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On nerves of fine coverings

By UMED H. KARIMOV (Dushanbe) and DUŠAN REPOVŠ (Ljubljana)

Abstract. A basis U of a topological space is said to be fine if the closures of
every two of its disjoint elements are disjoint. The following are our main results: (1)
Every metric space has a fine open basis; (2) Let X and Y be compact Hausdorff spaces
with fine bases U and V, respectively. Suppose that the nerves N (U) and N (V) are
simplicialy isomorphic. Then X and Y are homeomorphic; and (3) Let (X1, τ1) and
(X2, τ2) be separable metric spaces without isolated points. Then N (τ1) is simplicially
isomorphic to N (τ2).

1. Introduction

Definition 1.1. A covering (not necessarily open) of a topological
space is said to be fine if the closures of every two of its disjoint elements
are disjoint. An open basis U is said to be fine if it is a fine covering.

Bandt [2] introduced the concept of a ∆-basis and proved that every
compact Hausdorff space with weight ω(X) ≤ ℵ1 has a ∆-basis. If F =
{F} is a ∆-basis then U = {X \ F} is a fine basis. It is easy to see that
any product of compact Hausdorff spaces with fine bases has a fine basis.
However, as it was proved by L. Shapiro (cf. [12]), Iτ does not have
any ∆-basis, if τ ≥ ℵ2. There exist Hausdorff spaces without fine bases
(see e.g. [1] and [11]; Double origin topology, pp. 92–93]). The following
interesting question remains open:
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Question 1.2. Does there exist a normal space without any fine basis?

Here is our first main result:

Theorem 1.3. Every metric space has a fine open basis.

Furthermore, it is well-known that two compact Hausdorff spaces are
homeomorphic if the corresponding rings of continuous functions are iso-
morphic as algebraic objects [6], [7]. Similar to this is our second main
result:

Theorem 1.4. Let X and Y be compact Hausdorff spaces with fine

bases U and V, respectively, and suppose that the nerves N (U) and N (V)
are simplicialy isomorphic. Then the spaces X and Y are homeomorphic.

Recall that the concept of a nerve of an infinite open covering was
introduced by Dowker [3] (see also [4], [8]), in connection with the defi-
nition of Čech homology groups for general spaces.

The requirement in Theorem 1.4 that the bases of spaces X and Y be
fine, is essential, as our third main result shows:

Theorem 1.5. Let (X1, τ1) and (X2, τ2) be separable metric spaces

without isolated points. Then the nerves N (τ1) and N (τ2) are simplicialy

isomorphic.

2. Preliminaries

For every coveringW we shall denote byW the covering {W | W∈W}.
Lemma 2.1. Let U = {Us}s∈S be an open locally finite covering and

let F be a locally finite family of closed subsets of a paracompact space

X. Then there exists an open covering WS such that WS is a locally finite

refinement of U and F ∪WS is a fine covering of X.

Proof. Since U is a locally finite open covering of X, there exists a
closed covering G = {Gs}s∈S such that Gs ⊂ Us, for every s ∈ S (see, e.g.
[5; p. 301, Remark 5.1.7]). Let A be a subset of the index set S and let
WA = {Ws}s∈A be a family of open subsets Ws ⊂ X such that Gs ⊂ Ws

and Ws ⊂ Us, for every s ∈ A. The covering

OA = WA ∪ {Gs | s ∈ S \A} ∪ F
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is called the modification of G generated by WA, if it is fine. The set of all
modifications is nonempty because every closed covering and, in particular
{Gs | s ∈ S} ∪ F , is fine.

Consider the following partial ordering on the set of all modifications:
we say that OA ≤ O′A′ if A ⊂ A′ and for every s ∈ A, Ws = W ′

s. Obvi-
ously, any partially ordered set of modifications, generated by the family
{WA}A∈A, where A ⊂ 2S is a subset of 2S , has the upper bound

⋃

A∈A
WA ∪

{
Gs | s ∈ S and s /∈

⋃

A∈A
A

}
∪ F .

By the Kuratowski–Zorn lemma, there is a maximal modification OA0

of G, generated by some WA0 . We shall prove that A0 = S. Suppose to the
contrary, that there exists an element s0 /∈ A0. Let the closed set Hs0 be
the union of all elements of the locally finite covering OA0 = WA0 ∪ {Gs |
s /∈ A0} ∪ F which do not intersect Gs0 . Since every paracompact space
is normal, there exists an open set Ws0 such that Gs0 ⊂ Ws0 , Ws0 ⊂
Us0 , and Ws0 ∩ Hs0 = ∅. Consider the system OA0∪{s0} generated by
WA0 ∪ {Ws0}. Let O be any element of OA0 . Suppose that Ws0 ∩O 6= ∅.
Since Ws0 ∩ Hs0 = ∅, it follows by definition of Hs0 that Gs0 ∩ O 6= ∅.
Therefore Ws0 ∩O 6= ∅ and Ws0 ∩O 6= ∅.

So if we replace in the covering OA0 the element Gs0 by Ws0 we get
the modification of G which is larger than OA0 . Contradiction. That is
why A0 = S and F ∪WS is a fine covering. ¤

Lemma 2.2. Suppose that in a topological space Y there exist two fi-
nite systems of open sets V0, V1, . . . , Vn and W0,W1, . . . , Wn such that Vi =
Wi, for every i ∈ {0, 1 . . . , n}, and the intersection

⋂n
i=0 Vi is nonempty.

Then the intersection
⋂n

i=0 Wi is also nonempty.

Proof. Since
⋂n

i=0 Vi 6= ∅ and
⋂n

i=0 Vi ⊂
⋂n

i=0 Vi =
⋂n

i=0 Wi it fol-
lows that

⋂n
i=0 Wi 6=∅. Let y be any element of

⋂n
i=0 Vi. Then y ∈ W0 and

there exists an open nonempty subset O0 in (
⋂n

i=0 Vi) ∩W0.
Suppose that for some number k < n, there exists a nonempty open

subset Ok in (
⋂n

i=0 Vi) ∩ (
⋂k

i=0 Wi). Choose the open set Ok+1 in the
following manner: Let yk ∈ Ok. Then yk ∈ Wk+1 and Ok ∩ Wk+1 6= ∅.
Therefore, there exists a nonempty open set Ok+1 in Ok∩Wk+1. By induc-
tion, we get a nonempty subset On which lies in

⋂n
i=0 Wi, so

⋂n
i=0 Wi 6= ∅.

¤
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3. Proof of Theorems 1.3–1.5

Proof of Theorem 1.3. It suffices to prove that there exists a count-
able family of open coverings W1,W2,W3, . . . , such that for every index
n,

⋃n
i=1Wi is a fine covering and the mesh of Wn is less than 1

n .
We shall prove the existence of such a family by induction. In addition,

all constructed coverings Wn will be locally finite. Let n = 1. Since X is a
metric space, there exists a locally finite open covering U1 with the mesh
less than 1, by the Stone theorem [5]. By Lemma 2.1, there exists a fine
open covering W1 such that W1 is a locally finite refinement of U1.

Suppose inductively, that locally finite coverings W1,W2, . . . ,Wn,
such that the family {⋃n

i=1Wi} is fine and meshWi < 1
i , 1 ≤ i ≤ n,

have already been constructed. Then we construct the covering Wn+1 in
the following way. Consider a locally finite open covering Un+1 of X of
mesh less than 1

n+1 and the locally finite covering Fn+1 of X, consisting
of the closures of the elements of the covering W1 ∪ W2 ∪ · · · ∪ Wn. By
Lemma 2.1, there exists a covering Wn+1 such that Wn+1 is a locally fi-
nite refinement of Un+1 and the covering Fn+1 ∪Wn+1 is fine. Then the
covering W1 ∪W2 ∪ · · · ∪Wn+1 is also fine. By induction we can conclude
that the coverings W1,W2, . . . of the space X have been constructed and
that W =

⋃∞
i=1Wi is a fine open basis of X. ¤

Recall that simplicial complex P is said to be full if for every finite set
of vertices of the complex P there exists a simplex of P which is spanned
by these vertices (see e.g. [9; p. 101]).

Proof of Theorem 1.4. Consider any point x ∈ X. Let Ux be the
family of all elements of the basis U which contains the point x (hence⋂

Ux = {x}). To Ux there corresponds a full subcomplex Nx of the nerve
N (U). By hypothesis of the theorem, there exists a simplicial isomorphism
ϕ : N (U) → N (V). The image ϕ(Nx) is a full subcomplex of N (V) and
to it there corresponds a system W of elements of the basis V, having the
finite intersection property.

Since the space Y is compact and Hausdorff and the basis V is fine,
the intersection of the closures of the elements of the system W consists of
just one point. Indeed, by compactness, this intersection is nonempty; if it
contained more than one point then there would be elements V1 and V2 of
the basis V which would not intersect each other but would intersect with
all elements of the systemW. Then the elements U1 and U2 of the covering
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U which correspond to V1 and V2, respectively, would not intersect each
other. However, x ∈ U1 ∩ U2, so U1 ∩ U2 6= ∅. Contradiction.

Since x is an arbitrary point of X, we obtain a mapping f : X → Y .
It follows immediately from the construction of f that this mapping is
injective. Let us show that it is also surjective. Indeed, let y ∈ Y be an
arbitrary point and consider the set Vy = {V | V ∈ V and y ∈ V }. Take
any x ∈ ⋂{ϕ−1(V ) | V ∈ Vy} and pick an arbitrary U ∈ U such that
x ∈ U . Then ϕ(U) ∩ V 6= ∅, for every V ∈ Vy, where by ϕ(U) we mean
the element of the basis V which by ϕ corresponds to U . It follows that
y ∈ ϕ(U) and f(x) = y, as asserted.

