On the power values of polynomials

By A. BÉRCZES (Debrecen), B. BRINDZA (Debrecen) and L. HAJDU (Debrecen)

Abstract

In this paper we give a new, generalized version of a result of Brindza, Evertse and Győry, concerning superelliptic equations.

Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree n and b be a nonzero integer. For effective upper bounds obtained by Baker's method for the exponent z in the equation

$$
\begin{equation*}
f(x)=b y^{z}, \quad x, y, z \in \mathbb{Z} \text { with }|y|>1, z>1 \tag{1}
\end{equation*}
$$

we refer to [T], [ST], [Tu1], [Tu2], [ShT], [B1], [BEGy], [Bu].
For a polynomial P let $M(P)$ denote the Mahler height of it (cf. $[\mathrm{M}]$). The purpose of this paper, which is related to a recent observation of Brindza on the number of the solutions of a generalization of the Rama-nujan-Nagell equation [B3], is to derive a bound for z which is polynomial in $M(f)$. For brevity write $M=M(f)$.

Theorem. If f has at least two distinct zeros, then

$$
z<c M^{3 n} \log ^{3}|2 b|
$$

where c is an effectively computable constant depending only on n.

Mathematics Subject Classification: 11D41.
Key words and phrases: diophantine equations, superelliptic equations.
This research was supported by the Hungarian Grant OTKA No. 023800 (first author), No. D 23992 (second author), No. 023800 and T 016975 (third author), moreover by the Pro Regione Foundation of the Hajdúsági Agráripari RT and by the Universitas Foundation of the Kereskedelmi Bank RT (first and third author).

Remarks. If f is an irreducible monic and $b=1$ then this inequality was proved by Brindza, Győry and Evertse with different constants (see [BEGy], Th. 4). Moreover, if $n>2$ and f is irreducible then a profound result of GYőRy (cf. [Gy1] or [Gy2]) makes it possible to substitute $c M^{3 n}$ by an effective constant depending only on the discriminant of f.

1. Auxiliary results

To prove our Theorem, we need two lemmas. In what follows, for any non-zero algebraic number $\alpha, h(\alpha)$ and $H(\alpha)$ denotes the logarithmic height and the classical (ordinary) height of α, respectively.

Lemma 1. Let \mathbb{K} be an algebraic number field of degree n and denote by R and r the regulator and the unit rank of \mathbb{K}, respectively. There exists a fundamental sytem of units $\varepsilon_{1}, \ldots, \varepsilon_{r}$ for \mathbb{K} so that

$$
h\left(\varepsilon_{i}\right) \leq c^{*} R, \quad i=1, \ldots, r
$$

where c^{*} is an effectively computable constant depending only on n.
Proof. This statement is a consequence of Lemma 1 in [BGy]. For other versions of this result cf. [B2] or [H].

Lemma 2. Let $\alpha_{1}, \ldots, \alpha_{n}$ be nonzero algebraic numbers and let A_{1}, \ldots, A_{n} be positive real numbers with $A_{i} \geq \max \left\{H\left(\alpha_{i}\right), e\right\}$ for $i=$ $1, \ldots, n$. Furthermore, let b_{1}, \ldots, b_{n} be rational integers with $\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}} \neq 1$ and suppose that B is a positive real number satisfying $B \geq \max _{i=1, \ldots, n}\left|b_{i}\right|$ and $B \geq e$. Now we have

$$
\left|\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}-1\right| \geq B^{-c^{\prime} \log A_{1} \ldots \log A_{n}}
$$

where c^{\prime} is an effectively computable constant depending only on n and on the degree of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over \mathbb{Q}.

Proof. This is Theorem 1.2 in [PW].

2. Proof of the Theorem

We have two cases to distinguish.
First we assume that f has an irreducible factor $P \in \mathbb{Z}[x]$ of degree $t \geq 2$. Let α be a zero of P, moreover, let R, h, D and r be the regulator, class number, discriminant and unit rank of the field $\mathbb{K}=\mathbb{Q}(\alpha)$, respectively. In the sequel, c_{1}, c_{2}, \ldots will denote effectively computable positive constants depending only on n. The well-known inequalities

$$
\left.h R \leq \sqrt{|D|}(\log |D|)^{n-1}, \quad \text { (cf. e.g. }[\mathrm{L}]\right)
$$

and

$$
|D| \leq n^{n} M(P)^{2 n-2} \leq n^{n} M^{2 n-2} \quad(\mathrm{cf} .[\mathrm{M}])
$$

imply

$$
\begin{equation*}
h R<c_{1} M^{n} \tag{2}
\end{equation*}
$$

Let a denote the leading coefficient of f and $\beta_{1}, \ldots, \beta_{n}$ be the zeros of $g(x)=a^{n-1} f\left(\frac{x}{a}\right)$. Set

$$
\Delta(g)=\prod_{\beta_{i} \neq \beta_{j}}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

