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Ricci coefficients of rotation in a generalized
Riemannian space

By SVETISLAV M. MINCIC (Nis)

Abstract. Because of nonsymmetry of the fundamental tensor in a generalized
Riemannian space (GRy), the connexion, defined on the base of such a fundamental
tensor, is nonsymmetric too. Therefore, it is possible to define in this space two kinds
of Ricci coefficients of rotation.

In this work we define the mentioned coefficients in a GRy and examine their
properties as well as their connection with the Ricci coefficients of rotation in the
associated Riemannian space, that is in the Riemannian space whose fundamental tensor
is the symmetric part of the fundamental tensor of the GR .

Introduction

An N-dimensional manifold equipped with a nonsymmetric funda-
mental tensor (g;;) is said to be a generalized Riemannian space GRy (see
[1], [2]). We denote the symmetric and the antisymmetric part of (g;;) by
(9i5) and (gi; ), resp. Lowering and raising the indices of these tensors will

be used automaticly; then e.g.
(1) gijgﬁ = 55 .

Denoting the ordinary partial derivative by a comma “,”, the Christoffel
symbols of (g;;) are defined by the well-known formula

1 , ,
(2) ik = §(gjz‘,k — Yjk,i T+ gik,j)a ;k = gy jk-
These are also nonsymmetric in the indices 7, k.

On the base manifold of GR one can also introduce a usual Riemann-
ian metric, namely the Riemannian metric defined by (g;;). The resulting
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Riemannian space will be denoted by Ry and will be mentioned as the
associated space of GRy. The canonical connection of Ry is just the sym-

metric part of the connection I‘; > 1-€. Fi’f’ constructed from gij- Denoting
k

Qa

of covariant derivatives for a vector u* in GRy, namely

by a semicolon “;” the covariant derivative w.r.t. I'Y., we have two kinds

u‘f1 = uzn + F%?)up = uzn + (I‘;ﬂ + F;n)up,
3
that is
(3) ugn =ul, + (—1)0T;Pup, 0=1,2.
Analogously, for a form wv;
(4) Vijn = Viin + (=T v,, 0=1,2.

1. Congruence of curves and orthogonal ennuple

Definition 1. A congruence of curves in a GRy is such a family of
curves that trough each point of GRy passes one curve of the family.
N mutually orthogonal congruences of curves constitute an orthogonal
ennuple. Instead of congruences of curves, we shall sometimes speak about
congruences of the corresponding tangent vectors.

If Ay (R =1,..., N) are unit tangent vectors of congruences of curves

of an orthogonal ennuple, then, in virtue of the previous definition

(5) 9NNy = emOnes ey = 1,
or
(57 e Al Ak = Onks

where 0y are the Kronecker symbols. (Of course, we do not mean sum-
mation w.r.t. (k) in (5), (5’) and in similar formulas later on.) The next
theorem expresses the basic properties of orthogonal ennuples.

Theorem 1. For the unit tangent vectors Ay (h =1,...,N) of con-
gruences of curves of an orthogonal ennuple the relations

N
(6 a,b) N ewAmiNey =0, Y ewrmiram = giss
k=1 k

(6¢) D e = 92
k
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are valid.

PROOF. In the determinant det ()\1( n))> whose value is 1, we can regard
e(k)A(k)i as the cofactor of the element )\ék). Developing the determinant

either by rows or by columns it (6a) follows.
Further, we have

Z e(k) A (k)i (k)] = gﬂz €k A(k)iA k) o 2L 51 = (6).
k k

(6¢) can be obtained in the same manner.

2. Definition and basic properties of the coefficients of a rotation

Using the two kinds of covariant derivative of a vector in a GRy, we
can define two kinds of coefficients of rotation ([3], §32, [4], ch.VI), as two
systems of invariants (for 6 = 1, 2).

Definition 2. The invariants
(7) /g(hkm) = )\(h)igj)\zk)/\im) = Azh)éj)\(k)i)\zm)’ 0=1,2

are said to be the coefficients of rotation of the given orthogonal ennuple.

Theorem 2. Both kinds of coefficients of rotation are antisymmetric
in their first two indices, i.e.

