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On the uniqueness problem
for continuous convolution semigroups

of probability measures on simply connected
nilpotent Lie groups

By DANIEL NEUENSCHWANDER (Lausanne)

Abstract. Let G be a simply connected nilpotent Lie group and assume {µ(i)
t }t≥0

(i = 1, 2) are Poisson semigroups of probability measures on G with boundedly sup-

ported Lévy measures. We prove that if µ
(1)
1 = µ

(2)
1 , then µ

(1)
t = µ

(2)
t for all t ≥ 0.

As a consequence, e.g. a convergent triangular system of rowwise i.i.d. probability mea-
sures on G which are concentrated on a fixed circular annulus automatically converges
functionally.

1. Introduction

One of the most important problems in probability theory on groups
G (e.g.) is the so-called embedding problem, i.e. the question if a given
probability measure µ on G may be embedded into a continuous convo-
lution semigroup of probability measures (c.c.s. for short) {µt}t≥0 on G

(i.e. µ = µ1). In this note we are interested in the class of simply con-
nected nilpotent Lie groups G. It has been proved by Burrell, Mc-

Crudden (1974) that any infinitely divisible probability measure on G

is embeddable into a c.c.s. on G. But now not only the question of ex-
istence of a c.c.s. in which a given probability measure can be embedded
is important, but also that of its uniqueness, i.e. the following problem:
If {µ(i)

t }t≥0 (i = 1, 2) are c.c.s. such that µ
(1)
1 = µ

(2)
1 , do then the c.c.s.

have to coincide (i.e. µ
(1)
t = µ

(2)
t for every t ≥ 0)? If this is true, then
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this has important consequences for limit theorems, namely in this case,
a convergent triangular system of rowwise i.i.d. random variables auto-
matically converges functionally, in detail: For an increasing sequence
{k(n)}n≥1 of natural numbers, the relation ν

∗k(n)
n

w−→ µ1 (n →∞) implies
ν
∗bk(n)tc
n

w−→ µt (t ≥ 0) (cf. Nobel (1991), Remark 2.(a)). It is well-known
that this uniqueness property is true for (Rd, +). Finite groups satisfy the
uniqueness property iff every non-neutral element has order 2 (then the
group is of course abelian) (cf. Böge (1959)). For locally compact abelian
groups, a sufficient condition for the uniqueness property is the request
that the group have no non-trivial compact subgroup (cf. Heyer (1977),
Theorem 3.5.15). In more general framework, some partial results have
been obtained by Hazod (1971). For stable and semi-stable semigroups
on simply connected nilpotent Lie groups see Drisch, Gallardo (1984),
Nobel (1991), and Hazod, Siebert (1997), 2.6. Pap (1994) proved the
uniqueness property for the Gauss semigroups among all Gauss semigroups
on simply connected nilpotent Lie groups, generalizing the corresponding
result for simply connected step 2-nilpotent Lie groups by Baldi (1985),
but he left open the question if Gaussian measures can also be embedded
into non-Gaussian c.c.s. Neuenschwander (1996), Theorem 2.1 shows
that for Gaussian measures on the (3-dimensional) Heisenberg group this
is indeed not the case. For irreducible symmetric spaces G/K of noncom-
pact type (i.e. G a semisimple noncompact Lie group with finite center and
K a maximal compact subgroup) and K-biinvariant probability measures
µ on G, Graczyk (1994) used a method to associate to µ a bounded non-
negative measure µ̃ on a Cartan subalgebra (a, +) such that µ1 ∗ µ2 = µ3

iff µ̃1 ∗ µ̃2 = µ̃3 and such that µ̃ determines µ uniquely. This readily yields
the uniqueness property for all c.c.s. of K-biinvariant probability measures
on G by the uniqueness property on (a, +).

In this note, we will look at Poisson semigroups. We show that on a
simply connected nilpotent Lie group Poisson semigroups {µ(i)

t }t≥0 whose
Lévy measures have bounded support and who satisfy µ

(1)
1 = µ

(2)
1 have

to coincide as a whole. As a consequence, we get e.g. that the afore-
mentioned passage from convergence to functional convergence of rowwise
i.i.d. triangular systems is possible provided all occurring measures are
supported by some fixed circular annulus.

Our method, which is related to the idea of Pap (1994), consists of
recursively calculating the moments and to make use of certain conditions
guaranteeing the unicity in Hamburger’s moment problem.
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2. Poisson semigroups

Let G be a simply connected nilpotent Lie group, which will be iden-
tified with its Lie algebra G = Rd. Consider the adjoint reperesentation
of the Lie algebra given by ad(x) : G → G, ad(x)(y) := [x, y] (x, y ∈ G).
The product on G is then given by the Campbell-Hausdorff formula, (cf.
Serre (1965)), where only the terms up to order, say, r ∈ N0 (the step of
nilpotency of G) arise:

x · y =
r∑

n=1

zn,(1)

zn =
1
n

∑
p+q=n

(
z′p,q + z′′p,q

)
,(2)

z′p,q =
∑

p1+p2+...+pm=p
q1+q2+...+qm−1=q−1

pi+qi≥1
pm≥1

(−1)m+1

m

ad(x)p1 ad(y)q1 . . . ad(x)pm(y)
p1!q1! . . . pm!

