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Ricci coefficients of rotation in a generalized
Riemannian space

By SVETISLAV M. MINČIĆ (Nǐs)

Abstract. Because of nonsymmetry of the fundamental tensor in a generalized
Riemannian space (GRN ), the connexion, defined on the base of such a fundamental
tensor, is nonsymmetric too. Therefore, it is possible to define in this space two kinds
of Ricci coefficients of rotation.

In this work we define the mentioned coefficients in a GRN and examine their
properties as well as their connection with the Ricci coefficients of rotation in the
associated Riemannian space, that is in the Riemannian space whose fundamental tensor
is the symmetric part of the fundamental tensor of the GRN .

Introduction

An N -dimensional manifold equipped with a nonsymmetric funda-
mental tensor (gij) is said to be a generalized Riemannian space GRN (see
[1], [2]). We denote the symmetric and the antisymmetric part of (gij) by
(gij) and (gij ), resp. Lowering and raising the indices of these tensors will
be used automaticly; then e.g.

(1) gijg
jk = δk

i .

Denoting the ordinary partial derivative by a comma “ , ”, the Christoffel
symbols of (gij) are defined by the well-known formula

(2) Γi.jk =
1
2
(gji,k − gjk,i + gik,j), Γi

jk = gipΓp.jk.

These are also nonsymmetric in the indices j, k.
On the base manifold of GRN one can also introduce a usual Riemann-

ian metric, namely the Riemannian metric defined by (gij). The resulting
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Riemannian space will be denoted by RN and will be mentioned as the
associated space of GRN . The canonical connection of RN is just the sym-
metric part of the connection Γi

jk, i.e. Γi
jk, constructed from gij . Denoting

by a semicolon “ ; ” the covariant derivative w.r.t. Γk
ij , we have two kinds

of covariant derivatives for a vector ui in GRN , namely

u |
1
2

i
n = ui

,n + Γi
pn
np

up = ui
,n + (Γi

pn ± Γi
pn)u

p,

that is

(3) ui
|
θ
n = ui

;n + (−1)θΓi
npu

p, θ = 1, 2.

Analogously, for a form vi

(4) vi|
θ
n = vi;n + (−1)θΓp

invp, θ = 1, 2.

1. Congruence of curves and orthogonal ennuple

Definition 1. A congruence of curves in a GRN is such a family of
curves that trough each point of GRN passes one curve of the family.
N mutually orthogonal congruences of curves constitute an orthogonal
ennuple. Instead of congruences of curves, we shall sometimes speak about
congruences of the corresponding tangent vectors.

If λ(h) (h = 1, . . . , N) are unit tangent vectors of congruences of curves
of an orthogonal ennuple, then, in virtue of the previous definition

(5) gijλ
i
(h)λ

j
(k) = e(k)δhk, e(k) = ±1,

or

(5’) e(k)λ
i
(h)λ(k)i = δhk,

where δhk are the Kronecker symbols. (Of course, we do not mean sum-
mation w.r.t. (k) in (5), (5’) and in similar formulas later on.) The next
theorem expresses the basic properties of orthogonal ennuples.

Theorem 1. For the unit tangent vectors λ(h) (h = 1, . . . , N) of con-
gruences of curves of an orthogonal ennuple the relations

N∑

k=1

e(k)λ(k)iλ
j
(k) = δj

i ,
∑

k

e(k)λ(k)iλ(k)j = gij ,(6 a,b)

∑

k

e(k)λ
i
(k)λ

j
(k) = gij(6c)
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are valid.

Proof. In the determinant det (λi
(h)), whose value is 1, we can regard

e(k)λ(k)i as the cofactor of the element λi
(k). Developing the determinant

either by rows or by columns it (6a) follows.
Further, we have

∑

k

e(k)λ(k)iλ(k)j = gjl

∑

k

e(k)λ(k)iλ
l
(k) =

(6a)
gjl δl

i ⇒ (6b).

(6c) can be obtained in the same manner.

