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Curvature homogeneous unit tangent sphere bundles

By E. BOECKX∗ (Leuven) and L. VANHECKE (Leuven)

Abstract. We treat the classification of curvature homogeneous unit tangent
sphere bundles. For two- and three-dimensional Riemannian manifolds we show that
one only obtains the unit tangent sphere bundles of spaces of constant curvature. More-
over, we prove a similar result for conformally flat spaces and Sasakian space forms.
Furthermore, we give a complete answer when the Riemannian manifold is a Damek–
Ricci harmonic space or a four-dimensional Einstein manifold.

1. Introduction

This paper is a continuation of [6], [7], and is devoted to the study of
the unit tangent sphere bundles and is related to our search for non-trivial
curvature homogeneous Riemannian manifolds. A Riemannian manifold
(M, g) is said to be curvature homogeneous ([13]) if and only if, for each
pair of points p and q in M , there exists a linear isometry F : TpM → TqM

such that F ∗Rq = Rp, where R is the Riemann curvature tensor of(M, g).
Equivalently, there exists a metric connection ∇̄ such that R is ∇̄-parallel.
Another useful criterion can be derived from [11]: a Riemannian manifold
is curvature homogeneous if and only if all scalar curvature invariants of
order zero are global constants. Locally homogeneous spaces are trivially
curvature homogeneous, but there exist a lot of examples which are not
locally homogeneous. We refer to [5, Chapter 12] for a survey and further
references.
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In [7], we started the discussion about the following problem: which
Riemannian manifolds (M, g) have a curvature homogeneous unit tangent
sphere bundle (T1M, gS)? Here, gS denotes the induced metric from the
Sasaki metric on the tangent bundle TM . Clearly, this is so when (M, g)
is locally isometric to a two-point homogeneous space, since we have

Theorem 1 ([18], [10]). If (M, g) is a two-point homogeneous space,
then (T1M, gS) is a homogeneous Riemannian manifold.

Up to now, we do not know of any other examples.
Since curvature homogeneous spaces have constant scalar curvature,

we concentrated in [7] on the problem of determining all manifolds (M, g)
such that (T1M, gS) has constant scalar curvature. We found a lot of
examples and gave a complete classification for the two- and three-dimen-
sional case and for conformally flat spaces. Our method was based on the
explicit formulas for the curvature of (T1M, gS). (See [6], also for further
references.) These formulas are rather complicated, but they are easier to
handle when (M, g) has a simple curvature tensor, which is the case for
the three cases mentioned.

Continuing our study, we now impose a further necessary condition
on the unit tangent sphere bundle (T1M, gS). Any curvature homogeneous
space is also Ricci-curvature homogeneous, that is, the eigenvalues of the
Ricci tensor and their multiplicities are constant on the manifold, or equiv-
alently, there exists a metric connection ∇̄ such that the Ricci tensor is
∇̄-parallel. In dimension two or three, this notion is clearly equivalent
to curvature homogeneity, but the equivalence does not hold for higher
dimensions.

First, in Section 2, we recall the needed formulas and earlier results
from [7]. In Section 3, we classify all (M2, g) and (M3, g) with Ricci-
curvature homogeneous unit tangent sphere bundle, by showing that this
happens if and only if the base manifold (M, g) is of constant curvature.
This yields a complete solution of the stated problem. In Section 4,
we prove a similar result for conformally flat spaces. Furthermore, and
based on the results of [7], we determine in Sections 5, 6 and 7 which of
the Damek-Ricci harmonic spaces, the four-dimensional Einstein spaces
and the Sasakian space forms are curvature homogeneous or even Ricci-
curvature homogeneous. It turns out that in all these cases (M, g) has to
be locally isometric to a two-point homogeneous space. As a consequence
of these results, the authors feel that there is some support for a positive
answer to the following problem:
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Problem. Is any Riemannian manifold (M, g) with (Ricci-)curvature

homogeneous (T1M, gS) locally isometric to a two-point homogeneous

space?

We are still unable to give a conclusive answer, neither do we know
what happens if (T1M, gS) is supposed to be (locally) homogeneous. Con-
cerning this last case, we could not find an answer in the literature.

2. Preliminary formulas and results

We first recall the conventions and notations of [6], [7] and collect the
formulas and results we need in this paper. We refer to those articles for
a more elaborate exposition.

Let (M, g) be a smooth, n-dimensional (n ≥ 2), connected Riemann-
ian manifold and ∇ its Levi Civita connection. The Riemann curvature
tensor R is defined by R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z for all
vector fields X, Y and Z on M . The tangent bundle of (M, g), denoted
by TM , consists of pairs (x, u) where x is a point in M and u a tangent
vector to M at x. The mapping π : TM → M : (x, u) 7→ x is the natural
projection from TM onto M .

It is well-known that the tangent space to TM at (x, u) splits into
the direct sum of the vertical subspace V TM(x,u) = kerπ∗|(x,u) and the
horizontal subspace HTM(x,u) with respect to the connection ∇:

T(x,u)TM = V TM(x,u) ⊕HTM(x,u).

For X ∈ TxM , there exists a unique vector Xh at the point (x, u) ∈
TM such that Xh ∈ HTM(x,u) and π∗(Xh) = X. Xh is called the hor-
izontal lift of X to (x, u). There is also a unique vector Xv at the point
(x, u) such that Xv ∈ V TM(x,u) and Xv(df) = Xf for all functions f

on M . Xv is called the vertical lift of X to (x, u). The map X 7→ Xh,
respectively X 7→ Xv, is an isomorphism between TxM and HTM(x,u),
respectively TxM and V TM(x,u). Similarly, one lifts vector fields on M

to horizontal or vertical vector fields on TM . The expressions in local
coordinates for these lifts are given in [6].

The tangent bundle TM of a Riemannian manifold (M, g) can be
endowed in a natural way with a Riemannian metric Tg, the so-called
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Sasaki metric, depending only on the Riemannian structure g of the base
manifold M . It is uniquely determined by

Tg(Xh, Y h) = Tg(Xv, Y v) = g(X, Y ) ◦ π, Tg(Xh, Y v) = 0

for all vector fields X and Y on M .
In this paper, we consider the hypersurface T1M , the unit tangent

sphere bundle, consisting of the unit tangent vectors to (M, g). T1M

is given implicitly by the equation gx(u, u) = 1. A unit normal vec-
tor N to T1M at (x, u) ∈ T1M is given by the vertical lift of u to
(x, u) : N|(x,u)=uv.

