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General determinantal representation of generalized
inverses of matrices over integral domains

By PREDRAG S. STANIMIROVIĆ (Nǐs)

Abstract. In this paper we derive a determinantal formula of {1, 2} generalized
inverses, for matrices over an integral domain and over a commutative ring. The corre-
sponding results are derived for the set of matrices which have rank factorizations as well
as for the matrices which do not have rank factorizations. The determinantal formula
of {1, 2} inverses for matrices which do not have rank factorizations, is derived using
the characterizations of the class of reflexive g-inverses from [10] and [19]. For the set of
matrices which have rank factorizations, the determinantal formula of {1, 2} inverses is
derived using a general representation of {1, 2} inverses and the general determinantal
representation from [20]. Also, we examine the existence of this determinantal formula.
Representations and conditions for the existence of {1, 2, 3} and {1, 2, 4} inverses are
introduced for the set of matrices which allow a rank factorization. Determinantal rep-
resentations of the Moore–Penrose inverse, the weighted Moore–Penrose inverse and
the group inverse are derived for arbitrary matrices. Moreover, we investigate represen-

tations of the minors from A(1,2), A†, A†M,N and A(1,2) by means of the expressions

involving minors of A and the corresponding minors of randomly chosen matrices which
satisfy specified conditions. If A allows a full-rank factorization, we obtain additional
results for {1, 2, 3} and {1, 2, 4} inverses of A. Also, a determinantal representation of
the corresponding solutions of a given linear system is investigated.

1. Introduction and preliminaries

Let us consider the set of matrices over an integral domain I with an
involution λ : a 7→ a and with unity 1. The totality of m × n matrices of
rank r over I is denoted by Im×n

r . The adjoint matrix of a square matrix B

is denoted by adj(B), its determinant by |B|, and the trace of B is denoted

Mathematics Subject Classification: 15A09, 11Y05.
Key words and phrases: reflexive g-inverses, full-rank factorization, determinantal rep-

resentation.
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by Tr(()B). The determinantal rank ρ(A) of a matrix A is defined as the
size of the largest nonvanishing minor of A. A k × k identity matrix is
denoted by Ik.

For any m×n matrix A, consider the following Penrose equations in G,
where the superscript ∗ denotes the transformation (aij) 7→: (aij)∗ = aji:

(1) AGA = A (2) GAG = G

(3) (AG)∗ = AG (4) (GA)∗ = GA

In the case m = n, consider the equation

(5) AG = GA.

A matrix G satisfying the equation (1) is called a g-inverse of A. If G

satisfies (1) and (2), it is called a reflexive g-inverse of A. The group
inverse of A, denoted by A#, is the unique solution of the equations (1),
(2) and (5). The Moore–Penrose inverse of A, denoted by A†, is the unique
solution of the equations (1)–(4). For a sequence S of elements from the
set {1, 2, 3, 4, 5}, the set of matrices obeying the equations represented in
S is denoted by A{S}. A matrix from A{S} is called an S-inverse of A

and denoted by A(S).

The weighted Moore–Penrose inverse A†M,N is the unique solution of
the matrix equations (1), (2) and the following matrix equations:

(6) (MAG)∗ = MAG (7) (NGA)∗ = NGA,

where M and N are nonsingular matrices of the order m×m and n× n,
respectively.

We follow the notation from [1–3], [10–14], [19]. Let A be an m × n

matrix of rank r over I; let α = {α1, . . . , αr} and β = {β1, . . . , βr} be
subsets of {1, . . . ,m} and {1, . . . , n}, respectively. Then

∣∣∣Aα
β

∣∣∣ denotes the
minor of A determined by the rows indexed by α and the columns indexed
by β. By Cr(A) is denoted the rth compound matrix of A with rows
indexed by r-element subsets of {1, . . . , m}, columns indexed by r-element
subsets of {1, . . . , n}, and the (α, β) entry defined by

∣∣∣Aα
β

∣∣∣.
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For 1 ≤ k ≤ n, the collection of strictly increasing sequences of k
integers chosen from {1, . . . , n}, is denoted by

Qk,n = {α : α = (α1, . . . , αk), 1 ≤ α1 < · · · < αk ≤ n} .

Let N = Qr,m ×Qr,n. For fixed α ∈ Qk,m, β ∈ Qk,m, 1 ≤ k ≤ r, let

I(α) = {I : I ∈ Qr,m, I ⊇ α} , J (β) = {J : J ∈ Qr,n, J ⊇ β} ,

N (α, β) = I(α)× J (β).

If A is a square matrix, then the coefficient of
∣∣∣Aα

β

∣∣∣ in the Laplace

expansion of |A| is denoted by
∂

∂
∣∣∣Aα

β

∣∣∣
|A|. For the special case α = {i},

β = {j}, we give the cofactor of aij :
∂

∂aij
|A|.

Also, we use the following notation. Let Aα
β denote the submatrix of

A determined by the rows contained in α and the columns contained in
β, and αz denote the vector {zα1 , . . . , zαr}T . Let A (i → z), i ∈ {1, . . . , n}
denote the matrix obtained from A replacing its column i by the vector z.

All the reflexive g-inverses of a matrix over an integral domain are
characterized in [10].

Proposition 1.1 [10]. An arbitrary matrix A ∈ Im×n
r has a reflexive

g-inverse G if and only if there exist λα,β ∈ I, (α, β) ∈ N , satisfying

(1.1)
∑

(α,β)∈N
λα,β

∣∣Aα
β

∣∣ = 1,

where the
(
m
r

)× (
n
r

)
matrix Λ = (λα,β) satisfies

(1.2) rank(Λ) = 1.

In this case G = (gij) is given by

(1.3) gij =
∑

(α,β)∈N (j,i)

λα,β
∂

∂aji

∣∣Aα
β

∣∣ , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

For the sake of completeness, we restate the determinantal represen-
tations and conditions for the existence of the Moore–Penrose inverse, the
weighted Moore–Penrose inverse and the group inverse over an integral
domain, introduced in [1], [11], [12], [13].
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Proposition 1.2 [1]. Let A be an m× n matrix of rank r over I, and

let A = PQ be a rank factorization of A. Then the following conditions

are equivalent:

(i) A has a Moore–Penrose inverse.

(ii) P ∗P and QQ∗ are invertible over I.

(iii) Cr(A) has a Moore–Penrose inverse.

(iv)
∑

(α,β)∈N

∣∣∣Aα

β

∣∣∣ ·
∣∣∣Aα

β

∣∣∣ = Tr(Cr(A∗A)) is invertible in I.

Furthermore, the Moore–Penrose inverse A† = (gij), if it exists, is given

by A† = Q∗(QQ∗)−1(P ∗P )−1P ∗, and its determinantal representation is

gij =


 ∑

(γ,δ)∈N

∣∣∣Aγ

δ

∣∣∣ |Aγ
δ |



−1

·
∑

(α,β)∈N (j,i)

∣∣∣Aα

β

∣∣∣ ∂

∂aji

∣∣Aα
β

∣∣ .