and write g in the form $g(x)=P_{1}^{k_{1}}(x) P_{2}(x)$ where P_{1} and P_{2} are relatively prime polynomials in $\mathbb{Z}[x]$ and P_{1} is an irreducible monic of degree t; (actually $\left.P_{1}(x)=a^{t} P\left(\frac{x}{a}\right)\right)$. Let $\beta_{1}, \ldots, \beta_{t}$ be the zeros of P_{1} and (x, y) be an arbitrary, however, fixed solution to (1). The g.c.d. of the principal ideals $\left\langle a x-\beta_{1}\right\rangle$ and $\left\langle g(a x)\left(a x-\beta_{1}\right)^{-k_{1}}\right\rangle$ divides $\Delta^{n}(g)$, therefore, there are integral ideals A, B, C in \mathbb{K} so that

$$
\begin{equation*}
A\left\langle a x-\beta_{1}\right\rangle=B C^{w} \quad \text { where } w=\frac{z}{\left(z, k_{1}\right)} \tag{3}
\end{equation*}
$$

furthermore,

$$
\max \left\{N_{\mathbb{K} / \mathbb{Q}}(A), N_{\mathbb{K} / \mathbb{Q}}(B)\right\} \leq|a \cdot b \cdot \Delta(g)|^{n^{2}}
$$

Hence, by a well-known inequality (cf. for example [Gy3], Lemma 3) and by (2), the ideals A^{h} and B^{h} have generators α and β, respectively, with

$$
\max \{|\alpha|,|\beta|\} \leq \exp \left(c_{2} M^{n-1}(\log M)^{n} \log |2 b|\right)
$$

The relation (3) can be written as

$$
\alpha\left(a x-\beta_{1}\right)^{h}=\varepsilon \beta \gamma^{w}
$$

where γ is a generator of C^{h} and ε is a unit. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be a fundamental system of units for \mathbb{K} satisfying Lemma 1 . Then we can express ε as $\varepsilon=$ $\rho \varepsilon_{1}^{l_{1}} \ldots \varepsilon_{r}^{l_{r}}$ where ρ is a root of unity and we may assume that $\max _{1 \leq i \leq r}\left|l_{i}\right|<w$ (the remaining factors, if any, are incorporated in γ).

If $|a x| \leq M(g)+1$ then

$$
2^{z} \leq|y|^{z} \leq(2 M(g)+1)^{n}
$$

and the Theorem is proved. Otherwise, $|a x|>M(g)+1$ and $\left|a x-\beta_{i}\right|>1$, $i=1, \ldots, n$ implies

$$
\begin{gathered}
\left|a x-\beta_{i}\right| \leq\left|a^{n-1} b y^{z}\right|, \quad i=1, \ldots, n, \\
\left|a^{n-1} b y^{z}\right|^{h} \geq \max _{1 \leq i \leq t}\left|a x-\beta_{i}\right|^{h} \geq\left|\varepsilon_{1}\right|^{-n w} \ldots\left|\varepsilon_{r}\right|^{-n w}|\alpha|^{-n}|\beta|^{-n}|\gamma|^{w}
\end{gathered}
$$

and

$$
|\gamma| \leq\left|a^{n-1} b\right|^{\frac{h}{w}}|y|^{n h}|\alpha|^{\frac{n}{w}}|\beta|^{\frac{n}{w}} \prod_{i=1}^{r}{\mid \varepsilon_{i}}^{n}
$$

If $w<n h$ then by $0.056<R$ (cf. [Z]) we obtain $w<20 n h R$ and

$$
z<c_{3} M^{n-1}(\log (2 M))^{n-1}
$$

In case of $w \geq n h$

$$
|\gamma| \leq M|b|^{\frac{1}{n}}|y|^{n h}|\alpha||\beta| \prod_{i=1}^{r}{\mid \varepsilon_{i}}^{n}
$$

and we get

$$
\log H\left(\frac{\gamma}{\gamma^{(2)}}\right) \leq c_{4} \log |2 b| M^{n-1}(\log (2 M))^{n} \log |y|
$$

We may assume that $|a x| \geq \frac{1}{2}|y|^{\frac{z}{n}}$. Indeed, otherwise $\max _{1 \leq i \leq n}\left|a x-\beta_{i}\right| \geq|y|^{\frac{z}{n}}$ yields

$$
|a x| \geq|y|^{\frac{z}{n}}-M(g)
$$

and the Theorem is proved. Supposing

$$
\frac{\left|\beta_{i}-\beta_{j}\right|}{\left|a x-\beta_{i}\right|} \geq \frac{\left|\beta_{2}-\beta_{1}\right|}{\left|a x-\beta_{2}\right|}, \quad 1 \leq i, j \leq t, i \neq j
$$

we have

$$
\prod_{\substack{1 \leq i, j \leq t \\ \beta_{i} \neq \beta_{j}}} \frac{\left|\beta_{i}-\beta_{j}\right|}{\left|a x-\beta_{i}\right|} \leq \frac{|\Delta(g)| \cdot 2^{n}}{|y|^{z}}
$$

