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On the linear independence of some functions

By B. EBANKS (Louisville) and L. LOSONCZI* (Debrecen)

Introduction

Let C be the set of complex numbers and f, g : |0, 1{— C be measur-
able functions satisfying the functional equation

fley) + fla(l—y) + F(A - 2)y) + F(1—2)(1 —y)) =

(1) =g(x)g(y) (z,y €]0,1[).
From a result of the second author ([3], Theorem 3) it follows that there
exist distinct complex numbers A1, ..., A\y; and natural numbers
M
mi,...,my with > m; < 20 such that
j=1
M mj—l
) Fa) =3 Y epaloghe  (ze 0,
j=1 k=0
where the ¢j, (j =1,...M; k=0,... ,m; — 1) are complex constants. If

g # O, ie. g(yo) # 0 for some yo € ]0,1[, then (1), (2) yield

M m;—1
(3) g(x) = Z > djgaj(x)  (x€]0,1]),
where e
(4) aje(z) = N logzx +(1- x)’\j logg(l —z) (x€]0,1[),
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and d;; are constants defined by

dje = mil Cjk (?) jk—e(¥0)/9(wo)

k=¢

(j=1,...,M; £=0,... ,m; —1). To find the constants c;,d;¢ we sub-
stitute (2), (3) into (1). We get the equation

M mj;—1
(5) SN ajl@)Dily) =0 (z,y€]0,1])
j=1 =
where
m;—1 2 M mp—1
Dje(y) = > cjn <£)Oéj,ke(y) —dje Y dpg Opq(Y)-
k=¢ p=1 q=0

To get further information from (5), one has to know if the functions
aje (j=1,...,M; £=0,...,m; — 1) are linearly independent or not.

The question of linear independence of the functions o, was raised
by the second author at the 28th International Symposium on Functional
Equations (August 23—Sept 1, 1990, Graz—Mariatrost, Austria). He proved
that the functions 7, ¥, . . . , 72, are linearly independent while v, v2, ... ,
Yons Yon+1 are linearly dependent, where

fyg(m):xe—i—(l—:c)e (x €]0,1[, £ € C)

(see [4]). It follows that the functions v;, , Ya4jo Yadjss - -+ > V2(n—1)+jn+ V2ns
~Yan+1 are linearly dependent, where j, € {0,1} for k =1,2,... ,n.

The first result towards the general problem was found by the first au-
thor, proving that the existence of complex nonzero constants Ay, ..., Ay
with the property

YA M+ (1-a)M] =0 (ze]0,1])

implies that Aq,...,Aj); are nonnegative integers. Extending the ideas of
the proof the second author showed that if

M mj—l

Y>> Ajpajr(z) =0 (ze]o,1])

j=1 k=0

holds with constants A, € Cthen Aj, =0fork=1,... ,m;—1 (provided
that m; > 1) and AjO =0 if /\j ¢ NU {0}
The aim of this paper is to present this latter result.
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In some equations related to (1) the question of linear independence
of the functions

Sje(z) = logt z — (1 — )M log’(1 — x) (x €]0,1])

arises. Our result will include this case as well.

The authors are grateful to M. Laczkovich for useful discussions con-
cerning the topic of the paper.

In the sequel R and N will denote the sets of real and natural numbers,
respectively.

2. The linear independence of the functions oy, d;¢

Our main result is the following

Theorem. Let M € N be a natural number, A\{,..., Ay distinct
complex numbers and mq, ... ,my; natural numbers. Suppose that
M mj—l
(6) Z Z Ajg [:L)‘j log"z £ (1—z)Mlog"(1—2)| =0 (z€]0,1[)
j=1 k=0

holds for some constants Aji, (j = 1,... ,M; k =0,...,m; — 1) either
with the + or with the — sign. For any j =1,... , M we have

(7) lf)\‘7 gNU{O} thenAjk:O (]C:O, ,mj—l),
(8) if A\; e NU{0} and m; > 1 then A;;, =0 (k=1,... ,m; —1).

For the proof we need some lemmas.

Lemma 1. Let (y,...,0, (n > 1) be distinct real numbers and x €
10, 1[ a real variable. Then

n

(9) mlir&r ajij =0
j=1

holds for complex aq, ... ,a, if and only if

(10) ap=...=a, =0.

Proor oF LEMMA 1. The “if” part is obvious. We prove the “only
if” part by induction on n.
Suppose first that (9) holds for n = 1. Then

lim |a;2™*| = 0.
z—04
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Since |2¥#1| =1 for z > 0, it follows that a; = 0.
Now suppose that (9) implies (10) for some n € N and that

n+1

(11) Jim, > aat =

J=1
Then we have
n+1

E e
(Zj.ﬁlf
Jj=1

hence, dividing by z%»+1,

lim =0, |2 =1,
x—0+

o Z“jxi(ﬁrﬁ"“) +any1| =0,
71=1
and thus
(12) i, Z a;z’ PP pa, iy | =0,
7j=1
Next choose a real number ¢ € ]0, 1] such that
(13) ABi=Bu) L1 (j=1,...,n).
This is possible because (31, ... , 3, are distinct from (3,41. Replacing = by

cz in (12) and subtracting (12) from the equation so obtained we get

n

mli%l_'_Z a; [Ci(ﬂj—ﬂn-u) . 1] $i(ﬂj—ﬂn+1) —0

Jj=1

Since the numbers 81 — Bn+1,..., 00 — Bny1 are distinct we get by the
induction hypothesis and by (13) that

ar=...=ap, =0.

Using (11) or (12) again we obtain a, 11 = 0, and this completes the proof
of Lemma 1.

Remark 1.. Let (1,..., 3, be distinct real numbers and suppose that
14 li 1 —
(14) Jim | a2 +an | =0

=1
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holds for complex aq,... ,Gn, Gpi1.
If 5152 ...0, # 0 then (14) holds if and only if

(15) a1 =...=ap = apy1 = 0.

If one of the §;’s is zero, say 3, = 0, 1 < r < n, then (14) holds if
and only if

(16) ar+any1 =0anda;=0for j=1,... ,n; j#r.
Indeed, in the case $133 ... 3, # 0 we can write (14) in the form
n+1
lim ajzl;wj =0

x—0+
j=1

with 3,41 = 0, thus by Lemma 1 (14) and (15) are equivalent.
If 5, = 0 we write (14) in the form

Jim (@t @)+ apat ] =0
J#r
hence by Lemma 1 we conclude that (14) holds if and only if (16) is valid.
Lemma 2. Let A € C, k € R be fixed values and let
(17) h(z) = 2 logh z (xz €10,1]).

Then h is differentiable arbitrarily many times in ]0,1[ and h(™) is given
by
(18)

A () =22y (N (k) log" e (2 €]0,1[; n=0,1,...),

n

NE

£

I
o

where, for any A € C,
(19) N2 :=1 for n=0,1,...,
while forn € N, 1 < s <n,

(20) ANy = osn(MA=1,..., A —n+1).
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Here o, denotes the sth elementary symmetric polynomial of n variables.
Thus, e.g.
MWL =A+A=1D+...+(A=n+1),
AN2:=2A=D+AA=2)+...+ A =n+2)(A—n+1),

D" = AN —1)...(A—n+1).

PROOF OF LEMMA 2. It is easy to see that (18) is valid for n =0, 1.
Suppose that (18) holds for n € N. Differentiating (18) with respect to z
we get

h(n+1)( A= (nt1) i n) (k)4 log* ¢ z+
(21) =0
Y R (k= 0)log" ]
£=0
We can decompose the first sum as

n

(22) > (T (A =n) (k)g log" (V) (A = n)(k)§ log" z.
(=1

Replacing ¢+ 1 by £ in the second sum and separating its last member, we
can rewrite the second sum as

n

(23) Z(/\)Zﬂ-l—e(k)g:i(k; — 0+ 1) logkfﬂ I+ ()\)g(k)Z(k} . n) logkfnfl T
/=1

Since, for any A € C,

Wn(A=n) =0T, Ma=1=0hy (=01,...),

AR A=)+ =T (=125 0=12,...n)

and
(kK)o (k—e+1)=(k);  (£=12,....n),
using (22), (23) we can write (21) as
n+1

O ) = D 50 OO (k) gt

which completes the proof.
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Remark 2. We shall need (18) in the case when k is a nonnegative
integer. Since for ¢ > k (¢ € N) we have

(k)g =0,
(18) can be written as
min{n,k}
W () =2 Y (Wpf(k)glog™fz (z€]0,1[; k,n=0,1,...).
£=0

Writing ¢ for k — ¢ here, we obtain

k
24) R (z) = g} " Nkt (k=L logzx
( n k—¢
f=max{0,k—n}

(x €]0,1[; k,n=0,1,...).

In the proof of the main result we shall need a formula for the nth
derivative of equation (6). By (24) and the identity

mj;—1 k mj;—1 min{f+n,m;—1}

DD DERTED DD D

k=0 f=max{0,k—n}
we have for the nth derivative of (6)

M mj—l
(25) Z Z BJ(.?) [xxj_" logf & £ (=1)"(1 — )% " log’(1 — z)| =0

(26) By = A )rh e ()

fOI“j:l,...,M; EZO,...,m]’—l; n=20,1,....

Lemma 3. Assume the hypotheses of the Theorem. Suppose that
for some j € {1,...,M} and for some n € N U {0} we have (\;)} =
Aj(Aj—=1)...(Aj—n+1)#0 and
(27) By =0 for £=m;—1m;—2,...,1,0,
where BJ(.Z) is defined by (26). Then

(28) Ajy=0 for l=m;—1,m;—2,...,1,0.
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PrROOF OF LEMMA 3. By (26), (27) we see that

B§2j_1 = Ajm,—1 (Aj)n (mj —1)g = 0.
Since (m; — 1)§ = 1 and (A\;)" # 0, this implies (28) for £ = m; — 1.
Assume that we have proved (28) for £ =m; —1,m; —2,... ,m; —q where
1 < ¢ <mj — 1. Then by (26), (27) and by our hypothesis we have
Bj('j:%j—q—l = Ajm,—q—1 (Nj)n(m; —q—1)g =0
hence Aj ., —q—1 = 0. Letting ¢ run over {1,...,m; — 1}, the proof of
Lemma 3 is completed.

Remark 3. If (under the assumptions of Lemma 3) (27) holds only for
¢ =m; —1,m; —2,...,1 then (28) also holds for these subscripts only.
This is clear from the proof of Lemma 3.

Lemma 4. Let x€]0,1] be a real variable, \€e C, k € R. If Re A > 0,
k€ R or ReA=0, k <0 we have

: A agk o — Q).
(29) xll)n()1+a: log” x = 0;

and for any \ € C,

(30) lim (1 —x)* logk(l —z) =

r—0-+

1 if k=0
0 if £>0.

PROOF OF LEMMA 4. Let A = a+ i, o, € R, then
2 logh x = 2" (2% log” z),

where by hypothesis either a > 0 and k is arbitrary, or « = 0 and k£ < 0.
The first factor 2’ has absolute value 1 while the limit of the second
factor (in parantheses) is zero if  — 0+. This is obvious if « =0, k < 0
or a > 0, k < 0, while for « > 0, £k > 0 it can be proved by applying
L’Hospital’s rule.

Concerning (30), we have (1 —2)* — 1if A € C, 2 — 0+, and the

limit of log"(1 — ) as ¢ — 0+ is 1 if k =0 and 0 if k& > 0.

3. The proof of the main result

Now we are ready to prove our theorem. Let \; = o +if5; (a5, 85 €
R; j=1,...,M) and arrange the \;’s such that

Bl) a1=...=ap, <ap41=...=Qp, < ...< Qp, 141 =...=Qp,.
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Here p1 < p2... < ps are natural numbers, p, = M. We may suppose
that

(32) mip > Mg > ... > My,

moreover, we may choose the natural numbers ¢; < g2 < ... < qu, Gu = P1
such that

(B3) mi=...=mg, >Mg41="-..=Mgy > ... > Mg, 41 =...=Myg,.

First we show that the statement of the theorem holds for the sub-
scripts j =1,... ,p1.

We shall distinguish two cases:
Case 1: a1 = ... = ap, € NU{0}.
Case 2: a1 = ... = oy, € NU{0}.

In both cases we shall calculate the limit of the nth derivative of (6)
divided by suitable functions as © — 0 4 . Then by Lemma 1 we conclude
that for some n € N U {0}, BJ(.?) =0, (\j)r # 0 and by Lemma 3 we
arrive at the statements (7), (8).

In case 1, choose n € N U {0} such that n — a; > 0. Differentiating
(6) n times we obtain (25). Dividing it by z®*~"log™ "' z and taking its
limit as * — 0+ we have

M TYLj—l

lir(r)1+ Z Z B](g) [:z:aﬂ'_o‘l 2 loge_mlJr1 xt
j=1 =0

+(—1)" 2" log! ™™ z (1 — )™ " log’(1 — z)| = 0.

For all subscripts j =1,... ,M; £=0,... ,m; — 1, the limit of the second
term in the bracket is zero by (29), (30) and n —ay > 0. For j > pq; £ =
0,...,m;—1, the limit of the first term in the bracket is zero, since for these
subscripts a; —aq > 0. If j=1,... ,p1; £ <my—lorj=q+1,...,q.(=
p1) then again the limit of the first term of the bracket is zero, since the
exponent of logx is negative (by the condition ¢ < m; — 1 or by (33)).
Thus we have finally

q1

lim Z Bj(.%l_l % = 0.

z—0+4
j=1
Note that f1,..., 0, are distinct, because of a; = ... = g, (cf. (31))
and the distinctness of A\1,... , A\ys. By Lemma 1 we obtain
BM =0 (j=1....q)
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and thus by (33)
B B =0  (=1,...,q)

.77mj_1 - .77m1_1 -

If my; —1 > 0 then we omit the terms with zero coefficients from (25),

divide it by z® ™ log™ ~? z and take its limit as # — 0 + . In the same
way as above we get

: (n)
xli%l+ B]‘ﬁ”q*Q xlﬁ] 0
j=1
hence by Lemma 1 and (33)
Bj(,T:‘r)Lj—ZZO (]:1, ,C_I1).
Similarly
B](.ZL):() GJ=1,...,q1; £=0,...,m; —1).