(8) 'g(hkm) = _Z’(khm) = z(hhm) =0.
PROOF. By covariant differentiation we get from (5’) the relation
e | Alny A0 + M Awiys |=o,
from where, transvecting by )\{m),

€(k) [Aﬁm 1A®A ) A A®)i|iA ) } & ew [g(hkm Y Gnm) [ =0,

that is
'g(hkm) + ’g(khm) =0 = (8).
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Theorem 3. If
(9) V(hkm) = /\(h)i;j)‘ék)/\zm)

are the coefficients of rotation in the associated Riemannian space Ry, we
have the relations

(A0) Yeusm) = Yousm) + (TG MrgpApg Xy 0= 1,2
(A1) Yukm) = (Y(hkm) + Z(hkm))/z

(12) ’g(hkzh) = Y(hkh)> Z(hhk) = Y(hhk) ’g(hkk) = Ynrk)y, 0=1,2.

PRrOOF. In virtue of (7) and (4)
Yoy = Pwyisg + (=18 Awypl Alky Moy - (10

In virtue of (10), for two coinciding indices there follows (12), because it
is for example (for h =m) :

T Amp At Xy = Tosg Xy Ao Ainy = Lo Ay Ay A

_ . \P 7 i
= ~Lpij Ay A Aty = 0-

Here we applied the fact that I', ;; is antisymmetric in all pairs of indices
(which can be easily seen from (2)).

3. Expression of the derivative of the vectors of a
congruence by the coefficients of rotation
Theorem 4. In a GRy the relation
N
(13) Amyirs = > €() ) Y () A k)i A ()

k,m=1
is valid.

PROOF. Multiplying the relation (7) by e(x)e(m)Ar)pA(m), and sum-
ming with respect to k, m, we get

D k)€ em A A )y = D )iy Ny Mo €09 € M Am), =
k,m

k,m

= )\(h)i(Lj { zk:e(k))‘(k)p)‘ék) } ' { Ze(m)A(m)q)‘gm) }(6:a)
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—Nh)m“ /\(h)pgq = (13).

Theorem 5. The covariant derivatives of the vectors A(); and )‘éh)

in the direction of the vector )\{p) can be expressed by the coefficients of
rotation as a linear combination of the vectors of the ennuple as follows:

(14a) )\(h)uy (p) Ze(k)’y(hkp))\(k)w

(14b) )‘(h)u Iy = Ze(M(hkp)A(k)

PRrROOF. Transvecting the equation (13) by /\Zp), we obtain

/\(h)ug (p) Ze(k)e(m)’y(hkm))‘(k)l)‘(mﬁ/\(P) (5

k,m

)

= Z 6(1<;)’Y(hkm))\(k)z5mp Z e(k)’g(hkp))\(k)i = (14)
k,m k

4. Integrability conditions of the equation (13)

The relation (13) is a partial differential equation with respect to the
unknown functions A,y:. Now we are going to examine its integrability
conditions.

In [5] we have obtained 10 Ricci-type identities in a GRy. In three
of these identities appear the curvature tensors ]1%, ]2%, ]3%, and in the oth-

ers appear the quantities él, ey 1A5, which have the form and the role of

the curvature tensors, but they are not tensors. In [6] we have obtained
combined Ricci-type 1dent1t1es in which appear “derived” curvature ten-

sors R 1;% In [7] it is proved that only five are independent among the

mentloned curvature tensors, for example }12, ]2%, ];E, ]3:%, {;%, while the others

are linear combinations of these five tensors. We shall use further those of
the Ricci-type identities in which appear the above tensors (the tensor }1%

is a linear combination of ]1%, ]2%, while the tensor ];i does not appear in the

identities which we need).
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Theorem 6. In a GRy the first two integrability conditions (6 = 1,2)
of equation (13) are

s s z YA
[ =B Agns +2(-1) L3 Amiss | AN Ao
= z(hPQ)yj)\Zt) - z(hpt)’j)‘gQ)jL
15y
+ Z e(k) { V(hka)Y (kpt) = Y (hkt) Y (kpg) + Y (hok) Y (kat) = V(hta)] }’
P 0 0 9 9 0 0 ¢

0=1,2,
where
(16) ]ﬁsijr = Pfj,r - Ffr,j + Ffjrfw - Ffrrzszj’
(17) ézsijr =T — %, + 1510, —T0T5,

are the 1st and the 2nd kind curvature tensors of the GRy .

PROOF. Applying the Ricci-type identities (6), (11) from [5], we have

Awyiyjr = Awyir = =B igeAmys + 21T Apyiysr 0= 1,2,

0 0 0

By repeated differentiation of (13) one can form the difference on the left
side of this equation, and then (15) easily follows.