As the vertical lift of a vector (field) is not tangent to T1M in general,
we define the tangential lift of X ∈ TxM to (x, u) ∈ T1M by

Xt
(x,u) = (X − g(X, u)u)v

(x,u).

The tangent space to T1M at (x, u) is spanned by vectors of the form Xh

and Xt where X ∈ TxM .
We endow T1M with the Riemannian metric gS induced from the

Sasaki metric Tg on TM . It is given explicitly by

gS|(x,u)(Xt, Y t) = gx(X, Y )− gx(X, u)gx(Y, u),

gS|(x,u)(Xt, Y h) = 0,

gS|(x,u)(Xh, Y h) = gx(X, Y ).

The Riemann curvature tensor R̄ associated to this metric has been
calculated, e.g., in [6] and [17]. From this, one easily obtains the following
expression for the Ricci curvature tensor ρ̄:

ρ̄|(x,u)(Xt, Y t) = (n− 2)
(
gx(X, Y )− gx(X, u)gx(Y, u)

)

+
1
4

n∑

i=1

gx(R(u,X)Ei, R(u, Y )Ei),

ρ̄|(x,u)(Xt, Y h) =
1
2

(
(∇uρ)x(X, Y )− (∇Xρ)x(u, Y )

)
,(1)

ρ̄|(x,u)(Xh, Y h) = ρx(X, Y )− 1
2

n∑

i=1

gx(R(u,Ei)X,R(u,Ei)Y )
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where {E1, . . . , En = u} is an orthonormal basis of TxM . Then {E1
t,

. . . , En−1
t, E1

h, . . . , En
h} is an orthonormal basis of T(x,u)T1M . We obtain

the scalar curvature τ̄ by making a metric contraction of ρ̄:

τ̄|(x,u) =
n−1∑

i=1

ρ̄|(x,u)(Ei
t, Ei

t) +
n∑

i=1

ρ̄|(x,u)(Ei
h, Ei

h)(2)

= τx + (n− 1)(n− 2)− ξx(u, u)/4

where, as in [2], ξ(u, v) =
∑n

i,j=1 g(R(u,Ei)Ej , R(v, Ei)Ej).
We note that the natural projection π1 : (T1M, gS) → (M, g) :

(x, u) 7→ x is a Riemannian submersion with totally geodesic fibres. Hence,
one can also use O’Neill’s formalism (see, e.g., [3, p. 244]) to obtain the
above expressions for the Ricci curvature and the scalar curvature.

From (2), it follows readily

Theorem 2 ([7]). The unit tangent sphere bundle (T1M, gS) has con-
stant scalar curvature τ̄ if and only if on (M, g) it holds

ξ =
|R|2
n

g,(3)

4nτ − |R|2 = constant.(4)

As examples of Riemannian manifolds whose unit tangent sphere bun-
dle has constant scalar curvature, we mention the irreducible symmetric
spaces and harmonic spaces. In particular, this is the case for the Damek-
Ricci harmonic spaces. For the definition of this class of manifolds and for
some of their geometric properties, see Section 5.

For (locally) reducible manifolds, we have:

Corollary 3 ([7]). The unit tangent sphere bundle (T1M, gS) of a (lo-
cal) product manifold (M, g) = (Mn1

1 , g1)× (Mn2
2 , g2) has constant scalar

curvature if and only if the unit tangent sphere bundles of both (M1, g1)
and (M2, g2) have constant scalar curvature and, additionally,

(5)
|R1|2
n1

=
|R2|2
n2

.

In [7], the present authors determined all two- and three-dimensional
Riemannian manifolds (M, g) whose unit tangent sphere bundles have con-
stant scalar curvature τ̄ . They also considered conformally flat Riemannian
manifolds. It holds:
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Proposition 4. (T1M
2, gS) has constant scalar curvature τ̄ if and only

if (M2, g) has constant curvature.

Proposition 5. (T1M
3, gS) has constant scalar curvature τ̄ if and only

if (M3, g) has constant curvature or (M3, g) is a curvature homogeneous
space with constant Ricci roots ρ1 = ρ2 = 0 6= ρ3.

Proposition 6. Let (Mn, g) be conformally flat and n ≥ 4. Then
(T1M, gS) has constant scalar curvature τ̄ if and only if (M, g) has constant
curvature or n is even, say n = 2k, and (M, g) is locally isometric to the
product manifold Mk(κ)×Mk(−κ), κ 6= 0, or n = 4, |ρ|2 is constant and τ
is zero.

Here, Mk(κ) denotes a k-dimensional space of constant curvature κ.
The proof of the above three propositions uses the fact that the curva-

ture tensor R can be expressed explicitly using only the scalar curvature τ
and the Ricci curvature ρ. Namely, for dimension two, we have

(6) R =
τ

4
g ∧©g,

and in dimension three, it holds

(7) R = ρ ∧©g − τ

4
g ∧©g.

For conformally flat manifolds, the curvature is given by

(8) R =
1

n− 2
ρ ∧©g − τ

2(n− 1)(n− 2)
g ∧©g.

Here, ∧© is the Kulkarni-Nomizu product of symmetric (0, 2)-tensors de-
fined by

(h ∧©k)(X,Y, Z, V ) = h(X,Z)k(Y, V ) + h(Y, V )k(X, Z)
− h(X, V )k(Y, Z)− h(Y, Z)k(X,V ).

A final result which is useful in the context of this paper concerns
four-dimensional Einstein spaces.

Proposition 7 ([7]). Let (M4, g) be a four-dimensional Einstein space.
Then (T1M, gS) has constant scalar curvature if and only if |R|2 is con-
stant.

In the rest of this paper, we consider several classes of Riemannian
manifolds whose unit tangent sphere bundle has constant scalar curvature
and investigate which of these are curvature or Ricci-curvature homoge-
neous.
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3. Classification in dimension two and three

We start by considering the two- and three-dimensional case. First,
combining Theorem 1 with Proposition 4, we obtain easily

Proposition 8. (T1M
2, gS) is Ricci-curvature homogeneous or locally

homogeneous if and only if (M2, g) has constant curvature.

We have a similar result for three-dimensional spaces:

Proposition 9. (T1M
3, gS) is Ricci-curvature homogeneous or locally

homogeneous if and only if (M3, g) has constant curvature.