Proposition 1.3 [12], [13]. Let A be an m×n matrix of rank r over I,
M and N be invertible matrices of the order m×m and n×n, respectively,

and A = PQ be a rank factorization of A. Then the following conditions

are equivalent:

(i) A has a weighted Moore–Penrose inverse A†M,N .

(ii) P ∗MP and QN−1Q∗ are hermitian and invertible over I.

(iii) Cr(A) has a weighted Moore–Penrose inverse with respect to Cr(M)
and Cr(N).

(iv) Tr(Cr(N−1A∗MA)) is invertible in I.

The weighted Moore–Penrose inverse, if it exists, is given by

A†M,N = N−1Q∗(QN−1Q∗)−1(P ∗MP )−1P ∗M

= (QN−1)∗(Q(QN−1)∗)−1((MP )∗P )−1(MP )∗,

and the determinantal representation of its arbitrary (i, j)th element is

gij =
(
Tr(Cr(N−1A∗MA))

)−1 ·
∑

(α,β)∈N (j,i)

∣∣(N−1A∗M)β
α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣ .
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Proposition 1.4 [11]. Let A be an m × n matrix of rank r over I.
Then the following conditions are equivalent:

(i) A has a group inverse.

(ii) Cr(A) has a group inverse.

(iii)
∑
γ

∣∣Aγ
γ

∣∣ is invertible in I.

(iv) ρ(A) = ρ(A2), and A2 is regular.

Furthermore, the group inverse G = (gij), if it exists, is given by

gij =

(∑
γ

∣∣Aγ
γ

∣∣
)−2

·
∑

(α,β)∈N (j,i)

∣∣Aβ
α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣ .

The main results of this paper are as follows:

(1) Generalization of the concepts of algebraic complement and de-
terminant. Incidentally, we derive a general determinantal representation
of {1, 2} inverses and conditions for their existence, for matrices which
allow full-rank factorizations over an integral domain. In certain cases,
we introduce explicit determinantal representations and conditions for the
existence of {1, 2, 3}, {1, 2, 4} inverses, which contain known determinan-
tal representations and conditions for the existence of the Moore–Penrose
inverse. Also, we investigate determinantal representations and some more
characterizations of the weighted Moore–Penrose and the group inverse.

(2) For matrices which do not have rank factorizations we obtain a
determinantal formula for {1, 2} inverses and introduce a few necessary
and sufficient conditions for the existence of this representation, using the
results of Proposition 1.1. In exactly defined cases we derive determinantal
representations and conditions for the existence of the Moore–Penrose,
weighted Moore–Penrose and the group inverse.

(3) Also, we introduce a determinantal representation of the reflexive
g-inverses, using their characterization introduced in [19]. For this purpose
we introduce the notion of a general determinantal representation of a
variable order.

(4) We investigate correlations between the minors of a given matrix
A, minors of the matrix W which satisfy certain conditions, and the cor-
responding minors selected from A(1,2), A†, A†M,N and A#. If A allows a
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rank factorization, we obtain additional results for {1, 2, 3} and {1, 2, 4}
inverses of A.

(5) Furthermore, we obtain an explicit Cramer-type determinantal
representation and conditions for the existence of the solution of a given
system of linear equations Ax = z, by means of the derived determinantal
representation for {1, 2} inverses of A. In partial cases we derive the de-
terminantal formula for the least-squares solution [4], the minimum norm
least-squares solution [5] and the weighted minimum norm least-squares
solution [12], [13].

2. General determinantal representation

The concepts of determinant, algebraic complement, adjoint matrix
and determinantal representation of generalized inverses are generalized
in the following definition (see also [20]):

Definition 2.1. Let A, R be m× n matrices of rank r.
(i) The generalized determinant of A with respect to R, denoted by

N(R,r)(A), is equal to

N(R,r)(A) =
∑

(α,β)∈N

∣∣∣Rα

β

∣∣∣
∣∣Aα

β

∣∣ = Tr(Cr(R∗A)).

(ii) The generalized algebraic complement of A corresponding to aij is

A
(†,R)
ij =

∑

(α,β)∈N (j,i)

∣∣∣Rα

β

∣∣∣ ∂

∂aji

∣∣Aα
β

∣∣ ,

(
1 ≤ i ≤ n

1 ≤ j ≤ m

)
.

(iii) The generalized adjoint matrix of A with respect to R is denoted by
adj(†,R)(A), and it is equal to the matrix whose elements are equal to

A
(†,R)
ij ,

(
1 ≤ i ≤ n

1 ≤ j ≤ m

)
.

(iv) The general determinantal representation for generalized inverses of
A with respect to R is equal to

A(†,R) =
(
N(R,r)(A)

)−1 · adj(†,R)(A).

For two full-rank matrices A and R the following results can be veri-
fied:
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Proposition 2.1 [20]. If A is an m × n matrix of full-rank and the
matrix R has the same dimensions and rank, then:

(i) N(R,r)(A) =
{ |AR∗|, r = m

|R∗A|, r = n,

(ii) A
(†,R)
ij =

{ (R∗ adj(AR∗))ij , r = m

(adj(R∗A)R∗)ij , r = n,

(
1 ≤ i ≤ n

1 ≤ j ≤ m

)
,

(iii) A(†,R) =
{

R∗(AR∗)−1, r = m

(R∗A)−1R∗, r = n,

(iv) adj(†,R)(A) =
{

R∗ adj(AR∗), r = m

adj(R∗A)R∗, r = n.

The main properties of the generalized adjoint matrix , the generalized
algebraic complement and the generalized determinant are investigated
in [20].

Proposition 2.2 [20]. Let A = PQ be a full-rank factorization of an
m× n matrix A of rank r, R1 be an n× r matrix A of rank r and R2 be
an r ×m matrix A of rank r. Then:

(i) adj(†,R1)(Q) · adj(†,R2)(P ) = adj(†,R2R1)(A);
(ii) N(R1,r)(Q) ·N(R2,r)(P ) = N(R2,r)(P ) ·N(R1,r)(Q) = N(R2R1,r)(A);

(iii) Q(†,R1) · P (†,R2) = A(†,R2R1).

Remark 2.1. In the special case R = A the function N(R,r)(A) reduces
to the function ∆2

r(A) examined in [3]. Also, in the case R1 = Q, R2 = P ,
the statement (ii) from Proposition 2.2 produces a well-known property of
the function ∆2

r(A) [3]:

∆2
r(PQ) = ∆2

r(P ) ·∆2
r(Q).

Also, we propose the following extensions of the presented notations,
which are based on the minors of the order s ≤ r = rank(A):

Ns = Qs,m ×Qs,n, where s ≤ r = rank(A);

for fixed α, β ∈ Qp,n, 1 ≤ p ≤ s, let

Is(α) = {I : I ∈ Qs,m, I ⊇ α} , Js(β) = {J : J ∈ Qs,n, J ⊇ β} ,

Ns(α, β) = Is(α)× Js(β).
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We are now in a position to define the notions of generalized deter-
minant, algebraic complement, adjoint matrix and general determinantal
representation of a variable order.

Definition 2.2. Let A, R be m×n matrices which satisfy rank(A) = r,
rank(R) = s ≤ r, where s is an arbitrary integer.

(i) The generalized determinant of the order s of A, denoted by N(R,s)(A),
is equal to

N(R,s)(A) =
∑

(α,β)∈Ns

∣∣∣Rα

β

∣∣∣
∣∣Aα

β

∣∣ .

(ii) The generalized algebraic complement of the order s of A correspond-
ing to aij is the following expression:

A
(†,R,s)
ij =

∑

(α,β)∈Ns(j,i)

∣∣∣Rα

β

∣∣∣ ∂

∂aji

∣∣Aα
β

∣∣ ,

(
1 ≤ i ≤ n

1 ≤ j ≤ m

)
.

(iii) The generalized adjoint matrix of the order s of A with respect to R,
denoted by adj(†,R,s)(A), is the matrix whose elements are defined by
A

(†,R,s)
ij , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(iv) The general determinantal representation of the order s with respect
to R is equal to

A(†,R,s) =
(
N(R,s)(A)

)−1 · adj(†,R,s)(A).

3. General determinantal representation
with rank factorization

In the following theorem we investigate a determinantal formula for
the class A{1, 2} as well as a few necessary and sufficient conditions for
its existence, under the supposition that the matrix A allows a full-rank
factorization.

Theorem 3.1. Let A be an m × n matrix of rank r over I and A =
PQ be a full-rank factorization of A. Then the following conditions are

equivalent:

(i) A is regular.
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(ii) There exist matrices W1 ∈ In×r and W2 ∈ Ir×m, such that QW1 and

W2P are invertible matrices over I.
(iii) N(W∗

1 ,r)(Q) and N(W∗
2 ,r)(P ) are invertible in I.

(iv) N((W1W2)∗,r)(A) = Tr (Cr(W1W2 ·A)) is invertible in I.
(v) Cr(A) is regular over I.

In the case when A is regular, the set of {1, 2}-inverses of A is deter-

mined by the following general representation

A(1,2) = W1(QW1)−1(W2P )−1W2 = W1(W2AW1)−1W2

and by the following determinantal formula

A(1,2) = Q(†,W∗
1 )P (†,W∗

2 ) = A(†,(W1W2)
∗).

Proof. (i) ⇒ (ii): If A(1) exists then A(1,2) exists, and according to
[1], its general form is A(1,2) = Q−1

R P−1
L , where Q−1

R and P−1
L denote the

right inverse of Q and the left inverse of P , respectively. In order to develop
an effective determinantal representation for A(1,2), we derive the general
representations of the right and left inverses. Applying the principles from
[17, p. 20], it is easy to conclude that Q−1

R and P−1
L exist if and only if there

exist m ×m and n × n matrices U and V , respectively, such that QV Q∗

and P ∗UP are invertible. In that case, their general representations are

Q−1
R = V Q∗(QV Q∗)−1, P−1

L = (P ∗UP )−1P ∗U.

Consequently, when A is regular, there exist appropriate nonsingular ma-
trices QV Q∗ and P ∗UP , such that

A(1,2) = V Q∗(QV Q∗)−1(P ∗UP )−1P ∗U.

Using the substitutions W1 = V Q∗ and W2 = P ∗U , we conclude that
there exist matrices W1 and W2 of the order n× r and r×m, respectively,
such that QW1 and W2P are invertible matrices in I, and

A(1,2) = W1(QW1)−1 (W2P )−1W2.

(ii) ⇒ (i): If there exist matrices W1 and W2 of the order n × r and
r×m, respectively, such that QW1 and W2P are invertible, then it is not
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difficult to verify that W1(QW1)−1 (W2P )−1W2 is an {1, 2} inverse of A.
This implies that A is a regular matrix.

(ii) ⇔ (iii): A square matrix over a ring R is invertible if and only
if its determinant is invertible in R [8], [9]. Hence, QW1 and W2P are
invertible matrices over I if and only if |QW1| and |W2P | are invertible in
I. From Proposition 2.1, we obtain

|QW1| = N(W∗
1 ,r)(Q), |W2P | = N(W∗

2 ,r)(P ),

completing this part of the proof.

(iii) ⇔ (iv): The statement (ii) of Proposition 2.2 implies

N(W∗
2 ,r)(P ) ·N(W∗

1 ,r)(Q) = N((W1W2)∗,r)(A).

Therefore, N((W1W2)∗,r)(A) is invertible if and only if both N(W∗
2 ,r)(P ) and

N(W∗
1 ,r)(Q) are invertible.

(i) ⇔ (v): Follows from the results of the paper [18].

Also, using the general representation of the reflexive g-inverses and
the results from Proposition 2.1 and Proposition 2.2, we obtain

A(1,2) = W1(QW1)−1(W2P )−1W2 =

= (|QW1|)−1
W1 adj(W1Q) · (|W2P |)−1

W2 adj(W2P ) =

=
(
N(W∗

1 ,r)(Q)
)−1 adj(†,W

∗
1 )(Q) · (N(W∗

2 ,r)(P )
)−1 adj(†,W

∗
2 )(P ) =

= Q(†,W∗
1 )P (†,W∗

2 ) = A(†,(W1W2)
∗). ¤

The determinantal representations and the conditions for existence of
{1, 2, 3} and {1, 2, 4} generalized inverses are introduced in the following
two statements:

Theorem 3.2. Let A be an m×n matrix of rank r and A = PQ be a

full-rank factorization of A. Then the following conditions are equivalent:

(i) A(1,2,3) exists.

(ii) P ∗P is an invertible matrix over I and there exists W1 ∈ In×r, such

that QW1 is invertible over I.
(iii) N(W∗

1 ,r)(Q) and N(P,r)(P ) are invertible in I.
(iv) N(PW∗

1 ,r)(A) is invertible in I.
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(v) Cr(A) has a {1, 2, 3}-inverse.

In the case when A(1,2,3) exists, it is given by the general representa-

tion

A(1,2,3) = W1(QW1)−1(P ∗P )−1P ∗ = W1(P ∗AW1)−1P ∗

and by the following determinantal representation

A(1,2,3) = Q(†,W∗
1 )P (†,P ) = A(†,PW∗

1 ).

Proof. (i) ⇒ (ii): If G = A(1,2,3) exists, then according to [1], it is
equal to G = Q−1

R P−1
L . But, G = A(1,2,3) also satisfies the equation (3),

which implies AGG∗A∗A = A. Hence,

(QGG∗Q∗)(P ∗P ) = Ir,

which means that P ∗P is invertible. From the equation (3), using G =
Q−1

R P−1
L , we get

(P−1
L )∗P ∗ = PP−1

L .

Multiplying this equation by P from the right, we obtain

(P−1
L )∗P ∗P = P.

Using invertibility of the matrix P ∗P , we conclude

P−1
L = (P ∗P )−1P ∗.

The right inverse of Q is defined as in Theorem 3.1: Q−1
R exists if there

exists a W1 ∈ In×r, such that QW1 is invertible and Q−1
R = W1(QW1)−1.

(ii) ⇒ (i): If QW1 and P ∗P are invertible, it is not difficult to verify
that W1(QW1)−1(P ∗P )−1P ∈ A{1, 2, 3}.

The rest of the proof is similar to the proof of Theorem 3.1. ¤

Proposition 3.1. Assume that A is an m × n matrix of rank r and

A = PQ is a full-rank factorization of A. Then the following conditions

are equivalent:

(i) A(1,2,4) exists.

(ii) QQ∗ is invertible over I and there exists W2 ∈ Ir×m, such that W2P

is invertible over I.
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(iii) N(Q,r)(Q) and N(W∗
2 ,r)(P ) are invertible in I.

(iv) N(W∗
2 Q,r)(A) is invertible in I.

(v) Cr(A) has a {1, 2, 4}-inverse.

In the cases when A(1,2,4) exists, it possesses the following represen-

tations:

A(1,2,4) = Q∗(QQ∗)−1(W2P )−1W2 = Q∗(W2AQ∗)−1W2

= Q(†,Q)P (†,W∗
2 ) = A(†,W∗

2 Q).

Representations and characterizations of the Moore–Penrose inverse
follow from Theorem 3.2 and Proposition 3.1.

Corollary 3.1. For an m × n matrix A of rank r, the full-rank fac-

torization of which is given by A = PQ, the following conditions are

equivalent:

(i) A† exists.

(ii) QQ∗ and P ∗P are invertible matrices in I.
(iii) N(Q,r)(Q) and N(P,r)(P ) are invertible in I.
(iv) N(A,r)(A) is invertible in I.
(v) Cr(A) has a Moore–Penrose inverse.

When A† exists, it is given by

A† = Q∗(QQ∗)−1(P ∗P )−1P ∗ = Q∗(P ∗AQ∗)−1P ∗

= Q(†,Q)P (†,P ) = A(†,A).

Applying the principles of [12], [13] and the proof of Theorem 3.1,
we obtain known results from Proposition 1.3 and some complementary
results.

Proposition 3.2. For an m×n matrix A of rank r the full-rank factor-

ization of which is given by A = PQ and for invertible matrices M and N

of the order m and n, respectively, the following conditions are equivalent:

(i) A†M,N exists.

(ii) P ∗MP and QN−1Q∗ are hermitian and invertible matrices over I.
(iii) N(Q(N−1)∗,r)(Q) = N(QN−1,r)(Q) and N(M∗P,r)(P ) = N(MP,r)(P ) are

invertible in I.
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(iv) N(M∗A(N−1)∗,r)(A) = N(MAN−1,r)(A) is invertible in I.

(v) Cr(A) has a weighted Moore–Penrose inverse with respect to Cr(M)
and Cr(N).

Moreover,

A†M,N = (QN−1)∗(Q(QN−1)∗)−1((MP )∗P )−1(MP )∗

= N−1Q∗(QN−1Q∗)−1(P ∗MP )−1P ∗M

= Q(†,Q(N−1)∗)P (†,M∗P ) = Q(†,QN−1)P (†,MP )

= A(†,M∗A(N−1)∗) = A(†,MAN−1).

Proof. (i) ⇔ (ii) is a known result from [12] and [13]. Also,

A†M,N = N−1Q∗(QN−1Q∗)−1(P ∗MP )−1P ∗M

= (QN−1)∗(Q(QN−1)∗)−1((MP )∗P )−1(MP )∗

can be proved using principles from [13]. ¤

In the following theorem we introduce a few complementary conditions
for the existence of the group inverse with respect to Proposition 1.4.

Theorem 3.3. For a square matrix A = PQ of order n the following

conditions are equivalent:

(i) A# exists.

(ii) QP is an invertible matrix over I.

(iii) N(P∗,r)(Q) and N(Q∗,r)(P ) are invertible in I.

(iv) N(A∗,r)(A) is invertible in I.

(v)
∑
γ

∣∣Aγ
γ

∣∣ is invertible in I.

(vi) Cr(A) has a group inverse

When A# exists, it is given by

A# = P (QP )−2Q = P (QAP )−1Q

= Q(†,Q∗)P (†,P∗) = A(†,A∗).
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Proof. (i)⇒ (ii): The group inverse of A, when it exists, satisfies the
equation A2A# = A, which implies A2(A#)2A = A. Using the full-rank
factorization A = PQ, we conclude that

(QP )(Q(A#)2P ) = Ir

so that QP is a nonsingular matrix.

In this case, starting from A# = Q−1
R P−1

L and using the equation (5)
we get PP−1

L = Q−1
R Q. In view of the invertibility of QP , we derive

Q−1
R = P (QP )−1, P−1

L = (QP )−1Q,

which yields A# = P (QP )−2Q = P (QAP )−1Q.

(ii) ⇒ (i): If QP is invertible, it is not difficult to verify

A# = P (QP )−2Q = P (QAP )−1Q.

(iv) ⇔ (v): Follows from the following result [11]:

(
N(A∗,r)(A)

)−1 =

(∑
γ

∣∣Aγ
γ

∣∣
)−2

. ¤

Remark 3.1. In Theorem 3.1, Theorem 3.2 and Proposition 3.1 we
present an elegant proof and generalize known results for the set of complex
matrices, introduced in [16]. Also, the result (i) ⇔ (ii) of Theorem 3.3 and
the general representation of the group inverse represent a transfer of the
known results from [6], concerning the group inverse of complex matrices,
to the set of matrices over an integral domain.

In the following theorem we examine the existence of the general de-
terminantal representation of generalized inverses, under the hypothesis
that full-rank factorization is allowed.

Theorem 3.4. Let A, R be m× n matrices of rank r over I, A = PQ

be a full-rank factorization of A and R = ST be a full-rank factorization

of R. Then the following conditions are equivalent:

(i) A(†,R) exists.

(ii) QT ∗ and S∗P are invertible matrices in I.
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(iii) N(T,r)(Q) and N(S,r)(P ) are invertible in I.
(iv) N(R,r)(A) is invertible in I.
(v) The reflexive g-inverse (Cr(A))(†,R1) of Cr(A) exists, where R1 is an

arbitrary
(
n
r

)× (
m
r

)
matrix of rank 1.

Proof. From Proposition 2.2 and part (iii) of Proposition 2.1 we get

A(†,R) = Q(†,T ) · P (†,S) = T ∗(QT ∗)−1(S∗P )−1S∗.