Theorem 7. The third integrability condition of the equation (13) in
a GRN is

(18) — é%sz]T)\(h)SAEp)A%q)Aa) = '}/(hpq),j)‘gt) — z(hpt)ﬁ)\zq)—{—

N
+ Z €(k) [’Y(hkq)’Y(kpt) = Y(hkt)Y(kpq) T 7V (hpk) Y (kqt) — ’V(hpk)’Y(ktq)],
1 1 2 2 1 1 2 2 1
where
(19) ]3%5”-7, = Ffjw —Is . 4+TPT8 —TPTS. 4 I‘fj(l“;i — I‘fp)

74,5 ijtrp riT pj

is the 3rd kind curvature tensor of the GR .

PROOF. Applying the corresponding identity from [5] we get
)\(h)iljér - )\(h)iérlj = i Am)s-

Further, use (13) to form the difference on the left side.
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Theorem 8. The fourth integrability condition of the equation (13)
in a GRy is

—2§sljr)\(h)s)\ép))\'zq)>\€t) —
=Y wa).i Moy ~ Vhwt).d Mg + Y (hwa) 3N ~ Jhot)i Nyt

N

(20) + e [ V(hka) Y (kpt) ~ Y (k)Y (kpa) T Y (hka) Y (hpt) ~
=1 1 1 1 2 2 2

~ Y0kt Y (kpa) + k)Y (kat) — Y (hpk) Y (ta) + Juk) Y (kat) ~
- z(hpk)Y(th) }7

where

(21) {?Sz‘jr =17

13,7

S 1 S S S S
fril7j+§(I‘pAF + T2 —TPTS. —TPT% )

iy Trp ji— pr ir pj ri- jp
is the “derived” 3rd kind curvature tensor of the GRy.

PRrOOF. By virtue of (48’), (51), (35), (37) in [6], we have
Awyigr = Awyirrg + Awyipir = Amwyiprii = 20450 Aw)s
1 12 2 21

and the use of (13) yields the integrability condition (20).
Theorem 9. The fifth integrability condition of the equation (13) is

| =3B Ams + T ( Mwnigs + Mwpigs )| MMy Xy =
= 2’2Y(hpq),j)‘{t) - 2¥(hpt),j>‘{q) + Y(hm%j)‘{t) - ¥(hpt)vj)‘{q)+

(22) + zk: (k) [g(hkq)g(kpt) _Y(hkt)z(kpq)"’?(hktﬁz(kpt) _z(hkt)Y(kPQ)+
+ Y (hka)Ykpt) — Y(hkt) Y (kpa) + Y (k)Y hat) — Y (hk) Y (kta) T

Y)Y kat) — Y(hok) Y (kta) + Y (k)Y (hat) Y (hok) ] (kta) ] )

- 1
S = — S

(23) Fir =3
~ TP TS, TP +ThTs —TPTS — 203 7 )

ri— pJ riT jp jitrp irT jp pi- gr

— T3, 4205, — 208,  + [0S + 7 rs

ji,r r%,J ijo rp jitpr
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is the “derived” fourth kind curvature tensor of the GRy .

_ PROOF. We use that Ricci-type identity in which the curvature tensor
{4% appears. From (52’), (56’) and (62) in [6], we have

Ahyijr = Amyirrii T Awyiiir — Amyirs T Awyigir — Anyiprg =
2 1 2 12 21 21 2
= *3§sijr>\(h)s + F_}_«()\(h)qs + A(h)zgs),

and then use (13).

References

[1] L. P. EISENHART, Generalized Riemannian spaces I, Proc. Nat. Acad. Sci. USA 37
(1951), 311-315.

[2] L. . EISENHART, Generalized Riemannian spaces II, Proc. Nat. Acad. Sci. USA 38
(1952), 505—-508.

[3] T. P. ANDELIC, Tenzorski racun, Beograd.

[4] C. E. WEATHERBURN, Riemannian Geometry and the Tensor Calculus, Cambridge
U.P. (1950).

[6] S. M. MINCIC, Ricci identities in the space of non-symmetric affine connexion,
Matematicki vesnik 10(25),sv.2 (1973), 161-172.

[6] S. M. MING18, Curvature tensors of the space of non-symmetric affine connex-
ion, obtained from the curvature pseudotensors, Matematicki vesnik 13(28) (1976),
421-435.

[7] S. M. MINC1G, Independent curvature tensors and pseudotensors of spaces with
non-symmetric affine connexion, Colloguia Math. Societas Janos Bolyai, 31. Diff.
Geometry (1979), Budapest (Hungary).

SVETISLAV M. MINCIC
UNIVERSITY OF NIS
PHILOSOPHICAL FACULTY
NIS, YUGOSLAVIA

(Received April 27, 1990)