Proof. In view of Theorem 1 and Proposition 5, it suffices to show
that a three-dimensional curvature homogeneous space (M3, g) with con-
stant Ricci roots ρ1 = ρ2 = 0 6= ρ3 cannot have a Ricci-curvature homo-
geneous unit tangent sphere bundle.

Let (E1, E2, E3) be an orthonormal basis of corresponding eigenvec-
tors for the Ricci tensor ρ and (ω1, ω2, ω3) the dual orthonormal coframe.
Then τ = ρ3 and ρ is given by

(9) ρ = ρ3 ω3 ⊗ ω3.

For its covariant derivative ∇ρ, we have

∇ρ = ρ3

(
(aω1 + bω2)⊗ (ω1 ⊗ ω3 + ω3 ⊗ ω1)(10)

+ (cω1 + eω2)⊗ (ω2 ⊗ ω3 + ω3 ⊗ ω2)
)

where

a = g(∇E1E3, E1), b = g(∇E2E3, E1),

c = g(∇E1E3, E2), e = g(∇E2E3, E2).

(See also [9].) As τ is constant, it follows

(11) 0 =
1
2
∇E3τ =

3∑

i=1

(∇Eiρ)(E3, Ei) = a + e.

We first calculate the Ricci tensor ρ̄ on the unit tangent sphere bundle
at the point (x, u) where u = cos θ E1 + sin θ E2. An orthonormal basis of
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T(x,u)T1M is given by

F1 = (sin θ E1 − cos θ E2)t,

F2 = E3
t, F3 = E1

h, F4 = E2
h, F5 = E3

h.

We compute the components of the Ricci curvature ρ̄ in this basis from (1),
where we use the curvature expression (7) and the formulas (9) and (10).
This yields at (x, u):

ρ̄(F1, F1) = ρ̄(F2, F2) = 1 + (ρ3
2/8),

ρ̄(F1, Fi) = ρ̄(F5, Fi) = 0, i = 2, 3, 4,

ρ̄(F1, F5) = ρ3(b− c)/2,

ρ̄(F2, F3) = ρ3(a cos θ + b sin θ)/2,

ρ̄(F2, F4) = ρ3(c cos θ + e sin θ)/2,

ρ̄(F3, F3) = −ρ3
2(1 + cos2 θ)/8,

ρ̄(F3, F4) = −ρ3
2 cos θ sin θ/8,

ρ̄(F4, F4) = −ρ3
2(1 + sin2 θ)/8,

ρ̄(F5, F5) = ρ3 − (ρ3
2/8).

The corresponding matrix for ρ̄|(x,u) falls apart in two blocks: the 2 × 2-
matrix associated to (F1, F5) and the 3×3-matrix associated to (F2, F3, F4).
The first one does not depend on the variable θ, but the second does. Still,
the eigenvalues (including multiplicities) must be constant if the unit tan-
gent sphere bundle is Ricci-curvature homogeneous. So, its characteristic
polynomial must be independent of θ. This polynomial is given explic-
itly as

−λ3 + (1− ρ3
2

4
)λ2

+
ρ3

2

4

(ρ3
2

16
+

3
2

+ (a cos θ + b sin θ)2 + (c cos θ + e sin θ)2
)

λ
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+
ρ3

4

16

(ρ3
2

16
+

1
2

+
1
2

(
(a cos θ + b sin θ)2 + (c cos θ + e sin θ)2

)

− cos θ sin θ (a cos θ + b sin θ)(c cos θ + e sin θ)

+
1
2

(
sin2 θ (a cos θ + b sin θ)2 + cos2 θ (c cos θ + e sin θ)2

))
.

The necessary and sufficient conditions for the coefficients of this polyno-
mial to be independent of θ are

(12) a− e = 0, b + c = 0.

From (11) and (12), it follows a = e = 0. The (full) characteristic polyno-
mial for ρ̄|(x,u) then reduces to

(13)

(
λ2 − (1 + ρ3)λ + ρ3

(
1−

(
1
8

+ b2

)
ρ3 +

ρ3
2

8
− ρ3

3

64

))

×
(

λ2 − λ− ρ3
2

4

((
1
2

+ b2

)
+

ρ3
2

16

))
×

(
−ρ3

2

4
− λ

)
.

Next, we calculate the Ricci tensor ρ̄ at the point (x, u) where now
u = E3. With respect to the orthonormal basis (E1

t, E2
t, E1

h, E2
h, E3

h)
of T(x,u)T1M , the matrix for ρ̄ is given by




1 + (ρ3
2/8) 0 0 ρ3b/2 0

0 1 + (ρ3
2/8) −ρ3b/2 0 0

0 −ρ3b/2 −ρ3
2/8 0 0

ρ3b/2 0 0 −ρ3
2/8 0

0 0 0 0 ρ3 − (ρ3
2/4)




.

Its characteristic polynomial is

(14)
(

λ2 − λ− ρ3
2

4

((
1
2

+ b2

)
+

ρ3
2

16

))2

×
(

ρ3 − ρ3
2

4
− λ

)
.

The polynomials (13) and (14) must be identical if the unit tangent
sphere bundle is Ricci-curvature homogeneous. Hence, −ρ3

2/4 must be a
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root of the quadratic part in (14), and ρ3 − (ρ3
2/4) must be a root of the

first quadratic factor of (13). In this way, we get the conditions

3ρ3
2 + 8 = 16b2 and

3
4

ρ3
2 − 2ρ3 + 2 = 16b2.

Eliminating b2, we obtain a quadratic polynomial in ρ3 with no real roots.
Hence, whatever the value of ρ3, (T1M, gS) is not Ricci-curvature homo-
geneous. ¤

4. Conformally flat manifolds

The complete classification results obtained above follow rather easily
from (1) because of the simple expressions for R. A similar situation occurs
also for conformally flat manifolds. Here, we have

Proposition 10. Let (Mn, g) be conformally flat and n ≥ 4. Then

(T1M, gS) is Ricci-curvature homogeneous or locally homogenenous if and

only if (M, g) has constant curvature.

Proof. From Theorem 1 and Proposition 6, we see that it suffices
to consider two cases only: the one where the manifold (M, g) is four-
dimensional with τ = 0 and |ρ|2 constant, and the case where (M, g) is
a local product Mk(κ) ×Mk(−κ) of spaces of constant curvature κ 6= 0.
Using the same technique as for the three-dimensional case, we show that
neither of those two has Ricci-curvature homogeneous unit tangent sphere
bundle. Note that the condition to be conformally flat implies that the
curvature operator ρ− τ

4 g on (M, g) is a Codazzi tensor. In the cases we
are interested in, the scalar curvature τ is constant (actually, τ = 0), hence
the Ricci tensor ρ is a Codazzi tensor.

First, take a four-dimensional conformally flat manifold (M4, g) with
zero scalar curvature τ and constant Ricci norm |ρ|. Denote the Ricci roots
by ρ1, ρ2, ρ3 and ρ4 and let (E1, E2, E3, E4) be an orthonormal basis of
corresponding eigenvectors for the Ricci tensor ρ. Then ρ1 +ρ2 +ρ3 +ρ4 =
τ = 0 and R = 1

2 ρ ∧©g.
We calculate the matrix for the Ricci tensor ρ̄ of T1M

4 at (x, u)
where u = cos θ E1 + sin θ E2, with respect to the orthonormal basis
((sin θ E1 − cos θ E2)t, E3

t, E4
t, E1

h, E2
h, E3

h, E4
h) for T(x,u)T1M . Again

this matrix falls apart in two blocks: the 2 × 2-matrix associated to
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(E1
h, E2

h) and the remaining diagonal 5×5-matrix with diagonal elements
(2+(ρ1 +ρ2)2/2, 2+cos2 θ(ρ1 +ρ3)2/2+sin2 θ(ρ2 +ρ3)2/2, 2+cos2 θ(ρ1 +
ρ4)2/2 + sin2 θ(ρ2 + ρ4)2/2, ρ3 − cos2 θ(ρ1 + ρ3)2/2 − sin2 θ(ρ2 + ρ3)2/2,
ρ4 − cos2 θ(ρ1 + ρ4)2/2− sin2 θ(ρ2 + ρ4)2/2).

For (T1M, gS) to be Ricci-curvature homogeneous, this diagonal ma-
trix must have constant eigenvalues. Hence, we have (ρ1+ρ3)2 = (ρ2+ρ3)2

and (ρ1 + ρ4)2 = (ρ2 + ρ4)2. Actually, using ρ1 + ρ2 + ρ3 + ρ4 = 0, both
are equivalent to

(ρ1 − ρ2)(ρ3 − ρ4) = 0.

If we start with the choices u = cos θ E1 + sin θ E3 and u = cos θ E1 +
sin θ E4, we obtain similarly the conditions

(ρ1 − ρ3)(ρ2 − ρ4) = 0,

(ρ1 − ρ4)(ρ2 − ρ3) = 0.

Hence, at least three of the Ricci roots are equal. We can suppose that ρ1 =
ρ2 = ρ3. Then ρ4 = −3ρ1 and |ρ|2 = 12ρ1

2. As a consequence, all Ricci
roots are constant and the manifold (M4, g) is curvature homogeneous.

In [15], H. Takagi gives an explicit classification of conformally flat
locally homogeneous spaces of arbitrary dimension. He shows that such a
space is locally isometric to one of the following locally symmetric spaces:

1. a space of constant curvature;

2. the Riemannian product of a space of non-zero constant curvature κ

and a space of constant curvature −κ;

3. the Riemannian product of a space of non-zero constant curvature κ

and a one-dimensional space.

As his proof uses only curvature homogeneity, this classification is also
valid for conformally flat curvature homogeneous spaces. (See also [8].) In
the present situation, we see that (M4, g) is locally isometric to

1. a space of constant curvature: this corresponds to the value ρ1 = 0
and (M, g)is flat;

2. the product of a space of non-zero constant curvature κ and a space of
non-zero constant curvature −κ: this is incompatible with the Ricci
roots (ρ1, ρ1, ρ1,−3ρ1);
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3. the product of a space of non-zero constant curvature κ and a one-
dimensional space: again this is not compatible with the specific Ricci
roots we have here.

So, in dimension four, the only conformally flat manifolds having curva-
ture homogeneous unit tangent sphere bundles are the spaces of constant
curvature.

The remaining case when (M, g) is locally isometric to Mk(κ) ×
Mk(−κ), is a special case of the more general Proposition 11 on prod-
uct manifolds, which immediately follows this proof. ¤

Proposition 11. Let (M, g) be locally isometric to the Riemannian

product (M1, g1)×(M2, g2) and suppose that the Ricci tensor ρ1 of (M1, g1)
is a Codazzi tensor. If (T1M, gS) is Ricci-curvature homogeneous, then

(M, g) is flat.

Proof. Let πi : M → Mi denote the natural projection from M

to Mi, i = 1, 2. If (T1M, gS) is Ricci-curvature homogeneous, then it has
constant scalar curvature τ̄ . By Corollary 3, we have ξi = (|Ri|2/ni) gi,
i = 1, 2, and |R1|2/n1 = |R2|2/n2. In particular, if one of the factors is
flat, so is the other. For this reason, we suppose that n1, n2 ≥ 2.

Let (x, y) be a point in M and take an arbitrary unit vector u1 ∈ TxM1

and an arbitrary unit vector v1 ∈ TyM2. Extend these to an orthonormal
basis (u1, u2, . . . , un1) of TxM1, respectively (v1, v2, . . . , vn2) of TyM2. We
calculate ρ̄ at ((x, y), u) where u = cos θ u1 + sin θ v1. By the expressions
(1) for the Ricci curvature and the assumption that ρ1 is a Codazzi tensor,
we have at ((x, y), u)

ρ̄(Xt, Y t) = (n− 2)
(
g(X, Y )− gx(X, u)gx(Y, u)

)

+
1
4

cos2 θ

n1∑

k=1

g1(R1(u1, π1∗X)uk, R1(u1, π1∗Y )uk)

+
1
4

sin2 θ

n2∑

k=1

g2(R2(v1, π2∗X)vk, R2(v1, π2∗Y )vk),

ρ̄(Xt, Y h) =
1
2

sin θ
(
(∇v1ρ2)(π2∗X, π2∗Y )− (∇π2∗Xρ2)(v1, π2∗Y )

)
.

It follows that the matrix of ρ̄ at ((x, y), u) with respect to the orthonormal
basis (u2

t, . . . , un1
t, v2

t, . . . , vn2
t, (sin θ u1 − cos θ v1)t, u1

h, . . . , un1
h, v1

h,
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. . . , vn2
h) has the form

(
ρ̄(ui

t, uj
t)|i,j=2,...,n1 0
0 ∗

)
.

