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On the power values of polynomials

By A. BÉRCZES (Debrecen), B. BRINDZA (Debrecen)
and L. HAJDU (Debrecen)

Abstract. In this paper we give a new, generalized version of a result of Brindza,
Evertse and Győry, concerning superelliptic equations.

Let f(x) ∈ Z[x] be a polynomial of degree n and b be a nonzero
integer. For effective upper bounds obtained by Baker’s method for the
exponent z in the equation

(1) f(x) = byz, x, y, z ∈ Z with |y| > 1, z > 1

we refer to [T], [ST], [Tu1], [Tu2], [ShT], [B1], [BEGy], [Bu].
For a polynomial P let M(P ) denote the Mahler height of it (cf. [M]).

The purpose of this paper, which is related to a recent observation of
Brindza on the number of the solutions of a generalization of the Rama-
nujan–Nagell equation [B3], is to derive a bound for z which is polynomial
in M(f). For brevity write M = M(f).

Theorem. If f has at least two distinct zeros, then

z < cM3n log3 |2b|,

where c is an effectively computable constant depending only on n.
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Remarks. If f is an irreducible monic and b = 1 then this inequality
was proved by Brindza, Győry and Evertse with different constants
(see [BEGy], Th. 4). Moreover, if n > 2 and f is irreducible then a pro-
found result of Győry (cf. [Gy1] or [Gy2]) makes it possible to substitute
cM3n by an effective constant depending only on the discriminant of f .

1. Auxiliary results

To prove our Theorem, we need two lemmas. In what follows, for
any non-zero algebraic number α, h(α) and H(α) denotes the logarithmic
height and the classical (ordinary) height of α, respectively.

Lemma 1. Let K be an algebraic number field of degree n and denote

by R and r the regulator and the unit rank of K, respectively. There exists

a fundamental sytem of units ε1, . . . , εr for K so that

h(εi) ≤ c∗R, i = 1, . . . , r

where c∗ is an effectively computable constant depending only on n.

Proof. This statement is a consequence of Lemma 1 in [BGy]. For
other versions of this result cf. [B2] or [H]. ¤

Lemma 2. Let α1, . . . , αn be nonzero algebraic numbers and let

A1, . . . , An be positive real numbers with Ai ≥ max{H(αi), e} for i =
1, . . . , n. Furthermore, let b1, . . . , bn be rational integers with αb1

1 . . . αbn
n 6=1

and suppose that B is a positive real number satisfying B ≥ max
i=1,...,n

|bi|
and B ≥ e. Now we have

|αb1
1 . . . αbn

n − 1| ≥ B−c′ log A1... log An ,

where c′ is an effectively computable constant depending only on n and

on the degree of Q(α1, . . . , αn) over Q.

Proof. This is Theorem 1.2 in [PW]. ¤
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2. Proof of the Theorem

We have two cases to distinguish.
First we assume that f has an irreducible factor P ∈ Z[x] of degree

t ≥ 2. Let α be a zero of P , moreover, let R, h, D and r be the regulator,
class number, discriminant and unit rank of the field K = Q(α), respec-
tively. In the sequel, c1, c2, . . . will denote effectively computable positive
constants depending only on n. The well-known inequalities

hR ≤
√
|D| (log |D|)n−1, (cf. e.g. [L])

and

|D| ≤ nnM(P )2n−2 ≤ nnM2n−2 (cf. [M])

imply

hR < c1M
n.(2)

Let a denote the leading coefficient of f and β1, . . . , βn be the zeros of
g(x) = an−1f(x

a ). Set

∆(g) =
∏

βi 6=βj

(βi − βj)2,

and write g in the form g(x) = P k1
1 (x)P2(x) where P1 and P2 are relatively

prime polynomials in Z[x] and P1 is an irreducible monic of degree t;
(actually P1(x) = atP (x

a )). Let β1, . . . , βt be the zeros of P1 and (x, y)
be an arbitrary, however, fixed solution to (1). The g.c.d. of the principal
ideals 〈ax − β1〉 and 〈g(ax)(ax − β1)−k1〉 divides ∆n(g), therefore, there
are integral ideals A, B, C in K so that

A〈ax− β1〉 = BCw where w =
z

(z, k1)
,(3)

furthermore,

max{NK/Q(A), NK/Q(B)} ≤ |a · b ·∆(g)|n2
.