Now the proof is implied by Theorem 3.1. ¤

4. Determinantal representation
without rank factorization

In the following theorem we derive a determinantal formula and con-
ditions for the existence of {1, 2}-inverses, using the characterization of
{1, 2}-inverses from [10] (restated in Proposition 1.1.) The results are
valid for arbitrary matrices over an integral domain.

Theorem 4.1. For a given matrix A ∈ Im×n
r the following conditions

are equivalent:

(i) A is regular.

(ii) There exist W ∈ In×m
r , such that N(W∗,r)(A) = Tr (Cr(W ·A)) is

invertible in I.
(iii) Cr(A) is regular over I.

In the case when A(1) exists, the corresponding reflexive g-inverse

G = (gij) of A possesses the following determinantal representation:

G = A(†,W∗).

Proof. (i) ⇒ (ii): If A is regular, then A has a reflexive g-inverse.
According to Proposition 1.1, an arbitrary reflexive g-inverse G = (gij) of
A is of the form (1.3), where the matrix Λ = (λα,β) satisfies the conditions
(1.1) and (1.2). We give an explicit representation of the matrix Λ and
conditions for its existence. The matrix Λ is of the order

(
m
r

) × (
n
r

)
and

rank(Λ) = 1, so that it can be generated in the form

Λ = c · Cr(WT ),
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where W is an n × m matrix of rank r and c is a constant from I. In
this way, the existence of the matrix Λ is defined by the existence of the
constant c. In the case when such a constant c exists, we can write

(4.1) λγ,δ = c · ∣∣W δ
γ

∣∣ , for all (γ, δ) ∈ N .

Now, from (4.1) and (1.1) we get

c ·

 ∑

(γ,δ)∈N

∣∣W δ
γ

∣∣ |Aγ
δ |


 =


 ∑

(γ,δ)∈N

∣∣W δ
γ

∣∣ |Aγ
δ |


 · c = 1.

It is evident that c ∈ I exists if and only if
∑

(γ,δ)∈N

∣∣W δ
γ

∣∣ |Aγ
δ | = N(W∗,r)(A) = Tr (Cr(W ·A))

is an invertible element in I. According to Proposition 1.1, this condition
for the existence of the matrix Λ is also a condition for the existence of an
arbitrary reflexive g-inverse of A. In this case, we obtain

c =
(
N(W∗,r)(A)

)−1
,

which implies, together with (4.1), the following:

(4.2) λγ,δ =
(
N(W∗,r)(A)

)−1 ∣∣W δ
γ

∣∣ , for all (γ, δ) ∈ N .

According to Proposition 1.1, when an arbitrary G = A(1,2) exists,
it is given by (1.3). Substituting (4.2) in (1.3), for arbitrary 1 ≤ i ≤ n,
1 ≤ j ≤ m we get

gij =
(
N(W∗,r)(A)

)−1 ∑

(α,β)∈N (j,i)

∣∣W β
α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣

=
(
N(W∗,r)(A)

)−1
A

(†,W∗)
ij

which means that G = A(†,W∗).

(ii) ⇒ (i): On the other hand, assume the existence of a matrix W ∈
In×m
r , such that N(W∗,r) is invertible. Consider the matrix Λ = (λα,β),

defined by
Λ =

(
N(W∗,r)(A)

)−1 · Cr(WT ).
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This implies
rank(Λ) = rank(Cr(WT )) = 1

and ∑

(α,β)∈N
λα,β

∣∣Aα
β

∣∣ = 1.

In this way, the conditions of Proposition 1.1 are satisfied, and A(1,2) exists,
which implies that A(1) exists. ¤

Problems 4.1. (i) In Theorem 4.1 it is shown that the matrix

(
N(W∗,r)(A)

)−1
Cr(WT ), W ∈ In×m

r

satisfies the conditions imposed on the matrix Λ, defined in Proposition 1.1.
In the light of this result, it seems interesting to state the following prob-
lem: To find alternative representations of the matrix Λ, if possible.

(ii) The results from [14] provide a reason to state the following prob-
lem: develop an effective determinantal representation of an arbitrary {1}-
inverse G = (gij) of A = (aij) in the form

gij =
∑

(α,β)∈N (j,i)

λα,β
∂

∂aji

∣∣Aα
β

∣∣ ,

finding the constants λα,β , which solve the following system [14]:

aij


 ∑

(α,β)∈N
λα,β

∣∣Aα
β

∣∣

 = aij , for all i, j.

A partial solution of this problem is given in Theorem 3.1 and Theorem 4.1,
appropriate for the class of reflexive g-inverses.

(iii) Using the known result from [18], it is possible to derive a deter-
minantal representation of A{1}, solving the system of equations (1.1).

Remark 4.1. (i) For A ∈ Cm×n
r , if the matrix W ∈ Cn×m

r satisfies∣∣W β
α

∣∣ = 1 for all (α, β) ∈ N , then the determinantal representation from
Theorem 4.1 reduces to the determinant and generalized inverses intro-
duced in [7].
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(ii) If the matrix W ∈ Cn×m
r is selected according to the condition

∣∣Wα
β

∣∣ = (−1)α1+···+αr+β1+···+βr for all (α, β) ∈ N ,

then the general determinantal representation from Theorem 4.1 yields the
definition of determinant and generalized inverses introduced in [15].

(iii) In the cases W = A∗, W = N−1A∗M (or W = (MAN−1)∗) and
W = A, from Theorem 4.1 we obtain the determinantal representations
and characterizations of the Moore–Penrose, the weighted Moore–Penrose
and the group inverse, respectively (introduced in [1], [12], [13], [11]).

In the case rank(A) = 1 we obtain the following representation and
characterization of the reflexive g-inverses of A:

Lemma 4.1. Assume that A is a given m×n matrix of rank 1 over I.
Then A is regular if and only if there exists an n×m matrix W of rank 1,
such that Tr(WA) is invertible.

In this case, the corresponding reflexive g-inverse G of A is given by

G = (Tr(WA))−1
W.

Proof. Using the result of Theorem 4.1, we conclude that A is reg-
ular if and only if Tr (C1(WA)) = Tr(WA) is invertible (which also means
that rank(WA) = 1).

Furthermore, in this case we show that the corresponding reflexive g-
inverse of A is given by G = (Tr(WA))−1

W. Since rank(A) = rank(W ) =
1, it is well-known (see for example [11]) that A and W can be represented
by A = xyT , W = uvT , where x, v are arbitrary matrices of the order
m × 1 over I, and y, u are arbitrary n × 1 matrices over I. Also, yT and
vT denote the transpose of the matrices y and v, respectively.

Now, for arbitrary 1 ≤ k ≤ m, 1 ≤ l ≤ n, we get the following:

(AWA)kl=
∑

i,j

akiwijajl =
∑

i,j

xkyT
i uiv

T
j xjy

T
l

=
(∑

i,j

uiv
T
j xjy

T
i

)
xkyT

l =
(∑

i

(WA)ii

)
akl=Tr(WA) · akl;

(WAW )lk=
∑

i,j

ulv
T
i xiy

T
j ujv

T
k =

(∑

i,j

xiy
T
j ujv

T
i

)
ulv

T
k

=
(∑

j

(WA)jj

)
alk = Tr(WA) · alk.
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Consequently, we get

AWA = Tr(WA)A, WAW = Tr(WA)W.

Now, it is not difficult to verify that the matrix G = (Tr(WA))−1 · W
satisfies the equations (1) and (2).

AGA = (Tr(WA))−1 ·AWA = (Tr(WA))−1 Tr(WA)A = A

GAG = (Tr(WA))−2
WAW = (Tr(WA))−2 Tr(WA)W

= (Tr(WA))−1
W = G. ¤

In the following theorem we derive a determinantal representation of
the reflexive g-inverses in the category of finite matrices over a commuta-
tive ring by means of their characterization introduced in [19], and using
the result of Theorem 4.1 and Lemma 4.1. For this purpose, suppose that
R is a commutative ring with 1 and with involution λ : a 7→ a. For a finite
matrix A from R, let ρ(A) denote the determinantal rank of A, and let
Cs(A) be the ideal of R generated by the s× s minors of A.

Theorem 4.2. Let A be an m × n matrix over R with Rao index t,

idempotents iA = (e1, . . . , et) and ranks ρA = (r1, . . . , rt). If A is regular,

then an arbitrary reflexive g-inverse G of A is equal to

G =
t−1∑
s=1

A(†,(esW )∗,rs) =
t−1∑
s=1

(esA)(†,(esW )∗,rs),

where W is an arbitrary n×m matrix of rank r.

Proof. According to Theorem 2 from [19], an arbitrary reflexive g-
inverse G = (gij) of A can be represented in the form

(4.3) gij =
t−1∑
s=1

(ABs)ij =
t−1∑
s=1

∑

(α,β)∈Nrs (j,i)

(Bs)β,α
· ∂

∂aji

∣∣Aα
β

∣∣

where Bs is a reflexive g-inverse of Crs(esA), s = 1, . . . , t − 1. In view of
Lemma 4.1 we can use

Bs = [Tr (Hs · Crs(esA))]−1
Hs, s = 1, . . . , t− 1
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where Hs is an arbitrary
(

n
rs

) × (
m
rs

)
matrix of rank 1. We can use Hs =

Crs(Ws), where Ws = esW are n×m matrices of rank rs, s = 1, . . . , t− 1,
and W is an n ×m matrix of rank r. The element es is an idempotent,
which produces

Tr (Hs · Crs(esA)) = Tr (Crs(esW )Crs(esA)) =
∑

(γ,δ)∈Nrs

∣∣(esW )δ
γ

∣∣ |(esA)γ
δ |

= es

∑

(γ,δ)∈Nrs

∣∣(esW )δ
γ

∣∣ |Aγ
δ | = es Tr (Crs(esWA))

= es

∑

(γ,δ)∈Nrs

∣∣W δ
γ

∣∣ |Aγ
δ | =

∑

(γ,δ)∈Nrs

∣∣(esW )δ
γ

∣∣ |Aγ
δ |

= Tr (Crs(esWA)) .

Hence

(4.4)
Bs = [Tr (Crs(esWA))]−1

Crs(esW )

= [es Tr (Crs(esWA))]−1
Crs(esW ).

Now, from (4.3) and (4.4), using that es is an idempotent, we get

gij =
t−1∑
s=1

∑

(α,β)∈Nrs (j,i)

[Tr (Crs(esWA))]−1
Crs(esW )

β,α

∂

∂aji

∣∣Aα
β

∣∣

=
t−1∑
s=1

[
N((esW )∗,rs)(A)

]−1 ∑

(α,β)∈Nrs (j,i)

∣∣(esW )β
α

∣∣ es
∂

∂aji

∣∣Aα
β

∣∣

=
t−1∑
s=1

[
N((esW )∗,rs)(A)

]−1 ∑

(α,β)∈Nrs (j,i)

∣∣(esW )β
α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣

=
t−1∑
s=1

[
N((esW )∗,rs)(A)

]−1
A

(†,(esW )∗,rs)
ij .

This implies

G =
t−1∑
s=1

A(†, (esW )∗,rs).
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Finally, it is not difficult to verify the following:

gij =
t−1∑
s=1

[Tr (Crs(esWesA))]−1
∑

(α,β)∈Nrs (j,i)

∣∣(esW )β
α

∣∣ ∂

∂(esA)ji

∣∣(esA)α
β

∣∣

=
t−1∑
s=1

[
N((esW )∗,rs)(esA)

]−1 (esA)(†,(esW )∗,rs)
ij

which is equivalent to

G =
t−1∑
s=1

(esA)(†,(esW )∗,rs). ¤

Remark 4.2. (i) As a motivation for the results of Theorem 4.2 we use
the following facts. From Theorem 4.2, in view of Theorem 4.1, we get

A(1,2) =
t−1∑
s=1

(esA)(1,2),

which is a known result from [19].
(ii) If R does not contain zero divisors, then in the case iA = (1, 0),

ρA = (r, 0) the result of Theorem 4.2 reduces to the result of Theorem 4.1.

For the sake of underpinning of Theorem 4.2 we prove the following

Lemma 4.2. Let the matrix A satisfy the conditions as in Theo-
rem 4.2. Also, suppose that W is an n ×m matrix of rank r = rank(A)
and that the Ws = esW are n ×m matrices of rank rs, s = 1, . . . , t − 1.
Then the matrices Bs, s = 1, . . . , t− 1, defined by

Bs = [Tr (Crs(esWA))]−1
Crs(esW ), s = 1, . . . , t− 1

satisfy the following conditions which are imposed in Theorem 3 from [19]:

(i) Bs is an
(

n
rs

)× (
m
rs

)
matrix of rank 1 with elements in esR;

(ii) esBs = Bs;

(iii) es = Tr (Bs · Crs(esA)).

Proof. (i): It is easy to see that Bs is an
(

n
rs

)×(
m
rs

)
matrix of rank 1.

Also, using that es is idempotent, we get Crs(esW ) = esCrs(W ), and

Bs = es · [es · Tr (Crs(WA))]−1
Crs(W ).
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This means that the elements of the matrix Bs are in esR.
(ii): Follows from the idempotency of es.
(iii): It is easy to verify the following:

Tr (Bs · Crs(esA)) = Tr
(
[Tr (Crs(esWA))]−1

Crs(esW ) · Crs(esA)
)

= [Tr (Crs(esWA))]−1 · es Tr (Crs(esWA)) = es. ¤

Remark 4.3. In Lemma 4.2 it is shown that in Theorem 4.2 there is
obtained an effective representation of the matrices Bs, which are used
in generating the class of reflexive g-inverses in [19]. Also, in the cases
W = A and W = A∗, from (4.4) we obtain the well-known determinantal
representations of the group inverse and of the Moore–Penrose inverse of
A, respectively, introduced in Theorem 3 in [19].

