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On the linear independence of some functions

By B. EBANKS (Louisville) and L. LOSONCZI∗(Debrecen)

Introduction

Let C be the set of complex numbers and f, g : ]0, 1[→ C be measur-
able functions satisfying the functional equation

f(xy) + f(x(1− y)) + f((1− x)y) + f((1− x)(1− y)) =

= g(x)g(y) (x, y ∈ ]0, 1[ ).(1)

From a result of the second author ([3], Theorem 3) it follows that there
exist distinct complex numbers λ1, . . . , λM and natural numbers

m1, . . . , mM with
M∑

j=1

mj ≤ 20 such that

(2) f(x) =
M∑

j=1

mj−1∑

k=0

cjk xλj logk x (x ∈ ]0, 1[ ),

where the cjk (j = 1, . . . M ; k = 0, . . . ,mj − 1) are complex constants. If
g 6= O, i.e. g(y0) 6= 0 for some y0 ∈ ]0, 1[ , then (1), (2) yield

(3) g(x) =
M∑

j=1

mj−1∑

`=0

dj` αj`(x) (x ∈ ]0, 1[ ),

where

(4) αj`(x) = xλj log` x + (1− x)λj log`(1− x) (x ∈ ]0, 1[ ),
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and dj` are constants defined by

dj` =
mj−1∑

k=`

cjk

(
k

`

)
αj,k−`(y0)/g(y0)

(j = 1, . . . , M ; ` = 0, . . . ,mj − 1). To find the constants cjk, dj` we sub-
stitute (2), (3) into (1). We get the equation

(5)
M∑

j=1

mj−1∑

`=0

αj`(x)Dj`(y) = 0 (x, y ∈ ]0, 1[ )

where

Dj`(y) =
mj−1∑

k=`

cjk

(
k

`

)
αj,k−`(y)− dj`

M∑
p=1

mp−1∑
q=0

dpq αpq(y).

To get further information from (5), one has to know if the functions
αj` (j = 1, . . . , M ; ` = 0, . . . , mj − 1) are linearly independent or not.

The question of linear independence of the functions αj` was raised
by the second author at the 28th International Symposium on Functional
Equations (August 23–Sept 1, 1990, Graz–Mariatrost, Austria). He proved
that the functions γ0, γ2, . . . , γ2n are linearly independent while γ0, γ2, . . . ,
γ2n, γ2n+1 are linearly dependent, where

γ`(x) = x` + (1− x)` (x ∈ ]0, 1[ , ` ∈ C)

(see [4]). It follows that the functions γj1 , γ2+j2 , γ4+j3 , . . . , γ2(n−1)+jn
, γ2n,

γ2n+1 are linearly dependent, where jk ∈ {0, 1} for k = 1, 2, . . . , n.
The first result towards the general problem was found by the first au-

thor, proving that the existence of complex nonzero constants A1, . . . , AM

with the property
M∑

j=1

Aj

[
xλj + (1− x)λj

]
= 0 (x ∈ ]0, 1[ )

implies that λ1, . . . , λM are nonnegative integers. Extending the ideas of
the proof the second author showed that if

M∑

j=1

mj−1∑

k=0

Ajk αjk(x) = 0 (x ∈ ]0, 1[ )

holds with constants Ajk ∈ C then Ajk = 0 for k = 1, . . . ,mj−1 (provided
that mj > 1) and Aj0 = 0 if λj 6∈ N ∪ {0}.

The aim of this paper is to present this latter result.



On the linear independence of some functions 137

In some equations related to (1) the question of linear independence
of the functions

δj`(x) = xλj log` x− (1− x)λj log`(1− x) (x ∈ ]0, 1[ )

arises. Our result will include this case as well.
The authors are grateful to M. Laczkovich for useful discussions con-

cerning the topic of the paper.
In the sequel R and N will denote the sets of real and natural numbers,

respectively.

2. The linear independence of the functions αj`, δj`

Our main result is the following

Theorem. Let M ∈ N be a natural number, λ1, . . . , λM distinct
complex numbers and m1, . . . ,mM natural numbers. Suppose that

(6)
M∑

j=1

mj−1∑

k=0

Ajk

[
xλj logk x± (1− x)λj logk(1− x)

]
= 0 (x ∈ ]0, 1[ )

holds for some constants Ajk (j = 1, . . . ,M ; k = 0, . . . , mj − 1) either
with the + or with the − sign. For any j = 1, . . . , M we have

if λj 6∈ N ∪ {0} then Ajk = 0 (k = 0, . . . ,mj − 1),(7)

if λj ∈ N ∪ {0} and mj > 1 then Ajk = 0 (k = 1, . . . , mj − 1).(8)

For the proof we need some lemmas.

Lemma 1. Let β1, . . . , βn (n ≥ 1) be distinct real numbers and x ∈
]0, 1[ a real variable. Then

(9) lim
x→0+

n∑

j=1

ajx
iβj = 0

holds for complex a1, . . . , an if and only if

(10) a1 = . . . = an = 0.

Proof of Lemma 1. The “if ” part is obvious. We prove the “only
if ” part by induction on n.

Suppose first that (9) holds for n = 1. Then

lim
x→0+

|a1x
iβ1 | = 0.
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Since |xiβ1 | = 1 for x > 0, it follows that a1 = 0.
Now suppose that (9) implies (10) for some n ∈ N and that

(11) lim
x→0+

n+1∑

j=1

ajx
iβj = 0.

Then we have

lim
x→0+

∣∣∣∣∣
n+1∑

j=1

ajx
iβj

∣∣∣∣∣ = 0, |xiβn+1 | = 1,

hence, dividing by xiβn+1 ,

lim
x→0+

∣∣∣∣
n∑

j=1

ajx
i(βj−βn+1) + an+1

∣∣∣∣ = 0,

and thus

(12) lim
x→0+




n∑

j=1

ajx
i(βj−βn+1) + an+1


 = 0.

Next choose a real number c ∈ ]0, 1[ such that

(13) ci(βj−βn+1) 6= 1 (j = 1, . . . , n).

This is possible because β1, . . . , βn are distinct from βn+1. Replacing x by
cx in (12) and subtracting (12) from the equation so obtained we get

lim
x→0+

n∑

j=1

aj [ci(βj−βn+1) − 1] xi(βj−βn+1) = 0.

Since the numbers β1 − βn+1, . . . , βn − βn+1 are distinct we get by the
induction hypothesis and by (13) that

a1 = . . . = an = 0.

Using (11) or (12) again we obtain an+1 = 0, and this completes the proof
of Lemma 1.

Remark 1.. Let β1, . . . , βn be distinct real numbers and suppose that

(14) lim
x→0+




n∑

j=1

ajx
iβj + an+1


 = 0



On the linear independence of some functions 139

holds for complex a1, . . . , an, an+1.

If β1β2 . . . βn 6= 0 then (14) holds if and only if

(15) a1 = . . . = an = an+1 = 0.

If one of the βj ’s is zero, say βr = 0, 1 ≤ r ≤ n, then (14) holds if
and only if

(16) ar + an+1 = 0 and aj = 0 for j = 1, . . . , n; j 6= r.

Indeed, in the case β1β2 . . . βn 6= 0 we can write (14) in the form

lim
x→0+

n+1∑

j=1

ajx
iβj = 0

with βn+1 = 0, thus by Lemma 1 (14) and (15) are equivalent.
If βr = 0 we write (14) in the form

lim
x→0+


(ar + an+1)xiβr +

n∑
j=1
j 6=r

aj xiβj


 = 0

hence by Lemma 1 we conclude that (14) holds if and only if (16) is valid.

Lemma 2. Let λ ∈ C, k ∈ R be fixed values and let

(17) h(x) = xλ logk x (x ∈ ]0, 1[ ).

Then h is differentiable arbitrarily many times in ]0, 1[ and h(n) is given
by
(18)

h(n)(x) = xλ−n
n∑

`=0

(λ)n−`
n (k)`

` logk−` x (x ∈ ]0, 1[ ; n = 0, 1, . . . ),

where, for any λ ∈ C,

(19) (λ)0n := 1 for n = 0, 1, . . . ,

while for n ∈ N, 1 ≤ s ≤ n,

(20) (λ)s
n := σsn(λ, λ− 1, . . . , λ− n + 1).
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Here σsn denotes the sth elementary symmetric polynomial of n variables.
Thus, e.g.

(λ)1n := λ + (λ− 1) + . . . + (λ− n + 1),

(λ)2n := λ(λ− 1) + λ(λ− 2) + . . . + (λ− n + 2)(λ− n + 1),
...

(λ)n
n := λ(λ− 1) . . . (λ− n + 1).

Proof of Lemma 2. It is easy to see that (18) is valid for n = 0, 1.
Suppose that (18) holds for n ∈ N. Differentiating (18) with respect to x
we get

(21)

h(n+1)(x) = xλ−(n+1)

[
n∑

`=0

(λ)n−`
n (λ− n) (k)`

` logk−` x+

+
n∑

`=0

(λ)n−`
n (k)`

` (k − `) logk−`−1 x

]
.