Then

$$
\frac{\left|\beta_{2}-\beta_{1}\right|}{\left|a x-\beta_{2}\right|} \leq|y|^{-\frac{z}{4}},
$$

or else we can derive a bound for z better than stated in the Theorem. Avoiding the trivial case $\left(\frac{a x-\beta_{1}}{a x-\beta_{2}}\right)^{h}=1$, whenever $\frac{1}{2}|y|^{\frac{z}{n}} \leq|\Delta(g)|^{n^{2}}$ we obtain

$$
\log \left|\left(\frac{a x-\beta_{1}}{a x-\beta_{2}}\right)^{h}-1\right| \leq \log \left(h\left|\frac{a x-\beta_{1}}{a x-\beta_{2}}-1\right|\right) \leq-\frac{z}{8} \log |y| .
$$

Finally, Lemma 2 yields

$$
\begin{gathered}
0 \neq\left|\left(\frac{a x-\beta_{1}}{a x-\beta_{2}}\right)^{h}-1\right|=\left|\left(\frac{\varepsilon_{1}}{\varepsilon_{1}^{(2)}}\right)^{l_{1} h} \ldots\left(\frac{\varepsilon_{r}}{\varepsilon_{r}^{(2)}}\right)^{l_{r} h} \frac{\beta / \alpha}{\beta^{(2)} / \alpha^{(2)}}\left(\frac{\gamma}{\gamma^{(2)}}\right)^{w h}-1\right| \\
\left.\geq \exp \left(-c_{5} \log |2 b| M^{3 n-3}(\log |2 M|)^{3 n-1} \log |y| \log w\right)\right\}
\end{gathered}
$$

and the comparision of the upper and lower bounds completes the proof (in the first case).

In the easier second case all the zeros of g are integral. Let k_{i} denote the multiplicities of $\beta_{i}, i=1,2$.

Repeating the argument one can have

$$
u_{i}\left(a x-\beta_{i}\right)=v_{i} y_{i}^{w}
$$

where $w=\frac{z}{\left(a, k_{1} k_{2}\right)}$ and $u_{i}, v_{i}, y_{i} \in \mathbb{Z},\left|y_{i}\right|>1, i=1,2$.

To derive a bound for w from the equation

$$
A y_{1}^{w}-B y_{2}^{w}=C
$$

$\left(A=u_{2} v_{1}, B=u_{1} v_{2}, C=u_{1} u_{2}\left(\beta_{2}-\beta_{1}\right)\right)$ one can apply Lemma 2 again, and we have

$$
\frac{z}{\log z} \leq c_{6} \log M \log |2 b|,
$$

and the Theorem is proved.

References

[B1] B. Brindza, On S-integral solutions of the equation $y^{m}=f(x)$, Acta Math. Hung. 44 (1984), 133-139.
[B2] B. Brindza, On the generators of S-unit groups in algebraic number fields, Bull. Austral Math. Soc. 43 (1991), 325-329.
[B3] B. Brindza, On the generalized Ramanujan-Nagell equation, Publ. Math. Debrecen (to appear).
[BEGy] B. Brindza, J.-H. Evertse and K. Győry, Bounds for the solutions of some diophantine equations in terms of the discriminants, J. Austral Math. Soc. 51 (1991), 8-26.
[Bu] Y. Bugeaud, Sur la distance entre deux puissances pures, C. R. Acad. Sci. Paris 322, Série I (1996), 1119-1121.
[BGy] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), 67-80.
[Gy1] K. GYőRy, Sur les polynômes à coefficients entiérs et de discriminant donné, Acta Arith. 23 (1973), 419-426.
[Gy2] K. GYŐRy, Sur les polynômes à coefficients entiérs et de discriminant donné II., Publ. Math. Debrecen 21 (1974), 125-144.
[Gy3] K. GYŐRY, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 22/23 (1980), 225-233.
[H] L. HAJdu, A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42 (1993), 239-246.
[L] H. W. Lenstra Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211-244.
[M] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257-262.
[PW] P. Philippon and M. Waldschmidt, Lower bounds for linear forms in logarithms, New Advances in Transcendence Theory (A. Baker, ed.), Cambridge Univ. Press, Cambridge, 1988, 280-312.
[ST] A. Schinzel and R. Tijdeman, On the equation $y^{m}=P(x)$, Acta Arith. 31 (1976), 199-204.
[ShT] T.N. Shorey and R. Tijdeman, Exponential diophantine equations, Cambridge Univ. Press, Cambridge, 1986.
[T] R. Tijdeman, Applications of the Gelfond-Baker method to rational number theory, Topics in Number Theory, Proceedings of the Conference held in Debrecen 1974, Colloq. Math. Soc. János Bólyai 13, North-Holland, Amsterdam, 399-416.
[Tu1] J. Turk, Polynomial values and almost powers, Michigan Math. J. 29 (1982), 213-220.
[Tu2] J. Turk, On the difference between perfect powers, Acta Arith. 45 (1986), 289-307.
[Z] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), 367-380.
A. BÉRCZES, B. BRINDZA, L. HAJDU

INSTITUTE OF MATHEMATICS AND INFORMATICS
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY

