counted
in (3.3), that is, they must be of the form bi+1 +a′, a′ ∈ A. Thus for these
numbers we infer that

(3.7) a′ = a− di ∈ A.

From (3.4) we know that

A(di − 1) = α(di − 1), A(di+1 − 1) = α(di+1 − 1).

By definition of α we have

A(di + di+1 − 1) ≥ α(di + di+1 − 1) = A(di − 1) + A(di+1 − 1) + α.

Since this number must be an integer, we must have

A(di + di+1 − 1) ≥ A(di − 1) + A(di+1 − 1) + 1.

This can be rewritten as

|A ∩ [di+1, di + di+1 − 1]| ≥ A(di − 1) + 1.

The elements counted in the left side are all in the range (3.6) (here we
use the assumption that di+1 > di), thus by (3.7) we can substract di from
them and get elements of A again. This yields

|A ∩ [di+1 − di, di+1 − 1]| ≥ A(di − 1) + 1
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or
A(di+1 − 1)−A(di+1 − di − 1) ≥ A(di − 1) + 1.

By rearranging and taking into account (3.4) we obtain

A(di+1 − di − 1) ≤ A(di+1 − 1)−A(di − 1)− 1

= α(di+1 − 1)− α(di − 1)− 1 < α(di+1 − di − 1),

a contradiction.
Thus the numbers b2 − b1 = b2 − 1, b3 − b2, . . . , br − br−1, br+1 − br =

x + 1− br are decreasing. With the notation c = b2 − 1 this implies

b2 = c + 1, b3 ≤ 2c + 1, . . . , br ≤ (r − 1)c + 1, x ≤ rc.

Hence β = r/x ≥ 1/c; but also β ≤ B(c)/c = 1/c, thus β = 1/c. Since
β < 1, we have c ≥ 2. The case i = 2 of (3.4) yields

α = A(b2 − 1)/(b2 − 2);

thus we have α, β in the required form with n = b2 − 2 = c− 1. ¤

4. Mann pairs

Our main result sounds as follows.

Theorem 3. If α and β form a Mann pair, then they are either both
rational or both irrational. A pair of rational numbers, say α = p/q,
β = r/s is a Mann pair if and only if they satisfy

(4.1) {α(1− n)}+ {−βn} ≥ α

for every integer 1 ≤ n ≤ lcm[q, s]. A pair of irrational numbers is a Mann
pair if and only if there are integers k, l, m such that

(4.2) αk + βl = m, 0 < k < 1/α, 0 ≤ k − l < 1/α.

Lemma 4.1. (α, β) is a Mann pair if and only if they satisfy (4.1) for
every integer n ≥ 1.

Proof. By Theorem 1, these numbers form a Mann pair if and only
if we have

S(α, β) = inf
n≥1

dα(n− 1)e+ dβne
n

≥ α + β.
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(We replaced n in (1.4) by n− 1.) After multiplying by n and taking into
account that

dxe = x + {−x},
this formula reduces to (4.1). ¤

Lemma 4.2. (α, β) is a Mann pair if and only if we have

(4.3) {αn} ≤ {−βn}
for every integer n ≥ 1 such that {αn} ≤ α.

Proof. Observe that

{α(1− n)} =
{

α− {αn} if {αn} ≤ α,

α− {αn}+ 1 if {αn} > α.

By substituting this into (4.1) we obtain the inequality (4.3) in the first
case, and {αn} ≤ 1 + {−βn} in the second. Since the second inequality
is trivially true, (4.1) is equivalent to the assumption that (4.3) holds
whenever {αn} ≤ α. ¤

We can reformulate this result as follows.

Lemma 4.3. (α, β) is a Mann pair if and only if there is no point of
the form ({αn}, {−βn}) in the domain T defined by

T = {(u, v) : 0 < u ≤ α, 0 ≤ v < u}. ¤

Lemma 4.4. If α, β, 1 are independent over the rationals, then (α, β)
is not a Mann pair.

Proof. In this case the points ({−αn}, {−βn}) are everywhere dense
in the unit square, thus we can find a point of this form inside T . ¤

Lemma 4.5. A rational and an irrational number never form a Mann
pair.

Proof. Suppose that β is rational, say β = r/s, and α is irrational.
We consider only integers of the form n = sm. For these values we have
{−βn} = 0. Furthermore, {αn} = {αsm} can lie in (0, α), since αs is
irrational and consequently αsm is everywhere dense modulo 1.

If α is irrational, say α = p/q, we argue similary, using the numbers
in the form n = qm − 1. We will have {αn} = α, and we can achieve
0 < {−βn} = {β − βqm} < α, since {βqm} is dense modulo 1. ¤

Thus we can restrict our attention to numbers that are dependent
over the rationals.
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Lemma 4.6. Assume that α, β are real numbers, connected by the

equation

(4.4) αk − βl = m,

where k, l, m are integers and gcd(k, l, m) = 1. Define

P = {({αn}, {βn}) : n ≥ 1}

and

Q = {(u, v) : 0 ≤ u, v < 1, uk ≡ vl (mod 1)}.
We have P ⊂ Q, and if α, β are irrational, then P is dense in Q\(0, 0).