2. Definition and basic properties of the coefficients of a rotation

Using the two kinds of covariant derivative of a vector in a GRN , we
can define two kinds of coefficients of rotation ([3], §32, [4], ch.VI), as two
systems of invariants (for θ = 1, 2).

Definition 2. The invariants

(7) γ
θ
(hkm) = λ(h)i|

θ
jλ

i
(k)λ

j
(m) = λi

(h)|
θ
jλ(k)iλ

j
(m), θ = 1, 2

are said to be the coefficients of rotation of the given orthogonal ennuple.

Theorem 2. Both kinds of coefficients of rotation are antisymmetric
in their first two indices, i.e.

(8) γ
θ
(hkm) = −γ

θ
(khm) =⇒ γ

θ
(hhm) = 0.

Proof. By covariant differentiation we get from (5’) the relation

e(k)

[
λi

(h)|
θ
jλ(k)i + λi

(h)λ(k)i|
θ
j

]
= 0,

from where, transvecting by λj
(m),

e(k)

[
λi

(h)|
θ
jλ(k)iλ

j
(m) + λi

(h)λ(k)i|
θ
jλ

j
(m)

]
=
(7)

e(k)

[
γ
θ
(hkm) + γ

θ
(khm)

]
= 0,

that is
γ
θ
(hkm) + γ

θ
(khm) = 0 =⇒ (8).
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Theorem 3. If

(9) γ(hkm) = λ(h)i;jλ
i
(k)λ

j
(m)

are the coefficients of rotation in the associated Riemannian space RN , we
have the relations

γ
θ
(hkm) = γ(hkm) + (−1)θΓp

ij λ(h)pλ
i
(k)λ

j
(m), θ = 1, 2,(10)

γ(hkm) = (γ
1
(hkm) + γ

2
(hkm))/2,(11)

γ
θ
(hkh) = γ(hkh), γ

θ
(hhk) = γ(hhk), γ

θ
(hkk) = γ(hkk), θ = 1, 2.(12)

Proof. In virtue of (7) and (4)

γ
θ
(hkm) = [λ(h)i;j + (−1)θΓp

ij λ(h)p]λi
(k)λ

j
(m) =⇒

(9)
(10).

In virtue of (10), for two coinciding indices there follows (12), because it
is for example (for h = m) :

Γp
ij λ(h)pλ

i
(k)λ

j
(h) = Γp.ij λp

(h)λ
i
(k)λ

j
(h) = Γj.ip λj

(h)λ
i
k)λ

p
(h)

= −Γp.ij λp
(h)λ

i
(k)λ

j
(h) = 0.

Here we applied the fact that Γp.ij is antisymmetric in all pairs of indices
(which can be easily seen from (2)).

3. Expression of the derivative of the vectors of a
congruence by the coefficients of rotation

Theorem 4. In a GRN the relation

(13) λ(h)i|
θ
j =

N∑

k,m=1

e(k)e(m)γ
θ
(hkm)λ(k)iλ(m)j

is valid.

Proof. Multiplying the relation (7) by e(k)e(m)λ(k)pλ(m)q
and sum-

ming with respect to k, m, we get
∑

k,m

γ
θ
(hkm)e(k)e(m)λ(k)pλ(m)q

=
∑

k,m

λ(h)i|
θ
jλ

i
(k)λ

j
(m)e(k)e(m)λ(k)pλ(m)q

=

= λ(h)i|
θ
j

{ ∑

k

e(k)λ(k)pλ
i
(k)

}
·
{ ∑

m

e(m)λ(m)q
λj

(m)

}
=

(6a)
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= λ(h)i|
θ
jδ

i
pδ

j
q = λ(h)p|

θ
q

=⇒ (13).