5. Correlations between the minors

In this section, minors of generalized inverses of a given matrix A over
I are expressed in terms of minors of the matrix A and minors of arbitrary
selected matrices which satisfy exactly defined conditions.

Theorem 5.1. Let A be an m × n matrix of rank r over I, and G =
(gij) be a reflexive g-inverse of A. Then there exists an n ×m matrix W
of rank r, such that

∣∣Gα
β

∣∣ =
(
N(W∗,r)(A)

)−1 ∣∣Wα
β

∣∣ , for all (α, β) ∈ N .

Proof. If G = (gij) is a reflexive g-inverse of A, then, according to
Theorem 4.1, we get

gij =
(
N(W∗,r)(A)

)−1 ∑

(α,β)∈N (j,i)

∣∣W β
α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣ ,

(
1 ≤ i ≤ n

1 ≤ j ≤ m

)
.

Now the proof can be completed by comparison of this result with the
following relation, proved in [1]:

gij =
∑

(α,β)∈N (j,i)

∣∣Gβ
α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣ ,

(
1 ≤ i ≤ n

1 ≤ j ≤ m

)
. ¤
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Corollary 5.1. If A is a matrix of type m×n and rank r over I, then

for all (α, β) ∈ N we have:

∣∣A†αβ
∣∣ =

(
N(A,r)(A)

)−1 ∣∣A∗α
β

∣∣ ;

∣∣A#α
β

∣∣ =

(∑
γ

∣∣Aγ
γ

∣∣
)−2 ∣∣Aα

β

∣∣ =
(
N(A∗,r)(A)

)−1 ∣∣Aα
β

∣∣ .

If M and N are invertible matrices of the order m × m and n × n,

respectively, then

∣∣∣(A†M,N )α
β

∣∣∣ =
(
N(M∗A(N−1)∗,r)(A)

)−1 ∣∣(N−1A∗M)α
β

∣∣

=
(
N(MAN−1,r)(A)

)−1 ∣∣(MAN−1)∗α
β

∣∣ .

If A admits a full-rank factorization A = PQ, P ∗P is an invertible

matrix over I and W1 is an arbitrary n× r matrix over I, such that QW1

is invertible over I, then we obtain the following additional result:

∣∣∣A(1,2,3)α
β

∣∣∣ =
(
N(PW∗

1 ,r)(A)
)−1 ∣∣(W1P

∗)β
α

∣∣ .

If A = PQ is a full-rank factorization of A, W2 ∈ Ir×m and QQ∗,
W2P are invertible matrices in I, then we get

∣∣∣A(1,2,4)α
β

∣∣∣ =
(
N(W∗

2 Q,r)(A)
)−1 ∣∣(Q∗W2)β

α

∣∣ .

Remark 5.1. (i) It is a known result from [2] that the matrix W ∈
In×m, chosen so that N(W∗,r)(A) = Tr (Cr(WA)) is invertible, has mi-
nors proportional with an arbitrary g-inverse G of A. In Theorem 5.1 we
show that in the case when G is a reflexive g-inverse of A, the minors∣∣∣Gα

β

∣∣∣ and
∣∣∣Wα

β

∣∣∣ are proportional with the coefficient
(
N(W∗,r)(A)

)−1 for
all (α, β)∈N .

(ii) Correlations between the minors of A and the corresponding mi-
nors of the Moore–Penrose inverse and the group inverse of A are intro-
duced (in another way) in [1] and [11].

Using the results of Theorem 5.1, Theorem 4.1 and Lemma 1.1 from
[19], we give the following
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Theorem 5.2. Let A be an m×n matrix of rank r over a commutative

ring R. If A is regular then there exists an n×m matrix W over R, such

that N(W∗,r)(A) is an invertible element in R and
(
N(W∗,r)(A)

)2
is an

identity element in the ideal Cr(A).

Proof. Suppose that G is a g-inverse of A. According to Theo-
rem 4.1, there exists an n×m matrix W over R, such that N(W∗,r)(A) is
invertible. Applying the result of Theorem 5.1, we get

N(W∗,r)(A) =
∑

(α,β)∈N

∣∣W β
α

∣∣ ∣∣Aα
β

∣∣ =
(
N(W∗,r)(A)

)−1 ∑

(α,β)∈N

∣∣Gβ
α

∣∣ ∣∣Aα
β

∣∣

=
(
N(W∗,r)(A)

)−1 Tr (Cr(GA))

which means (
N(W∗,r)(A)

)2 = Tr (Cr(GA)) .

According to Lemma 1.1 from [19], Tr (Cr(GA)) is an identity element in
Cr(A), and the proof is completed. ¤

In the category of finite matrices over a commutative ring R with 1
and involution we get the following

Corollary 5.1. Let A be an m × n matrix over R with Rao index t,

idempotents iA = (e1, . . . , et) and ranks ρA = (r1, . . . , rt). If A is regular,

then the minors of generalized inverses of A satisfy the following relations:

∣∣∣A(1,2) α
β

∣∣∣ =
t−1∑
s=1

(
N((esW )∗,rs)(A)

)−1 ∣∣(esW )α
β

∣∣ ;

∣∣A†αβ
∣∣ =

t−1∑
s=1

(
N(esA,rs)(A)

)−1 ∣∣(esA)∗α
β

∣∣ ;

∣∣A#α
β

∣∣ =
t−1∑
s=1

(
N((esA)∗,rs)(A)

)−1 ∣∣(esA)α
β

∣∣ .

∣∣∣(esA)(1,2)α
β

∣∣∣ =
(
N(esW )∗,rs)(A)

)−1 ∣∣(esW )α
β

∣∣ ;
∣∣(esA)†αβ

∣∣ =
(
NesA,rs)(A)

)−1 ∣∣(esA)∗α
β

∣∣ ;
∣∣(esA)#α

β

∣∣ =
(
N(esA)∗,rs)(A)

)−1 ∣∣(esA)α
β

∣∣ .
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Proof. Follows from Theorem 4.2 and
∣∣∣A(1,2)α

β

∣∣∣ =
t−1∑
s=1

∣∣∣(esA)(1,2)α
β

∣∣∣.
¤

6. Cramer-type solutions of linear systems

An explicit determinantal representation of the Moore–Penrose solu-
tion of an arbitrary linear system is derived in [5]. Using this representa-
tion, it is proved that the Moore–Penrose solution is a convex combination
of the solutions of all uniquely solvable partial subsystems. In [4] there is
derived an equivalent determinantal representation for the least-squares so-
lution of an overdetermined linear system. From this formula, it is proved
that the least-squares solution lies in the convex hull of the solutions to
the square subsystems of the original system. Also, in [4] this result is
extended, and it is proved that this geometric property holds for a more
general class of problems which includes the weighted least-squares and
the lp norm minimization problems. In [12] and [13] there is derived a
determinantal representation of the weighted Moore–Penrose solution of a
given system of linear equations, for matrices over an integral domain.