,(3)

z′′p,q=
∑

p1+p2+...+pm−1=p−1
q1+q2+...+qm−1=q

pi+qi≥1

(−1)m+1

m

ad(x)p1 ad(y)q1 . . . ad(y)qm−1(x)
p1!q1! . . . qm−1!

.(4)

The first few terms are

(5) x · y = x + y +
1
2
[x, y] +

1
12
{[[x, y], y] + [[y, x], x]}+ . . . .

Clearly, e = 0 and x−1 = −x (x ∈ G). Consider an adapted vector space
decomposition of G = G, i.e.

G = G = Rd =
r⊕

i=1

Vi(6)

such that

r⊕

i=k

Vi = Gk−1,
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where {Gk}0≤k≤r is the descending central series:

G0 := G, Gk+1 := [G,Gk]

(and thus Gr = {0}). In this case, one can take a Jordan-Hölder basis for
G = Rd, i.e. a basis E =

⋃r
i=1 Ei where Ei = {ei,1, ei,2, . . . , ei,d(i)} is a

basis of Vi (d(i) thus being the dimension of Vi).
A continuous convolution semigroup (c.c.s.) {µt}t≥0 of probability

measures on G is a monoid homomorphism of ([0,∞[, +) to (M1(G), ∗, w−→,

δ0), where the latter denotes the topological monoid of probability mea-
sures on G with the convolution ∗, the weak topology w−→, and the unity
δ0 (= Dirac probability measure at 0) (cf. Heyer (1977), Theorem 1.2.2).
For f ∈ C∞b (G) (= space of bounded C∞-functions on G), the generating
distribution of the c.c.s. {µt}t≥0 is defined as

A(f) := lim
t→0+

1
t

∫

G

[f(x)− f(0)]µt(dx)

(cf. Siebert (1981), p. 119). A Poisson semigroup on a simply connected
nilpotent Lie group is a c.c.s.

(7) {µt}t≥0 = {exp t(λ− ||λ||δ0)}t≥0,

where λ is a bounded non-negative measure on G\{0} (the so-called Lévy
measure), || . || is the total variation norm of a bounded measure, and exp
is the power series

exp η := δ0 +
∞∑

k=1

1
k!

η∗k,

which, for every bounded measure η on G, is convergent with respect to
|| . || and thus also in the weak topology. The generating distribution of
the Poisson semigroup (7) has the form

A(f) =
∫

G\{0}

[f(x)− f(0)]λ(dx)

(cf. Siebert (1981), p. 119 bottom). We will use the following estimation
on the number of terms in the Campbell-Hausdorff formula:



On the uniqueness problem for continuous convolution semigroups . . . 419

Lemma 1. In the Campbell-Hausdorff formula up to order r for m

factors, the number of different summands may be estimated from above

by mr+1.

Proof. By counting all k-tuples with m possible elements (1≤ k≤ r),
this follows at once from the estimation

r∑

k=1

mk =
mr+1 − 1

m− 1
− 1 ≤ mr+1 (m ≥ 2). ¤

(For what follows, this trivial bound will suffice, we are not interested
in better ones.)

Since the bound in Lemma 1 is polynomial in m, the following corol-
lary follows immediately:

Corollary 1. Let G be a simply connected nilpotent Lie group. If

{µt}t≥0 is a Poisson semigroup on G whose Lévy measure has bounded

support, then for every µt all moments exist.

Now we formulate our main result:

Theorem 1. Let G = Rd be a simply connected nilpotent Lie group.

Assume {µ(i)
t }t≥0 are Poisson semigroups whose Lévy measures λ(i) have

bounded support (i.e. supp λ(i) ⊂ {x ∈ Rd : ||x|| ≤ ρ} for some ρ > 0
(i = 1, 2)). Then if µ

(1)
1 = µ

(2)
1 , it follows that µ

(1)
t = µ

(2)
t for all t ≥ 0.

Consider on Nd
0 the lexicographic ordering from behind defined by

(a1, a2, . . . , ad) < (b1, b2, . . . , bd) ⇐⇒ (ad, ad−1, . . . , ad−j+1)

= (bd, bd−1, . . . , bd−j+1), ad−j < bd−j for some j ∈ N0.