For (T1M, gS) to be Ricci-curvature homogeneous, the eigenvalues of
the matrix

(ρ̄(ui
t, uj

t)|i,j=2,...,n1)

=
(
(n− 2)δij +

cos2 θ

4

n1∑

k=1

g1(R1(u1, ui)uk, R1(u1, uj)uk)
)

must be independent of θ. Equivalently, the eigenvalues of the symmetric
operator

(X, Y ) 7→ cos2 θ

n1∑

k=1

g1(R1(u1, X)uk, R1(u1, Y )uk)

must be independent of θ. This is possible only if u1 belongs to the nullity
vector space of R1 at x. But x and u1 are arbitrary, hence R1 = 0 and
(M1, g1) is flat. By the introductory comments to this proof, also R2 = 0
and (M, g) is flat. ¤

5. Damek-Ricci spaces

In the next two sections, we consider some cases already mentioned
in Section 2 for which we know that the unit tangent sphere bundle has
constant scalar curvature. We start with the Damek-Ricci harmonic spaces
and first briefly recall their definition and some results about these remark-
able manifolds that we need in this section. We refer the reader to [1] for
an extensive treatment and further references.

Let v and z be real vector spaces of dimensions n and m respectively,
and β : v×v → z a skew-symmetric bilinear map. We endow the direct sum
n = v⊕ z with an inner product 〈· , ·〉n such that v and z are perpendicular
to each other. For each Z ∈ z, we define an operator JZ : v → v by
〈JZU, V 〉n = 〈β(U, V ), Z〉n for all U, V ∈ v. Next, we make n into a
Lie algebra with the bracket

[U + X, V + Y ]n := β(U, V )
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for X, Y ∈ z and U, V ∈ v. This Lie algebra is said to be a generalized
Heisenberg algebra if JZ

2 = −〈Z, Z〉n Idv for all Z ∈ z. This condition
puts strong restrictions on the dimension n of v once we fix the dimension
m of z. (See the table in [1, p. 23].)

Next, let n be a generalized Heisenberg algebra, a a one-dimensional
real vector space and A a non-zero vector in a. Define a new vector space
s = n⊕ a. In what follows, we always use U, V, W for vectors in v, X, Y ,
Z for vectors in z and r, s, t for real numbers. On s, we define an inner
product 〈· , ·〉 by

〈U + X + rA, V + Y + sA〉 := 〈U + X,V + Y 〉n + rs

and a Lie bracket [· , ·] by

[U + X + rA, V + Y + sA] := [U, V ]n +
1
2

rV − 1
2

sU + rY − sX.

The simply connected Lie group S, attached to the Lie algebra s and with
the left-invariant metric induced from the inner product on s, is called a
Damek-Ricci space.

The Damek-Ricci spaces were the first counterexamples to the funda-
mental Lichnerowicz conjecture, as they are all harmonic but only sym-
metric in special cases (see, e.g., [1]):

Theorem 12. A Damek-Ricci space S is a Riemannian symmetric

space if and only if the attached generalized Heisenberg algebra n satisfies

the J2-condition: for all X, Y ∈ z with 〈X,Y 〉 = 0 and all non-zero U ∈ v,

there exists a vector Z ∈ z such that JXJY U = JZU . In this case, S is

two-point homogeneous.

We need two more ingredients. First, let V ∈ v be a non-zero vector.
Denote by ker ad(V ) the kernel of the linear map

ad(V ) : v → z : U 7→ [U, V ],

and by ker ad(V )⊥ the orthogonal complement to ker ad(V ) in v. Since
U ∈ ker ad(V ) if and only if 0 = 〈[V, U ], Z〉 = 〈JZV, U〉 for all Z ∈ z, we
see that

(15) ker ad(V )⊥ = JzV.
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In particular, dim ker ad(V ) = n−dimker ad(V )⊥ = n−dim JzV = n−m.
Secondly, one can express the curvature tensor R of a Damek-Ricci

space S completely in terms of the bracket on s and the operators JZ .
If we denote the left-invariant vector field on S associated to the vector
U + X + rA in s by the same expression, we have

R(U + X + rA, V + Y + sA)(W + Z + tA)(16)

=
1
2
JXJY W +

1
4
JZJY U − 1

4
JZJXV +

1
2
J[U,V ]W

− 1
4
J[V,W ]U +

1
4

J[U,W ]V +
1
2
rJY W − 1

2
sJXW

− 1
4
sJZU +

1
4
tJY U +

1
4
rJZV − 1

4
tJXV

+
1
2
〈X, Y 〉W − 1

4
(〈V,W 〉+ st)U +

1
4
(〈U,W 〉+ rt)V

− 1
2
[U, JZV ]− 1

4
[U, JY W ] +

1
4
[V, JXW ]

+
1
2
t[U, V ] +

1
4
s[U,W ]− 1

4
r[V, W ]

− 〈V + Y + sA, W + Z + tA〉X
+ 〈U + X + rA,W + Z + tA〉Y

+
1
2
〈V, W 〉X − 1

2
〈U,W 〉Y +

1
2
〈U, V 〉Z

+
{
−1

2
〈JZU, V 〉 − 1

4
〈JY U,W 〉+

1
4
〈JXV, W 〉

− r

(
1
4
〈V, W 〉+〈Y,Z〉

)
+s

(
1
4
〈U,W 〉+〈X, Z〉

)}
A.

With these preliminaries, we are ready to prove

Proposition 13. The unit tangent sphere bundle (T1S, gS) of a Damek-
Ricci space S is Ricci-curvature homogeneous or locally homogeneous if
and only if S is a symmetric space.

Proof. We show that, if (T1S, gS) is Ricci-curvature homogeneous,
then the attached generalized Heisenberg algebra n must satisfy the J2-
condition. The proposition then follows easily from Theorem 12 and The-
orem 1.
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For a start, we note that S is an Einstein manifold, hence
ρ̄|(x,u)(F t, Gh) = 0 for all tangent vectors F, G ∈ TxS and for every unit
vector u at x. So, for whatever choice of (x, u) ∈ T1S, the matrix of ρ̄|(x,u)

is of the form (
A1 0
0 A2

)

where A1 is the matrix of ρ̄|(x,u) restricted to st × st and A2 is the matrix
of ρ̄|(x,u) restricted to sh × sh. If we suppose that (T1S, gS) is Ricci-
curvature homogeneous, then the eigenvalues of A1 and of A2 must be
independent of the choice of (x, u) ∈ T1S. In what follows, we concentrate
only on ρ̄|(x,u) restricted to st × st.