We can decompose the first sum as

(22)
n∑

`=1

(λ)n−`
n (λ− n) (k)`

` logk−` x + (λ)n
n (λ− n)(k)00 logk x.

Replacing `+1 by ` in the second sum and separating its last member, we
can rewrite the second sum as

(23)
n∑

`=1

(λ)n+1−`
n (k)`−1

`−1(k− ` + 1) logk−` x + (λ)0n(k)n
n(k− n) logk−n−1 x.

Since, for any λ ∈ C,

(λ)n
n (λ− n) = (λ)n+1

n+1, (λ)0n = 1 = (λ)0n+1 (n = 0, 1, . . . ),

(λ)n−`
n (λ− n) + (λ)n+1−`

n = (λ)n+1−`
n+1 (n = 1, 2, . . . ; ` = 1, 2, . . . n)

and
(k)`−1

`−1 (k − ` + 1) = (k)`
` (` = 1, 2, . . . , n),

using (22), (23) we can write (21) as

h(n+1)(x) = xλ−(n+1)
n+1∑

`=0

(λ)n+1−`
n+1 (k)`

` logk−` x

which completes the proof.
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Remark 2. We shall need (18) in the case when k is a nonnegative
integer. Since for ` > k (` ∈ N) we have

(k)`
` = 0,

(18) can be written as

h(n)(x) = xλ−n

min{n,k}∑

`=0

(λ)n−`
n (k)`

` logk−` x (x ∈ ]0, 1[ ; k, n = 0, 1, . . . ).

Writing ` for k − ` here, we obtain

(24) h(n)(x) = xλ−n
k∑

`=max{0,k−n}
(λ)n−k+`

n (k)k−`
k−` log` x

(x ∈ ]0, 1[ ; k, n = 0, 1, . . . ).

In the proof of the main result we shall need a formula for the nth
derivative of equation (6). By (24) and the identity

mj−1∑

k=0

k∑

`=max{0,k−n}
uk` =

mj−1∑

`=0

min{`+n,mj−1}∑

k=`

uk`,

we have for the nth derivative of (6)

(25)
M∑

j=1

mj−1∑

`=0

B
(n)
j`

[
xλj−n log` x± (−1)n(1− x)λj−n log`(1− x)

]
=0

for x ∈ ]0, 1[, where

(26) B
(n)
j` :=

min{`+n,mj−1}∑

k=`

Ajk(λj)n−k+`
n (k)k−`

k−`

for j = 1, . . . , M ; ` = 0, . . . , mj − 1; n = 0, 1, . . . .

Lemma 3. Assume the hypotheses of the Theorem. Suppose that
for some j ∈ {1, . . . , M} and for some n ∈ N ∪ {0} we have (λj)n

n =
λj(λj − 1) . . . (λj − n + 1) 6= 0 and

(27) B
(n)
j` = 0 for ` = mj − 1, mj − 2, . . . , 1, 0,

where B
(n)
j` is defined by (26). Then

(28) Aj` = 0 for ` = mj − 1, mj − 2, . . . , 1, 0.
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Proof of Lemma 3. By (26), (27) we see that

B
(n)
j,mj−1 = Aj,mj−1 (λj)n

n (mj − 1)00 = 0.

Since (mj − 1)00 = 1 and (λj)n
n 6= 0, this implies (28) for ` = mj − 1.

Assume that we have proved (28) for ` = mj−1, mj−2, . . . , mj−q where
1 ≤ q ≤ mj − 1. Then by (26), (27) and by our hypothesis we have

B
(n)
j,mj−q−1 = Aj,mj−q−1 (λj)n

n (mj − q − 1)00 = 0

hence Aj,mj−q−1 = 0. Letting q run over {1, . . . , mj − 1}, the proof of
Lemma 3 is completed.

Remark 3. If (under the assumptions of Lemma 3) (27) holds only for
` = mj − 1,mj − 2, . . . , 1 then (28) also holds for these subscripts only.
This is clear from the proof of Lemma 3.

Lemma 4. Let x∈]0, 1[ be a real variable, λ∈C, k ∈ R. If Re λ > 0,
k ∈ R or Reλ = 0, k < 0 we have

(29) lim
x→0+

xλ logk x = 0;

and for any λ ∈ C,

(30) lim
x→0+

(1− x)λ logk(1− x) =
{

1 if k = 0
0 if k > 0.