Theorem 5. The covariant derivatives of the vectors λ(h)i and λi
(h)

in the direction of the vector λj
(p) can be expressed by the coefficients of

rotation as a linear combination of the vectors of the ennuple as follows:

λ(h)i|
θ
jλ

j
(p) =

∑

k

e(k)γ
θ
(hkp)λ(k)i,(14a)

λi
(h)|

θ
jλ

j
(p) =

∑

k

e(k)γ
θ
(hkp)λ

i
(k).(14b)

Proof. Transvecting the equation (13) by λj
(p), we obtain

λ(h)i|
θ
jλ

j
(p) =

∑

k,m

e(k)e(m)γ
θ
(hkm)λ(k)iλ(m)jλ

j
(p) =

(5′)

=
∑

k,m

e(k)γ
θ
(hkm)λ(k)iδmp =

∑

k

e(k)γ
θ
(hkp)λ(k)i =⇒ (14)

4. Integrability conditions of the equation (13)

The relation (13) is a partial differential equation with respect to the
unknown functions λ(h)i . Now we are going to examine its integrability
conditions.

In [5] we have obtained 10 Ricci-type identities in a GRN . In three
of these identities appear the curvature tensors R

1
, R

2
, R

3
, and in the oth-

ers appear the quantities A
1
, . . . , A

15
, which have the form and the role of

the curvature tensors, but they are not tensors. In [6] we have obtained
combined Ricci-type identities, in which appear “derived” curvature ten-
sors R̃

1
, . . . , R̃

8
. In [7] it is proved that only five are independent among the

mentioned curvature tensors, for example R
1
, R

2
, R

3
, R̃

3
, R̃

4
, while the others

are linear combinations of these five tensors. We shall use further those of
the Ricci-type identities in which appear the above tensors (the tensor R̃

1

is a linear combination of R
1
, R

2
, while the tensor R̃

2
does not appear in the

identities which we need).
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Theorem 6. In a GRN the first two integrability conditions (θ = 1, 2)
of equation (13) are

(15)

[
−R

θ

s
ijrλ(h)s + 2(−1)θΓs

jr λ(h)i|
θ
s

]
λi

(p)λ
j
(q)λ

r
(t)

= γ
θ
(hpq),jλ

j
(t) − γ

θ
(hpt),jλ

j
(q)+

+
N∑

k=1

e(k)

{
γ
θ
(hkq)γ

θ
(kpt) − γ

θ
(hkt)γ

θ
(kpq) + γ

θ
(hpk)[γ

θ
(kqt) − γ

θ
(ktq)]

}
,

θ = 1, 2,

where

R
1

s
ijr = Γs

ij,r − Γs
ir,j + Γp

ijΓ
s
pr − Γp

irΓ
s
pj ,(16)

R
2

s
ijr = Γs

ji,r − Γs
ri,j + Γp

jiΓ
s
rp − Γp

riΓ
s
jp(17)

are the 1st and the 2nd kind curvature tensors of the GRN .

Proof. Applying the Ricci-type identities (6), (11) from [5], we have

λ(h)i|
θ
jr − λ(h)i|

θ
rj = −R

θ

s
ijrλ(h)s + 2(−1)θΓs

jrλ(h)i|
θ
s, θ = 1, 2.

By repeated differentiation of (13) one can form the difference on the left
side of this equation, and then (15) easily follows.

Theorem 7. The third integrability condition of the equation (13) in
a GRN is

(18) −R
3

s
ijrλ(h)sλ

i
(p)λ

j
(q)λ

r
(t) = γ

1
(hpq),jλ

j
(t) − γ

2
(hpt),jλ

j
(q)+

+
N∑

k=1

e(k)[γ
1
(hkq)γ

2
(kpt) − γ

2
(hkt)γ

1
(kpq) + γ

1
(hpk)γ

2
(kqt) − γ

2
(hpk)γ

1
(ktq)],

where

(19) R
3

s
ijr = Γs

ij,r − Γs
ri,j + Γp

ijΓ
s
rp − Γp

riΓ
s
pj + Γp

rj(Γ
s
pi − Γs

ip)

is the 3rd kind curvature tensor of the GRN .