First, we take the unit vector A at x. At (x,A), the tangential part
of T(x,A)T1S is given by vt ⊕ zt. From the formula (16) for the curvature
and the expression for the Ricci tensor ρ̄ (see again (2) in [7]), it follows
by a straightforward calculation:

ρ̄|(x,A)(U t, V t) =
(

m + n− 1 +
m + 1

32

)
gS(U t, V t),

ρ̄|(x,A)(U t, Xt) = 0,

ρ̄|(x,A)(Xt, Y t) =
(

m + n− 1 +
n + 8
16

)
gS(Xt, Y t).

Hence, the eigenvalues of ρ̄|(x,A) are m + n− 1 + m+1
32 with multiplicity n

and m + n− 1 + n+8
16 with multiplicity m. We note that these values are

always distinct, as m < 2n + 15 (see again [1, p. 23]).
Next, we take a unit vector U ∈ v at x. At (x,U), the tangential part

of T(x,U)T1S is given by (v∩U⊥)t⊕ zt⊕ at. Using the formula (16) again,
we find

ρ̄|(x,U)(Xt, Y t) =
(

m + n− 1 +
m + 1

32

)
gS(Xt, Y t),

ρ̄|(x,U)(Xt, V t) = 0,

ρ̄|(x,U)(Xt, At) = 0,

ρ̄|(x,U)(At, At) =
(

m + n− 1 +
m + 1

32

)
gS(At, At),

ρ̄|(x,U)(At, V t) = 0.
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So, we have already the eigenvalue m+n−1+ m+1
32 with multiplicity m+1.

As a consequence, ρ̄|(x,U) restricted to (v ∩ U⊥)t × (v ∩ U⊥)t must have

the eigenvalue m + n − 1 + n+8
16 with multiplicity m and the eigenvalue

m + n− 1 + m+1
32 with multiplicity n−m− 1.

Now, ρ̄|(x,U)(V t,W t) = (m + n − 1)gS(V t,W t) + 1
4F (V, W ) where

F : U⊥ × U⊥ → R : (V, W ) 7→ 〈R(U, V )ei, R(U,W )ei〉 with {ei} an

orthonormal basis of s. Explicitly, from (16), F is given by

F (V, W ) =
m + 1

8
〈V,W 〉+

n− 2m + 9
4

〈[U, V ], [U,W ]〉

+
3
8

m∑

j=1

〈[V, JZj
U ], [W,JZj

U ]〉

where {Z1, . . . , Zm} is an orthonormal basis of z with respect to the inner

product induced by 〈 ·, ·〉n. F is a symmetric, bilinear form on U⊥, hence

diagonalizable. Moreover, we know that its eigenvalues are n+8
4 and m+1

8

with multiplicities m and n−m− 1 respectively.

Denote the (n−m−1)-dimensional eigenspace to the eigenvalue m+1
8

by Eig(m+1
8 ). If W ∈ Eig

(
m+1

8

)
, then F (W,W ) = m+1

8 〈W,W 〉. Hence,

n− 2m + 9
4

|[U,W ]|2 +
3
8

m∑

j=1

|[W,JZj U ]|2 = 0.

Note that n − 2m + 9 > 0: this follows again from [1, p. 23]. So, W ∈
ker ad(U) and W ∈ ker ad(JZU) for every Z ∈ z. But dim ker ad(U) =
n−m and hence, Eig

(
m+1

8

)
= ker ad(U) ∩ U⊥.

So, if W ∈ ker ad(U)∩U⊥, then W ∈ ker ad(JZU) for every Z ∈ z, or

equivalently, ker ad(U) ∩ U⊥ ⊂ ker ad(JZU) for every Z ∈ z. Taking or-

thogonal complements on both sides and using (15), we get that JzJZU ⊂
RU ⊕ JzU . Hence, for X ∈ z, there exists Z ′ ∈ z and α ∈ R, such that

JXJZU = JZ′U+αU , where α = 〈JXJZU,U〉 = −〈JXU, JZU〉 = −〈X, Z〉.
As U is an arbitrary unit vector in v, it follows that the J2-condition holds.

¤
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6. Four-dimensional Einstein spaces

From Proposition 7, we know that a four-dimensional Einstein space
(M, g) has a unit tangent sphere bundle with constant scalar curvature if
and only if the norm of its Riemann curvature tensor |R| is constant. Now,
we determine when (T1M, gS) is Ricci-curvature homogeneous.

Proposition 14. Let (M4, g) be a four-dimensional Einstein space.

Its unit tangent sphere bundle (T1M, gS) is locally homogeneous or Ricci-

curvature homogeneous if and only if (M, g) is locally isometric to one of

the two-point homogeneous spaces R4, S4, H4, CP 2 or CH2.

Proof. Let {E1, E2, E3, E4} be a Singer-Thorpe orthonormal basis
([2], [14]), that is, the components of the Riemann curvature tensor with
respect to this basis are given by

R1212 = R3434 = λ1, R1234 = µ1,

R1313 = R2424 = λ2, R1342 = µ2,

R2323 = R1414 = λ3, R1423 = µ3,

Rijkl = 0 otherwise,

with µ1 + µ2 + µ3 = 0 by the first Bianchi identity. Further, ρ = −(λ1 +
λ2 + λ3) g and τ = −4(λ1 + λ2 + λ3).

Now take u = cos θ E1 +sin θ E2. A long but routine calculation com-
putes the components of the Ricci tensor ρ̄ of (T1M, gS) at the point (x, u)
with respect to the orthonormal basis {(sin θ E1−cos θ E2)t, E3

t, E4
t, E1

h,

E2
h, E3

h, E4
h}. The matrix for ρ̄|(x,u) has the form




2 + λ1
2+µ1

2

2 0 0 0
0 2 Id2 + 1

2 A1 0 0

0 0 τ−2λ1
2

4 Id2− 1
2 A2 0

0 0 0 τ−2µ1
2

4 Id2− 1
2 A3




where the (2× 2)-matrices A1, A2 and A3 are given explicitly by 
(λ2

2 + µ2
2) cos2 θ + (λ3

2 + µ3
2) sin2 θ 2(λ2µ2 + λ3µ3) cos θ sin θ

2(λ2µ2 + λ3µ3) cos θ sin θ (λ3
2 + µ3

2) cos2 θ + (λ2
2 + µ2

2) sin2 θ

!
,



Curvature homogeneous unit tangent sphere bundles 407 
(λ2

2 + λ3
2) cos2 θ + (µ2

2 + µ3
2) sin2 θ 2(λ2λ3 + µ2µ3) cos θ sin θ

2(λ2λ3 + µ2µ3) cos θ sin θ (µ2
2 + µ3

2) cos2 θ + (λ2
2 + λ3

2) sin2 θ

!
,

 
(λ2

2 + µ3
2) cos2 θ + (λ3

2 + µ2
2) sin2 θ 2(λ2µ3 + λ3µ2) cos θ sin θ

2(λ2µ3 + λ3µ2) cos θ sin θ (λ3
2 + µ2

2) cos2 θ + (λ2
2 + µ3

2) sin2 θ

!
.