Hence, by a well-known inequality (cf. for example [Gy3], Lemma 3) and
by (2), the ideals Ah and Bh have generators α and β, respectively, with

max
{

α , β
} ≤ exp(c2M

n−1(log M)n log |2b|).
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The relation (3) can be written as

α(ax− β1)h = εβγw

where γ is a generator of Ch and ε is a unit. Let ε1, . . . , εr be a fundamental
system of units for K satisfying Lemma 1. Then we can express ε as ε =
ρεl1

1 . . . εlr
r where ρ is a root of unity and we may assume that max

1≤i≤r
|li| < w

(the remaining factors, if any, are incorporated in γ).
If |ax| ≤ M(g) + 1 then

2z ≤ |y|z ≤ (2M(g) + 1)n

and the Theorem is proved. Otherwise, |ax| > M(g)+1 and |ax−βi| > 1,
i = 1, . . . , n implies

|ax− βi| ≤ |an−1byz|, i = 1, . . . , n,

|an−1byz|h ≥ max
1≤i≤t

|ax− βi|h ≥ ε1
−nw

. . . εr
−nw

α
−n

β
−n

γ
w

and

γ ≤ |an−1b| h
w |y|nh

α
n
w β

n
w

r∏

i=1

εi
n
.

If w < nh then by 0.056 < R (cf. [Z]) we obtain w < 20nhR and

z < c3M
n−1(log(2M))n−1.

In case of w ≥ nh

γ ≤ M |b| 1n |y|nh
α β

r∏

i=1

εi
n
,

and we get

log H

(
γ

γ(2)

)
≤ c4 log |2b|Mn−1(log(2M))n log |y|.

We may assume that |ax| ≥ 1
2 |y|

z
n . Indeed, otherwise max

1≤i≤n
|ax−βi| ≥ |y| z

n

yields
|ax| ≥ |y| z

n −M(g)
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and the Theorem is proved. Supposing

|βi − βj |
|ax− βi| ≥

|β2 − β1|
|ax− β2| , 1 ≤ i, j ≤ t, i 6= j

we have

∏

1≤i,j≤t
βi 6=βj

|βi − βj |
|ax− βi| ≤

|∆(g)| · 2n

|y|z .

Then

|β2 − β1|
|ax− β2| ≤ |y|− z

4 ,

or else we can derive a bound for z better than stated in the Theorem.
Avoiding the trivial case

(
ax−β1
ax−β2

)h

= 1, whenever 1
2 |y|

z
n ≤ |∆(g)|n2

we
obtain

log

∣∣∣∣∣
(

ax− β1

ax− β2

)h

− 1

∣∣∣∣∣ ≤ log
(

h

∣∣∣∣
ax− β1

ax− β2
− 1

∣∣∣∣
)
≤ −z

8
log |y|.

Finally, Lemma 2 yields

0 6=
∣∣∣
(

ax− β1

ax− β2

)h

− 1
∣∣∣ =

∣∣∣
(

ε1

ε
(2)
1

)l1h

. . .

(
εr

ε
(2)
r

)lrh
β/α

β(2)/α(2)

(
γ

γ(2)

)wh

− 1
∣∣∣

≥ exp
(−c5 log |2b|M3n−3(log |2M |)3n−1 log |y| log w

)}

and the comparision of the upper and lower bounds completes the proof
(in the first case).

In the easier second case all the zeros of g are integral. Let ki denote
the multiplicities of βi, i = 1, 2.

Repeating the argument one can have

ui(ax− βi) = viy
w
i

where w = z
(a,k1k2)

and ui, vi, yi ∈ Z, |yi| > 1, i = 1, 2.
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To derive a bound for w from the equation

Ayw
1 −Byw

2 = C

(A = u2v1, B = u1v2, C = u1u2(β2− β1)) one can apply Lemma 2 again,
and we have

z

log z
≤ c6 log M log |2b|,

and the Theorem is proved. ¤
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