Proof of Lemma 4. Let λ = α + iβ, α, β ∈ R, then

xλ logk x = xiβ(xα logk x),

where by hypothesis either α > 0 and k is arbitrary, or α = 0 and k < 0.
The first factor xiβ has absolute value 1 while the limit of the second
factor (in parantheses) is zero if x → 0+. This is obvious if α = 0, k < 0
or α > 0, k ≤ 0, while for α > 0, k > 0 it can be proved by applying
L’Hospital’s rule.

Concerning (30), we have (1 − x)λ → 1 if λ ∈ C, x → 0+, and the
limit of logk(1− x) as x → 0+ is 1 if k = 0 and 0 if k > 0.

3. The proof of the main result

Now we are ready to prove our theorem. Let λj = αj + iβj (αj , βj ∈
R; j = 1, . . . ,M) and arrange the λj ’s such that

(31) α1 = . . . = αp1 < αp1+1 = . . . = αp2 < . . . < αps−1+1 = . . . = αps .
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Here p1 < p2 . . . < ps are natural numbers, ps = M. We may suppose
that

(32) m1 ≥ m2 ≥ . . . ≥ mp1 ;

moreover, we may choose the natural numbers q1 < q2 < . . . < qu, qu = p1

such that

m1 = . . . = mq1 > mq1+1 = . . . = mq2 > . . . > mqu−1+1 = . . . = mqu
.(33)

First we show that the statement of the theorem holds for the sub-
scripts j = 1, . . . , p1.

We shall distinguish two cases:
Case 1: α1 = . . . = αp1 6∈ N ∪ {0}.
Case 2: α1 = . . . = αp1 ∈ N ∪ {0}.

In both cases we shall calculate the limit of the nth derivative of (6)
divided by suitable functions as x → 0 + . Then by Lemma 1 we conclude
that for some n ∈ N ∪ {0}, B

(n)
j` = 0, (λj)n

n 6= 0 and by Lemma 3 we
arrive at the statements (7), (8).

In case 1, choose n ∈ N ∪ {0} such that n − α1 > 0. Differentiating
(6) n times we obtain (25). Dividing it by xα1−n logm1−1 x and taking its
limit as x → 0+ we have

lim
x→0+

M∑

j=1

mj−1∑

`=0

B
(n)
j`

[
xαj−α1 xiβj log`−m1+1 x±

±(−1)n xn−α1 log1−m1 x (1− x)λj−n log`(1− x)
]

= 0.

For all subscripts j = 1, . . . , M ; ` = 0, . . . , mj − 1, the limit of the second
term in the bracket is zero by (29), (30) and n− α1 > 0. For j > p1; ` =
0, . . . ,mj−1, the limit of the first term in the bracket is zero, since for these
subscripts αj−α1 > 0. If j = 1, . . . , p1; ` < m1−1 or j = q1+1, . . . , qu(=
p1) then again the limit of the first term of the bracket is zero, since the
exponent of log x is negative (by the condition ` < m1 − 1 or by (33)).
Thus we have finally

lim
x→0+

q1∑

j=1

B
(n)
j,m1−1 xiβj = 0.

Note that β1, . . . , βq1 are distinct, because of α1 = . . . = αq1 (cf. (31))
and the distinctness of λ1, . . . , λM . By Lemma 1 we obtain

B
(n)
j,m1−1 = 0 (j = 1, . . . , q1)
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and thus by (33)

B
(n)
j,mj−1 = B

(n)
j,m1−1 = 0 (j = 1, . . . , q1).

If m1− 1 > 0 then we omit the terms with zero coefficients from (25),
divide it by xα1−n logm1−2 x and take its limit as x → 0 + . In the same
way as above we get

lim
x→0+

q1∑

j=1

B
(n)
j,m1−2 xiβj = 0

hence by Lemma 1 and (33)

B
(n)
j,mj−2 = 0 (j = 1, . . . , q1).

Similarly

B
(n)
j` = 0 (j = 1, . . . , q1; ` = 0, . . . ,m1 − 1).

Continuing this process with the next groups j = q1+1, . . . , q2; . . . ; qu−1+
1, . . . , qu = p1 of subscripts (i.e. division by xα1−n logk x, k = mq1+1 −
1,mq1+1 − 2, . . . , 1, 0; . . . ; mqu−1+1 − 1,mqu−1+1 − 2, . . . , 1, 0, and taking
the limit as x → 0+) we obtain after similar arguments that

B
(n)
j` = 0 (j = 1, . . . , p1; ` = 0, . . . , mj − 1).