In this paper we obtain an explicit determinantal representation for
the solution of a linear system, by means of the general determinantal
representation for generalized inverses.

Theorem 6.1. Let be given a system of linear equations Ax = z,

where A ∈ Im×n
r and x, z are vectors of the order n and m, respectively.

Then a solution x(1,2) = A(1,2)z of the linear system Ax = z exists if

and only if there exist constants λα,β ∈ I, (α, β) ∈ N , which satisfy the

conditions (1.1) and (1.2).

In this case an arbitrary ith component of the solution x(1,2) can be

represented by the following determinantal formula:

x
(1,2)
i =

∑

(α,β):i∈β

λα,β

∣∣Aα
β (i → αz)

∣∣ .

Proof. Clearly, x(1,2) exists if and only if A(1,2) exists, i.e. there
exist constants λα,β ∈ I, (α, β) ∈ N , which satisfy the conditions (1.1)
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and (1.2). Starting from x
(1,2)
i =

m∑
k=1

(A(1,2))ik · zk, we obtain

x
(1,2)
i =

m∑

k=1

∑

(α,β)∈N (k,i)

λα,β
∂

∂aki

∣∣Aα
β

∣∣ zk =
∑

(α,β)∈N (k,i)

λα,β

m∑

k=1

∂

∂aki

∣∣Aα
β

∣∣ zk

=
∑

(α,β)∈N :i∈β

λα,β

∣∣∣A (i → z)α
β

∣∣∣ =
∑

(α,β)∈N :i∈β

λα,β

∣∣Aα
β (i → αz)

∣∣ . ¤

Corollary 6.1. Let A be a given m × n matrix of rank r, and let

x, z be vectors of the order n and m, respectively. Then the solution

x(†,W∗) = A(†,W∗)z of a linear system Ax = z exists if and only if there

exists an n ×m matrix W of rank r, such that N(W∗,r)(A) is invertible.

In this case, an arbitrary ith component of the vector x(†,W∗) can be

represented by the following determinantal formula:

x
(†,W∗)
i =

(
N(W∗,r)(A)

)−1 ·
∑

(α,β)∈N :i∈β

∣∣W β
α

∣∣ ∣∣Aα
β (i → αz)

∣∣ .

Proof. The proof immediately follows from Theorem 6.1 and the
result (4.2), derived in Theorem 4.1. ¤

Remark 6.1. In the case W = N−1A∗M or W = (MAN−1)∗, where
M and N are appropriate nonsingular matrices, we obtain from Corol-
lary 6.1 a result known from [12] and [13]. Similarly, for W = A∗ we get a
known result from [5]. Also, in the case W = A∗, where A is a matrix of
full column rank, the result of Corollary 6.1 yields a representation of the
least square solution [4].

If a full-rank factorization of the matrix A is allowed, we obtain the
following additional result:

Theorem 6.2. Let A = PQ be a rank factorization of A ∈ Im×n
r and

let W1, W2 be matrices of the order n×r and r×m, respectively. Consider

a system Ax = z of linear equations. Then the following conditions are

equivalent:

(i) x(†,(W1W2)
∗) = A(†,(W1W2)

∗)z exists.

(ii) QW1 and W2P are invertible matrices over I.
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(iii) N(W∗
1 ,r)(Q) and N(W∗

2 ,r)(P ) are invertible matrices over I.

(iv) N((W1W2)∗,r)(A) is an invertible matrix over I.

In the case when x(†,(W1W2)
∗) exists, it can be represented by the

following linear combination of the solutions of all uniquely solvable r × r

subsystems of the system Ax = z:

x(†,(W1W2)
∗) =

∑

(α,β)∈N : i∈β

pαqβxα,β ,

where

pα =
(
N(W∗

2 ,r)(P )
)−1 |(W2)α| |Pα| ,

qβ =
(
N(W∗

1 ,r)(Q)
)−1 ∣∣(W1)β

∣∣ |Qβ |

and xα,β is the unique solution of the subsystem

Aα
β · αx = αz.

Proof. It is clear that x(†,(W1W2)
∗) exists if and only if A(†,(W1W2)

∗)

exists, which implies equivalence of the presented conditions (i)–(iv). It is
not difficult to derive the following representation for x(†,(W1W2)

∗):

x
(†,(W1W2)

∗)
i =

(
N((W1W2)∗,r)(A)

)−1 ∑

(α,β)∈N :i∈β

∣∣(W1W2)β
α

∣∣ ∣∣Aα
β (i → αz)

∣∣ .

Applying the results of Proposition 2.1 and Proposition 2.2, we get

x
(†,(W1W2)

∗)
i =

(
N(W∗

1 ,r)(Q)
)−1 (

N(W∗
2 ,r)(P )

)−1

×
∑

(α,β)∈N :i∈β

∣∣(W1)β
∣∣ |(W2)α|

∣∣Aα
β (i → αz)

∣∣

=
∑

(α,β)∈N :i∈β

(
N(W∗

1 ,r)(Q)
)−1 ∣∣(W1)β

∣∣ |Qβ |
(
N(W∗

2 ,r)(P )
)−1

× |(W2)α| |Pα|
∣∣Aα

β

∣∣−1 ∣∣Aα
β (i → αz)

∣∣

=
∑

(α,β)∈N :i∈β

pαqβxα,β
i .
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In the case
∣∣∣Aα

β

∣∣∣ 6= 0, it is easy to verify that

xα,β
i =

∣∣Aα
β

∣∣−1 ∣∣Aα
β (i → αz)

∣∣

represents the unique solution of the r × r subsystem

Aα
β · αx = αz.

In the singular case
∣∣∣Aα

β

∣∣∣ = 0 we define xα,β to be the zero vector. ¤

Remark 6.2. The identities
∑
α

pα = 1 and
∑
β

qβ = 1 can easily be

verified. In the case W = A∗, we conclude pα ≥ 0 and qβ ≥ 0, which
implies that the Moore–Penrose solution of a linear system over an integral
domain can be represented as the convex combination of the solutions of
all uniquely solvable r × r subsystems.

Corollary 6.2. Let be given a system of linear equations Ax = z,

where A is an m× n matrix over a commutative ring R with Rao index t,

idempotents iA = (e1, . . . , et) and ranks ρA = (r1, . . . , rt). Then an arbi-

trary solution x(1,2) = A(1,2)z of the linear system Ax = z exists if and

only if etA = 0, and

x(1,2) = A(1,2)z =

(
t−1∑
s=1

A(†,(esW )∗,rs)

)
z =

(
t−1∑
s=1

(esA)(†,(esW )∗,rs)

)
z

x† = A†z =

(
t−1∑
s=1

A(†,esA,rs)

)
z =

(
t−1∑
s=1

(esA)(†,esA,rs)

)
z,

where W is an arbitrary n×m matrix of rank r.
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