Proof. Applying the corresponding identity from [5] we get

λ(h)i|
1
j |
2
r − λ(h)i|

2
r |
1
j = −R

3

s
ijrλ(h)s.

Further, use (13) to form the difference on the left side.
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Theorem 8. The fourth integrability condition of the equation (13)
in a GRN is

(20)

−2R̃
3

s
ijrλ(h)sλ

i
(p)λ

j
(q)λ

r
(t) =

=γ
1
(hpq),jλ

j
(t) − γ

1
(hpt),jλ

j
(q) + γ

2
(hpq),jλ

j
(t) − γ

2
(hpt),jλ

j
(q)+

+
N∑

k=1

e(k)

[
γ
1
(hkq)γ

1
(kpt) − γ

1
(hkt)γ

2
(kpq) + γ

2
(hkq)γ

2
(kpt)−

− γ
2
(hkt)γ

1
(kpq) + γ

1
(hpk)γ

1
(kqt) − γ

1
(hpk)γ

2
(ktq) + γ

2
(hpk)γ

2
(kqt)−

− γ
2
(hpk)γ

1
(ktq)

]
,

where

(21) R̃
3

s
ijr = Γs

ij,r − Γs
ir,j +

1
2
(Γp

ijΓ
s
rp + Γp

jiΓ
s
pr − Γp

irΓ
s
pj − Γp

riΓ
s
jp)

is the “derived” 3rd kind curvature tensor of the GRN .

Proof. By virtue of (48’), (51), (35), (37) in [6], we have

λ(h)i|
1
jr − λ(h)i|

1
r |
2
j + λ(h)i|

2
jr − λ(h)i|

2
r |
1
j = −2R̃

3

s
ijr λ(h)s

and the use of (13) yields the integrability condition (20).

Theorem 9. The fifth integrability condition of the equation (13) is

(22)

[
−3R̃

4

s
ijrλ(h)s + Γs

jr

(
λ(h)i|

1
s + λ(h)i|

2
s

)]
λi

(p)λ
j
(q)λ

r
(t) =

= 2γ
2
(hpq),jλ

j
(t) − 2γ

2
(hpt),jλ

j
(q) + γ

1
(hpq),jλ

j
(t) − γ

1
(hpt),jλ

j
(q)+

+
∑

k

e(k)

[
γ
2
(hkq)γ

2
(kpt)−γ

1
(hkt)γ

2
(kpq)+γ

1
(hkq)γ

2
(kpt)−γ

2
(hkt)γ

1
(kpq)+

+ γ
2
(hkq)γ

1
(kpt) − γ

2
(hkt)γ

2
(kpq) + γ

2
(hpk)γ

2
(kqt) − γ

1
(hpk)γ

2
(ktq)+

+ γ
1
(hpk)γ

2
(kqt) − γ

2
(hpk)γ

1
(ktq) + γ

2
(hpk)γ

1
(kqt) − γ

2
(hpk)γ

2
(ktq)

]
,

where

(23)
R̃
4

s
ijr =

1
3
(Γs

ij,r − Γs
ir,j + 2Γs

ji,r − 2Γs
ri,j + Γp

ijΓ
s
rp + Γp

jiΓ
s
pr−

− Γp
riΓ

s
pj − Γp

riΓ
s
jp + Γp

jiΓ
s
rp − Γp

irΓ
s
jp − 2Γs

pi Γ
p
jr )
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is the “derived” fourth kind curvature tensor of the GRN .

Proof. We use that Ricci-type identity in which the curvature tensor
R̃
4

appears. From (52’), (56’) and (62) in [6], we have

λ(h)i|
2
jr − λ(h)i|

1
r |
2
j + λ(h)i|

1
j |
2
r − λ(h)i|

2
r |
1
j + λ(h)i|

2
j |
1
r − λ(h)i|

2
rj =

= −3R̃
4

s
ijrλ(h)s + Γs

jr (λ(h)i|
1
s + λ(h)i|

2
s),

and then use (13).
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