By Lemma 3 this implies that

(34) Aj` = 0 (j = 1, . . . , p1; ` = 0, . . . , mj − 1),

since (λj)n
n 6= 0 for j = 1, . . . , p1 because of α1 6∈ N ∪ {0}, n − α1 > 0.

Thus we have proved (7) for j = 1, . . . , p1.
In case 2 suppose first that there is a natural number qt (1 ≤ t ≤ u)

among the q1, . . . , qu such that

(35) mqt > 1 and mj = 1 for qt < j ≤ qu(= p1).

Let n = α1, differentiate (6) n times, divide it by xα1−n logk x =
logk x with k = m1− 1,m1− 2, . . . , 1; . . . ; mqt−1+1− 1,mqt−1+1− 2, . . . , 1
and take the limit as x → 0+ for each value of k in the indicated order.
With the same reasoning as in case 1 we get

(36) B
(n)
j` = 0 (j = 1, . . . , qt; ` = 1, . . . , mj − 1).

If there is not any qt with property (35) then by (32), (33)

(37) m1 = . . . = mp1 = 1
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i.e. there is no coefficient Aj` with j = 1, . . . , p1, ` ≥ 1.
Let us now take the limit of (25) with n = α1 as x → 0+. By (35) –

(36) or (37), together with (29), (30), (31), we obtain

(38) lim
x→0+

p1∑

j=1

B
(n)
j,0 xiβj ±

M∑

j=1

B
(n)
j,0 (−1)n = 0.

If β1β2 . . . βp1 6= 0 then by Remark 1, (38) implies that

(39) B
(n)
j,0 = 0 (j = 1, . . . , p1).

If β1β2 . . . βp1 = 0 then only one of the factors here can be zero,
otherwise λ1, . . . , λp1 were not distinct. Let βr = 0, 1 ≤ r ≤ p1, then
again by Remark 1

(40) B
(n)
j,0 = 0 (j = 1, . . . , p1; j 6= r).

Since (λj)n
n 6= 0 for j = 1, . . . , p1, applying Lemma 3 and Remark 3

together with either (35) – (36) or (37), we obtain from (39) that

(41) Aj` = 0 for j = 1, . . . , p1; ` = 0, . . . , mj − 1

if α1 ∈ N∪{0} and β1β2 . . . βp1 6= 0 (i.e. if none of the numbers λ1, . . . , λp1

is a nonnegative integer), and we obtain from (40) that

(42) Aj` = 0 for j = 1, . . . , p1; j 6= r, ` = 0

and for j = 1, . . . , qt; ` = 1, . . . , mj − 1 (if (35) holds)

provided that α1 ∈ N ∪ {0} and βr = 0.
Thus we have proved the theorem for j = 1, . . . , p1.
Suppose now that we have proved our theorem for subscripts j =

1, . . . , p1, . . . , pm. We claim that for the subscripts j = pm+1, pm+2, . . . ,
pm+1 (m = 1, 2, . . . , s− 1) the same method can be applied as the one we
used for j = 1, 2, . . . , p1.

Differentiate (6) n times, where now n − αpm+1 > 0 if αpm+1 =
αpm+2 = . . . = αpm+1 6∈ N∪{0} and n = αpm+1 if αpm+1 = αpm+2 = . . . =
αpm+1 ∈ N ∪ {0}. Due to the arrangement (31), in both cases n is greater
than any of the nonnegative integers among the exponents λ1, . . . , λpm .
Hence, after the differentation both xλj and (1− x)λj (λj ∈ N ∪ {0}, 1 ≤
j ≤ pm, mj = 1) will disappear and we get

M∑

j=pm+1

mj−1∑

`=0

B
(n)
j`

[
xλj−n log` x± (−1)n(1− x)λj−n log`(1− x)

]
= 0.
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This is an equation of the form (25) with subscripts j shifted by pm.
Repeating the arguments used for subscripts j = 1, . . . , p1 for the subscript
groups j = pm + 1, . . . , pm+1 (m = 1, 2, . . . , s − 1) we can complete the
proof.

4. Further remarks

As stated in the introduction, the motivation for this work comes from
the functional equation (1). This equation arises from characterization
problems for information measures having the sum property with measur-
able generating function which satisfy a generalized (2, 2)–additivity (see
[1], [2]). Applications of the results in this paper to such characterization
problems will be pursued elsewhere.
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