Continuing this process with the next groups j = ¢1+1,... ,¢2;... ;qu_1+
1,...,q, = p1 of subscripts (i.e. division by zr " logh z, k= Mgy +1 —
L,mg41—2,...,1,0;...;mg, 41— 1,mg, 41 —2,...,1,0, and taking

the limit as x — 04) we obtain after similar arguments that
By =0 (G=1,....p1; £=0,...,m;—1).

By Lemma 3 this implies that

(34) Ajgzo (jzl,,pl,ﬁzo,,mj—l),

since (Aj) # 0 for j = 1,...,p1 because of oy ¢ NU {0}, n —a; > 0.
Thus we have proved (7) for j =1,...,p;.

In case 2 suppose first that there is a natural number q; (1 <t < u)
among the q1,... ,q, such that

(35) mg, > 1 and m; =1 for ¢; < j < qu(=p1).

Let n = ai, differentiate (6) n times, divide it by z®"log"z =
logkx withk=mi—1,m1—2,...,1;...5mg, ;41 —1,mg,_,+1—2,...,1
and take the limit as x — 04 for each value of k in the indicated order.
With the same reasoning as in case 1 we get

(36) Bj(?)zo G=1,...,q £=1,...,m; —1).
If there is not any q; with property (35) then by (32), (33)
(37) ml:"':mplz]-
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i.e. there is no coefficient Aj, with j =1,... ,p1, £ > 1.
Let us now take the limit of (25) with n = a; as * — 0+. By (35) —
(36) or (37), together with (29), (30), (31), we obtain

P1

(n) 25 (n) )"
(38) Jim 1B i}jB = 0.
Jj=

If 1B2 ... Bp, # 0 then by Remark 1, (38) implies that

(39) B =0 (j=1,....p).

If 3182...8p, = 0 then only one of the factors here can be zero,
otherwise A1,..., A, were not distinct. Let 3, = 0, 1 < r < pq, then
again by Remark 1
(40) B =0 (G =1Li...,pis j#7).

Since (A;); # 0 for j = 1,...,p1, applying Lemma 3 and Remark 3
together with either (35) — (36) or (37), we obtain from (39) that

(41) Ajp=0 for j=1,...,p1; £=0,...,m;—1

if oy € NU{0} and 310> ...08p, # 0 (i.e. if none of the numbers Aq,... , A,
is a nonnegative integer), and we obtain from (40) that

(42) Ajy=0 for j=1,...,p1;j#mr =0
and for j=1,...,q; ¢=1,... ,m; — 1 (if (35) holds)

provided that a; € NU {0} and 3, = 0.

Thus we have proved the theorem for j =1,... ,p;.

Suppose now that we have proved our theorem for subscripts j =
1,...,p1,... ,pm- We claim that for the subscripts j = pp, + 1, pim+2, ...,
Pm+1 (m=1,2,... s—1) the same method can be applied as the one we
used for j =1,2,... ,p;.

Differentiate (6) n times, where now n — «a,, +1 > 0 if ap 41 =

Apt2=-...=0p  NU{0}andn =y, 11ifap, 1 =ap 42=...=
ap,... € NU{0}. Due to the arrangement (31), in both cases n is greater
than any of the nonnegative integers among the exponents Ay,... , A, .

Hence, after the differentation both z* and (1 —x)* (A\; € NU{0},1 <
J < Pm, m; = 1) will disappear and we get

M mj—l

Z Z B](.?) [xkf_” log’ z & (=1)"(1 — ) " log’(1 — z)| = 0.

J=pm-+1 £=0
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This is an equation of the form (25) with subscripts j shifted by p,,.
Repeating the arguments used for subscripts j = 1,... , p; for the subscript
groups j = pm + 1,... ,pmy1 (m =1,2,... s — 1) we can complete the
proof.

4. Further remarks

As stated in the introduction, the motivation for this work comes from
the functional equation (1). This equation arises from characterization
problems for information measures having the sum property with measur-
able generating function which satisfy a generalized (2, 2)-additivity (see
[1], [2]). Applications of the results in this paper to such characterization
problems will be pursued elsewhere.
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