Proof. The inclusion P ⊂ Q is obvious.
Suppose now that α, β are irrational, and take an (u, v) ∈ Q, (u, v) 6=

(0, 0). Then uk − vl is an integer, and, since (k, l,m) = 1, it has a repre-
sentation in the form

uk − vl = ka− lb−mc

with integral a, b, c. By substituting the value of m from (4.4) we obtain

k(u− a− αc) = l(v − b− βc),

or
(u− a− αc)

l
=

(v − b− βc)
k

= γ,

say. (We have kl 6= 0, since if one of them vanished, then (4.4) could not
hold.)

Take an ε > 0. Since αk is irrational, we can find infinitely many
integers q such that qkl > 0 and

(4.5) αqk ≡ βql ≡ γ + δ (mod 1),

where |δ| < ε. (The first congruence in (4.5) holds identically by (4.4).)
Now consider the numbers n = qkl + c. We have

αn = α(qkl + c) = (αqk)l + αc ≡ (γ + δ)l + αc

= δl + γl + αc = δl + (u− a− αc) + αc ≡ u + δl (mod 1).



On the Schnirelmann density of sumsets 343

An analogous calculation yields

βn ≡ v + δk (mod 1).

Thus (αn, βn) can be arbitrarily near to (u, v) modulo 1. This concludes
the proof if both u and v are positive.

If one of u or v is equal to 0, then we approximate (u, v) by (u′, v′) ∈ P ,
u′, v′ > 0 and apply the previous proof to u′, v′.

We remark that this approximation also works for (0, 0) if kl > 0, but
if kl < 0, then it is an isolated point and will not be in the closure of Q.

¤

Lemma 4.7. Assume that α, β are real numbers, connected by equa-

tion

(4.6) αk + βl = m

with integers k, l, m, gcd(k, l, m) = 1. Define

P = {({αn}, {−βn}) : n ≥ 1}

and

Q = {(u, v) : 0 ≤ u, v < 1, ku ≡ lv (mod 1)}.
We have P ⊂ Q, and if α, β are irrational then P is dense in Q.

Proof. This is the previous lemma applied to the numbers α,−β.
¤

Proof of Theorem 3. If both numbers are rational, we apply Lemma
4.1. Since the function {α(1−n)}+{−βn} is periodic with period lcm[q, s],
it is sufficient to check integers up to lcm[q, s].

The case when one is rational and the other is irrational is settled by
Lemma 4.5.

Now assume that both numbers are irrational. If α, β, 1 are inde-
pendent over the rationals, we are done by Lemma 4.4. Suppose they
are dependent. Then they are connected by an equation (4.6). From the
equations we can select one that satisfies (k, l, m) = 1 and k > 0.

Suppose that k, l,m fulfill the conditions in (4.2).
The set T in Lemma 4.3 is a triangle with vertices (0, 0), (α, 0) and

(α, α). The value of the function ku−lv at the vertices is 0, αk ∈ (0, 1) and
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α(k− l) ∈ [0, 1), respectively. Every point of T is a convex combination of
the vertices and, since the edge connecting (0, 0) to (α, α) is excluded, the
weight of (α, 0) is always positive, thus the image under the above map
lies in (0, 1) and cannot contain an integer. Hence P ∩ T = ∅ and (α, β) is
a Mann pair by Lemma 4.3.

Suppose that one of the conditions is violated.
If k > 1/α, then the point (1/k + εl, εk) is in T for small ε such that

εk > 0 and satisfies ku ≡ lv (mod 1).
If k − l < 0, that is, l > k, then we use the point (εl, εk) for small

positive ε.
Finally if k < 1/α and k− l > 1/α, then l < k− 1/α < 0. In this case

our point is (
1

k − l
− εl,

1
k − l

− εk

)

for small positive ε.
In all cases we found a point in the interior of T ∩Q. By Lemma 4.7

we infer T ∩P 6= ∅ and then (α, β) is not a Mann pair by Lemma 4.3. ¤
The description of rational Mann pairs is less satisfactory than that

of irrational ones, though it provides a finite algorithm for each pair of
rational numbers. The following can be observed.

Statement 4.8. Let α, β be rational numbers, and write α/β = a/b

with (a, b) = 1. If there are integers satisfying (4.2), then (α, β) is a Mann
pair. In particular, if α ≤ 1/(a + b), then it is a Mann pair.

Proof. In proving the sufficiency of condition (4.2) we did not use
any assumption about the rationality of α and β.

For rational numbers the choice of k, l, m is not unique even under the
restrictions k > 0, (k, l, m) = 1. One possible choice is k = b, l = −a. With
this choice condition (4.2) becomes 0 < b < 1/α and 0 ≤ a+b < 1/α. Here
the positivity conditions are automatically satisfied, and the second upper
bound involves the first, thus (4.2) reduces to a+b < 1/α, or α < 1/(a+b).
To extend this to the case of α = 1/(a + b), observe that here we have
β = b

a(a+b) and (4.2) is applicable with k = l = a. ¤

The difficulty is that the set P will be a lattice in the rational case,
and there seems no easy way to decide when a lattice intersects a triangle.

We note that condition (4.2) is not necessary in the rational case.
This is seen by the examples α = 4/11, β = 5/11 or α = 8/65, β = 2/13.
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