Let G be as in Theorem 1. Let E = {e1, e2, . . . , ed}={e1,1, e1,2, . . . , e1,d(1),

e . . . , er,1, er,2, . . . , er,d(r)} (d(i) = dim Vi in (6)) be a Jordan-Hölder basis
of G = Rd, and put G 3 x =:

∑d
j=1 xjej . For µ ∈ M1(G),

` = (`1, `2, . . . , `d) ∈ Nd
0, define the “mixed moments”

M`(µ) :=
∫

G

d∏

j=1

x
`j

j µ(dx)

(if they exist).
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Lemma 2. Assume µ, ν are probability measures on G satisfying µ =
ν∗2 and such that all moments M`(ν) (` ∈ Nd

0) exist. Then all M`(µ) exist

and the M`(ν) (` ∈ Nd
0) may be calculated out of the M`(µ) recursively

with respect to `.

Proof. The existence of M`(µ) follows at once from the existence
of the M`(ν) and the nilpotency with the aid of the Campbell-Hausdorff
formula. Assume X, Y are i.i.d. G- valued random variables with L(X) =
ν. Write

(8)

M`(µ) = E
( d∏

j=1

(X · Y )`j

j

)

= E
( d∏

j=1

(X + Y +
1
2
[X, Y ] + . . . )`j

j

)

By the adaptedness, we get, by multiplying out and considering the coor-
dinates (with respect to (6))

(9)
(

X + Y +
1
2
[X,Y ] + . . .

)`j

j

= X
`j

j + Y
`j

j + Pj ,

Pj being a polynomial in X1, Y1, X2, Y2, . . . , Xj , Yj , where in every mono-
mial the exponents of Xj and Yj are strictly smaller than `j . Now, by
multiplying out the product

∏d
j=1(. . . )

`j in (8), we get by (9)

d∏

j=1

(. . . )`j =
d∏

j=1

X
`j

j +
d∏

j=1

Y
`j

j + P,

where P is a polynomial in X1, Y1, X2, Y2, . . . , Xd, Yd such that for every
monomial γ

∏d
j=1(X

rj

j Y
sj

j ) we have (r1, r2, . . . rd), (s1, s2, . . . , sd) < `. Now
the assertion follows from the independence of X and Y and the fact that
E

(∏d
j=1 X

`j

j

)
= E

(∏d
j=1 Y

`j

j

)
. ¤

A bounded measure µ on Rd is called determinate, if it is uniquely
determined by its `-th moments M`(µ) (` ∈ Nd

0), i.e. if there is no other
bounded measure on Rd with the same `-th moments.
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Lemma 3. If C [x1, x2, . . . , xd] is dense in Lp(µ) for some p > 2
(µ some bounded non-negative measure on Rd), then µ is determinate.

(Cf. Fuglede (1983), Berg (1995), p. 3.)

Now we are ready to prove Theorem 1:

Proof of Theorem 1. Since λ(i) have compact support,
C [x1, x2, . . . , xd] is dense in, say, L3(λ(i)) by Weierstrass’ Theorem
(cf. Berg (1995), p. 3). Hence, with the aid of Corollary 1, it follows that
C [x1, x2, . . . , xd] is dense in L3(µ(i)

1/2) = L3(exp(−(1/2)||λ(i)||) exp(λ(i)))⊂
L3(λ(i)), thus by Lemma 3 the measures µ

(i)
1/2 are determinate. So by

Lemma 2 we get that µ
(1)
t = µ

(2)
t for all dyadic t. By continuity, Theo-

rem 1 follows. ¤

The following corollary says that a convergent triangular system of
rowwise i.i.d. probability measures which are all supported by some fixed
circular annulus automatically converges in a functional sense:

Corollary 2. Let {νn}n≥1 be a sequence of probability measures on

the simply connected nilpotent Lie group G = Rd such that supp νn ⊂
Aε,ρ = {x ∈ Rd : ε ≤ ||x|| ≤ ρ} (n ≥ 1) for some 0 < ε < ρ < ∞.

Suppose {k(n)}n≥1 is an increasing sequence of natural numbers. Then

if ν
∗k(n)
n

w−→ µ (n → ∞) for some probability measure µ on G, we have

that µ = µ1 for some uniquely determined Poisson semigroup {µt}t≥0 and

ν
∗bk(n)tc
n

w−→ µt (n →∞).

Proof. By Nobel (1991), Theorem 1, it follows that for every sub-
sequence {n′} ⊂ {n}n≥1 there is another subsequence {n′′} ⊂ {n′} and a
c.c.s. {µt}t≥0 such that µ1 = µ and ν

∗bk(n′′)c
n′′

w−→ µt (n′′ → ∞) for every
t ≥ 0. By Hazod, Scheffler (1993), Theorem 2.1, (i)=⇒(iii) it fol-
lows that all such limiting c.c.s. {µt}t≥0 are Poisson semigroups with Lévy
measures supported by Aε,ρ. Now the assertion follows from Theorem 1.

¤
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