By definition, f(x) = {⋂ ϕ(U) | U ∈ Ux}. Consider the system

{Y \ V } ∪ {ϕ(U) | U ∈ Ux}.

Since Y is compact and (Y \ V ) ∩ {⋂ ϕ(U) | U ∈ Ux} = ∅, there exists a
finite system of elements U1, U2, . . . , Un of the basis Ux such that

(Y \ V ) ∩
{ n⋂

i=1

ϕ(Ui)
∣∣∣ Ui ∈ Ux

}
= ∅

(the system does not have the finite intersection property). Therefore⋂n
i=1 ϕ(Ui) ⊂ V .

Consider now any point x′ ∈ ⋂n
i=1 Ui. By definition, f(x′) =

{⋂ ϕ(U) | U ∈ Ux′}. Hence f(x′) ∈ ⋂n
i=1 ϕ(Ui) and f(

⋂n
i=1 Ui) ⊂⋂n

i=1 ϕ(Ui) ⊂ V , i.e. f is continuous. Since X is compact and Y is Haus-
dorff it follows that f is a homeomorphism. ¤

Remark. We observe that Theorem 1.4 is not valid if the space Y fails
to be compact, as the following simple example shows: Let X be the unit
segment [0, 1] and let U be any fine basis of connected sets on X. Let
Y = X \{x}, where x ∈ (0, 1) is any point, and define V = {U ∩(X \{x}) |
U ∈ U}. Obviously, N (U) = N (V) and V is a fine basis. However, X is
not homeomorphic to Y .

Proof of Theorem 1.5. Let (X, τ) be a separable metric space and
(M, τµ) any countable dense subspace without isolated points. Consider
the following equivalence relations on τ and τµ. Two open sets in a space
will be called equivalent if their closures are equal. Since (X, τ) and (M, τµ)
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do not contain isolated points, any equivalence class has the power of con-
tinuum. Indeed, in every space with countable basis, the cardinality of the
set of all open subsets is at most the continuum. Since our spaces have
no isolated points, there exists in every open set a convergent sequence of
distinct points. The set of all subsequences of this sequence has the car-
dinality the continuum. The complements of these subsequences, together
with the limit point, are equivalent, and have the cardinality at least the
continuum.

Consider any such equivalence class [U ] in τ . Associate to it the class
[U ∩M ] in τµ. Obviously, this correspondence is well-defined and it is a
bijective mapping of all equivalence classes of τ to all equivalence classes
of τµ. Since all equivalence classes have cardinality the continuum, we can
fix, for every class [U ], a bijection from [U ] to [U ∩M ]. In this way we get
a bijective mapping from the set of all vertices of N(τ) to the set of all
vertices of N(τµ).

Let us now prove that this bijective mapping can be extended to a
simplicial isomorphism from N (τ) to N (τµ). It suffices to prove that, if
to the elements U0, U1, . . . , Un of τ there correspond V0, V1, . . . , Vn of τµ,
then

⋂n
i=0 Ui 6= ∅ if and only if

⋂n
i=0 Vi 6= ∅.

Suppose first that
⋂n

i=0 Ui 6= ∅. Since M is dense in X it follows that⋂n
i=0(Ui ∩M) 6= ∅. Since Ui ∩M = Vi in (M, τµ) it follows by Lemma 2.2

that
⋂n

i=0 Vi 6= ∅.
Suppose now that

⋂n
i=0 Vi 6= ∅. Since Ui ∩M = Vi in (M, τµ), it

follows by Lemma 2.2 that
⋂n

i=0(Ui ∩M) 6= ∅ and hence also
⋂n

i=0 Ui 6= ∅.
So we can conclude that N (τ) = N (τµ). Now, let (M1, τµ1) and

(M2, τµ2) be countable dense subspaces of (X1, τ1) and (X2, τ2), respec-
tively. By the Sierpinski theorem [10], all countable metrizable spaces
without isolated points are homeomorphic. Therefore we have the follow-
ing isomorphisms N (τ1) ≈ N (τµ1) ≈ N (τµ2) ≈ N (τ2). ¤

4. Epilogue

It follows from Theorem 1.3 that the nerve of a fine basis of a compact
Hausdorff space contains all information about its topology.
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Question 4.1. Which topological invariants (e.g. dimension, metriz-

ability, Čech cohomology group, . . . ) have nice descriptions in terms of

nerves of fine coverings?

As it was observed in the introduction, every compact Hausdorff space
X of weight ω(X) ≤ ℵ1 has a fine basis. We say that a basis U is an f -basis
if the natural mapping N (U) → N (U) is a simplicial isomorphism.

Question 4.2. Does every normal space of weight ω ≤ ℵ1 have an

f -basis?
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