Now, we note that the eigenvalues of the matrices Ai depend in general
on θ. But if we suppose that (T1M, gS) is Ricci-curvature homogeneous,
only a discrete set of eigenvalues is possible. Hence, the continuous eigen-
value functions are in fact constant.

For θ = 0, the matrix A1 has eigenvalues λ2
2 +µ2

2 and λ3
2 +µ3

2. So,
these must also be the eigenvalues for all other values of θ. If we express
that

det(A1 − (λ2
2 + µ2

2) Id2) = 0,

det(A1 − (λ3
2 + µ3

2) Id2) = 0,

we find the condition

(17)
(
(λ3 − µ3)2 − (λ2 + µ2)2

)(
(λ3 + µ3)2 − (λ2 − µ2)2

)
= 0.

Similarly, we see that the matrix A2 has eigenvalues λ2
2+λ3

2 and µ2
2+µ3

2,
and we obtain the condition

(18)
(
(µ2 − µ3)2 − (λ2 + λ3)2

)(
(µ2 + µ3)2 − (λ2 − λ3)2

)
= 0.

Finally, the matrix A3 has eigenvalues λ2
2 +µ3

2 and µ2
2 +λ3

2 and we get
the condition

(19)
(
(λ3 − µ2)2 − (λ2 + µ3)2

)(
(λ3 + µ2)2 − (λ2 − µ3)2

)
= 0.

Clearly, if we start from a different choice of unit vector u of the
form u = cos θ Ei + sin θ Ej , i, j ∈ {1, 2, 3, 4} and i 6= j, we obtain the
same eigenvalues and symmetric analogues to the conditions (17)–(19). In
particular, we see that ρ̄ has the constant eigenvalues

(20)

2 + (λ1
2 + µ1

2)/2, 2 + (λ2
2 + µ2

2)/2, 2 + (λ3
2 + µ3

2)/2,

(τ − 2(λ1
2 + λ2

2 + λ3
2))/4,

(τ − 2(λ1
2 + µ2

2 + µ3
2))/4, (τ − 2(µ1

2 + λ2
2 + µ3

2))/4,

(τ − 2(µ1
2 + µ2

2 + λ3
2))/4,
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and that the following nine conditions must hold

(21)

(
(λ3 − µ3)2 − (λ2 + µ2)2

)(
(λ3 + µ3)2 − (λ2 − µ2)2

)
= 0,

(
(λ1 − µ1)2 − (λ3 + µ3)2

)(
(λ1 + µ1)2 − (λ3 − µ3)2

)
= 0,

(
(λ2 − µ2)2 − (λ1 + µ1)2

)(
(λ2 + µ2)2 − (λ1 − µ1)2

)
= 0,

(
(µ2 − µ3)2 − (λ2 + λ3)2

)(
(µ2 + µ3)2 − (λ2 − λ3)2

)
= 0,

(
(µ3 − µ1)2 − (λ3 + λ1)2

)(
(µ3 + µ1)2 − (λ3 − λ1)2

)
= 0,

(
(µ1 − µ2)2 − (λ1 + λ2)2

)(
(µ1 + µ2)2 − (λ1 − λ2)2

)
= 0,

(
(λ3 − µ2)2 − (λ2 + µ3)2

)(
(λ3 + µ2)2 − (λ2 − µ3)2

)
= 0,

(
(λ1 − µ3)2 − (λ3 + µ1)2

)(
(λ1 + µ3)2 − (λ3 − µ1)2

)
= 0,

(
(λ2 − µ1)2 − (λ1 + µ2)2

)(
(λ2 + µ1)2 − (λ1 − µ2)2

)
= 0.

Taking also the condition µ1 +µ2 +µ3 = 0 into account, the solutions
of the system (21) are given, up to choice of Singer-Thorpe basis, by

(1) λ1, λ2 and λ3 are arbitrary,

µ1 = λ2 − λ3, µ2 = λ3 − λ1, µ3 = λ1 − λ2;

(2) λ1 and λ2 are arbitrary,

λ3 = λ2,

µ1 = 0, µ2 = λ1 + λ2, µ3 = −λ1 − λ2;

(3) λ1 and λ2 are arbitrary,

λ3 = −λ1 − λ2,

µ1 = −λ1 + 2λ2

3
, µ2 =

2λ1 + λ2

3
, µ3 = −λ1 − λ2

3
;

(4) λ2 and λ3 are arbitrary,

λ1 = λ2 − 3λ3,

µ1 = λ2 − λ3, µ2 = λ3 − λ2, µ3 = 0;



Curvature homogeneous unit tangent sphere bundles 409

(5) λ1 and λ2 are arbitrary,

λ3 = 0,

µ1 =
2λ1 + λ2

3
, µ2 = −λ1 + 2λ2

3
µ3 = −λ1 − λ2

3
;

(6) λ2 and λ3 are arbitrary,

λ1 = 0,

µ1 = λ2 − λ3, µ2 = −λ3, µ3 = 2λ3 − λ2.

From the constancy of the eigenvalues (20), it follows for all six cases
above that the λi and the µi, i = 1, 2, 3, are constant. Hence, (M4, g) is a
curvature homogeneous four-dimensional Einstein manifold. It is an imme-
diate consequence of an unpublished theorem by A. Derdziński (see [12])
that (M4, g) must be locally symmetric and, hence, locally isometric to
one of the two-point homogeneous spaces R4, S4, H4, CP 2 or CH2, or to
one of the product manifolds S2(c2)×S2(c2) or H2(−c2)×H2(−c2). The
proposition now follows from Proposition 11 and Theorem 1. ¤

7. Sasakian space forms

Finally, we consider another case where the curvature tensor is sim-
ple enough to handle the formulas (1) and (2). Let (M2k+1, g, ξ, η, ϕ)
be a Sasakian space form with constant ϕ-sectional curvature c, that is,
g(R(X,ϕX)ϕX,X) = c for every unit vector X perpendicular to the char-
acteristic vector field ξ. (Clearly, the vector field ξ has nothing to do with
the curvature operator ξ in (3).) The Riemann curvature tensor R is given
in explicit form (see [4, p. 97]) as

R(X, Y )Z =
c + 3

4
(
g(Y,Z)X − g(X, Z)Y

)
(22)

+
c− 1

4
(
η(X)η(Z)Y − η(Y )η(Z)X

+ g(X, Z)η(Y )ξ − g(Y,Z)η(X)ξ

+ g(Z, ϕY )ϕX−g(Z, ϕX)ϕY +2g(X, ϕY )ϕZ
)
.

We first determine for which values for the constant ϕ-sectional cur-
vature c the unit tangent sphere bundle (T1M, gS) has constant scalar
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curvature τ̄ . As (M, g) is locally homogeneous, condition (4) holds. We
check condition (3) now.

Using (22), we calculate easily, for X and Y perpendicular to ξ:

g(R(ξ, Ei)Ej , R(ξ, Ei)Ej) = 4k g(ξ, ξ),

g(R(ξ, Ei)Ej , R(X,Ei)Ej) = 0,

g(R(X,Ei)Ej , R(Y, Ei)Ej) =
(
3k − 1 + c2(k + 1)

)
g(X, Y ).

Hence, (3) holds if and only if 4k = 3k − 1 + c2(k + 1), or c = ±1. This
proves the claim in [7]:

Proposition 15. The unit tangent sphere bundle of a Sasakian space

form with constant ϕ-sectional curvature c has constant scalar curvature

if and only if c = ±1.

In the complete and simply connected case, both of these Sasakian
space forms are principal circle bundles over CPn with constant holomor-
phic sectional curvature 4 (if c = 1) or 2 (if c = −1), and they are related
by a D-homothetic transformation ([16]). Further, the Sasakian space
form with constant ϕ-sectional curvature c = 1 is locally isometric to a
sphere S2n+1(1). By Theorem 1, its unit tangent sphere bundle is locally
homogeneous. This contrasts with

Proposition 16. The unit tangent sphere bundle of a Sasakian space

form (M2k+1, g, ξ, η, ϕ) with constant ϕ-sectional curvature c = −1 is not

even Ricci-curvature homogeneous.

Proof. Fix a point x ∈ M . We calculate ρ̄ at (x, ξ) and at (x,X)
with X perpendicular to ξ and show that the eigenvalues are different. We
note beforehand that the Ricci curvature ρ of (M, g) is given by

ρ(U, V ) = (k − 1)g(U, V ) + (k + 1)g(U, ξ)g(V, ξ)

(see [4]). So,

(∇W ρ)(U, V ) = (k + 1)
(
g(U,∇W ξ)g(V, ξ) + g(U, ξ)g(V,∇W ξ)

)

= −(k + 1)
(
g(U,ϕW )g(V, ξ) + g(U, ξ)g(V, ϕW )

)

as ∇W ξ = −ϕW . (See again [4].)
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With these formulas and with (22), where we put c = −1, the expres-
sions (1) for ρ̄ at (x, ξ) are given by

ρ̄|(x,ξ)(U t, V t) =
(

2k − 1
2

) (
g(U, V )− g(U, ξ)g(V, ξ)

)
,

ρ̄|(x,ξ)(U t, V h) = −k + 1
2

g(U,ϕV ),

ρ̄|(x,ξ)(Uh, V h) =
(

k − 3
2

)
g(U, V ) +

3
2

g(U, ξ)g(V, ξ).

In particular, we see that ξh is an eigenvector for ρ̄|(x,ξ) with eigenvalue k:

ρ̄|(x,ξ)(ξh, ξh) = k gS(ξh, ξh).

Next, we take u = X, a unit vector at x perpendicular to ξ. A
straightforward calculation yields

ρ̄|(x,X)(U t, V t) =
(

2k − 3
4

) (
g(U, V )− g(U,X)g(V,X)

)

+
1
4

g(U, ξ)g(V, ξ) +
2k − 1

4
g(U,ϕX)g(V, ϕX),

ρ̄|(x,X)(U t, V h) = −k + 1
2

(
g(U, ξ)g(V, ϕX) + 2g(V, ξ)g(U,ϕX)

)
,

ρ̄|(x,X)(Uh, V h) =
(

k − 7
4

)
g(U, V )− k

4
g(U,X)g(V, X)

+
(

k +
5
4

)
g(U, ξ)g(V, ξ)− k − 2

4
g(U,ϕX)g(V, ϕX).

At x, we take an orthonormal basis {E1 = X,E2 = ϕE1, E3, E4 =
ϕE3, . . . , E2k = ϕE2k−1, E2k+1 = ξ}. Then, at (x,X), an orthonormal ba-
sis for T(x,X)T1M is given by {E2

t, ξh, E2
h, ξt, E1

h, E3
t, . . . , E2k

t, E3
h, . . . ,

E2k
h}. With respect to this basis, ρ̄|(x,X) is given in matrix form by




1
4 A1 0 0 0 0
0 1

4 A2 0 0 0

0 0 3k−7
4 0 0

0 0 0 8k−3
4 Id2(k−1) 0

0 0 0 0 4k−7
4 Id2(k−1)



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where the (2× 2)-matrices A1 and A2 are given explicitly by

A1 =
( 2(5k − 2) −4(k + 1)

−4(k + 1) 2(4k − 1)

)
,

A2 =
(

2(4k − 1) −2(k + 1)

−2(k + 1) 3k − 5

)
.

The eigenvalues of ρ̄|(x,X) are (3k−7)/4 with multiplicity 1, (8k−3)/4
with multiplicity 2(k − 1), (4k − 7)/4 with multiplicity 2(k − 1), and the
solutions of the quadratic equations λ2−3(3k−1)/2 λ+(16k2−21k−2)/4 =
0 and λ2 − (11k − 7)/4 λ + (10k2 − 27k + 3)/8 = 0. The eigenvalue k

of ρ̄|(x,ξ) is not among these and hence, (T1M, gS) is not Ricci-curvature
homogeneous. ¤
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