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Perfect transsymmetric spaces

By LEV V. SABININ (Michoacan), LIUDMILA L. SABININA (Michoacan)

and LARISSA V. SBITNEVA (Michoacan)

Abstract. The transsymmetric spaces with an additional geometric property are
considered and investigated. In particular, well known symmetric spaces of E. Cartan
possess this property.

0. Introduction

The transsymmetric spaces have been introduced in [1] as a far go-
ing generalization of the symmetric spaces of E. Cartan. They are re-
ductive spaces of a special kind and as such may be treated within the
frame of homogeneous space theory. By a construction due to R. Baer–

L. Sabinin [2], [3], they may be treated within the frame of smooth loop
theory, as well. It has been observed that symmetric spaces possess some
quite remarkable properties not valid in general transsymmetric spaces.
Thus the problem to explore transsymmetric spaces with such a property
(perfect ts-spaces) appeared to be solved.

In this article we present results on perfect ts-spaces.

1. Preliminaries

Definition 1.1. Let M be a smooth manifold and (σx)x∈M the family
of local diffeomorphisms defined near x ∈ M such that ex = σ−1

x x is
defined.
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We say that σx is a transsymmetry (ts-symmetry) at a point x ∈ M

and (M, (σx)x∈M ) is a transsymmetric structure (manifold), briefly ts-
structure (manifold).

Let us introduce

(1) x · y def= σxy, ρyx
def= x · y.

Definition 1.2. A transsymmetric structure is correct if, for any x,
ρex is a local diffeomorphism near x ∈ M .

Definition 1.3. A correct ts-structure (M, (σx)x∈M ) with the property

(2) σx ◦ σy = σσxy ◦ σex,

or, in another notation,

(3) x · (y · z) = (x · y) · (ex · z) (Left F-property)

is called a transsymmetric space (ts-space).

Remark 1.4. One can treat a ts-space (M, (σx)x∈M ) as a smooth par-
tial groupoid (magma) 〈M, ·〉. Moreover, since a ·x = b is (locally) solvable
(x = σ−1

a b), a ts-space may be treated as a partial smooth left quasigroup
〈M, ·, \〉 (where a\b def= σ−1

a b ). Henceforth we consider ts-spaces only.

Remark 1.5. If σxx = x (∀x ∈ M) then a ts-space is called a general-
ized symmetric space (O. Kowalski [13]). In this case it is evident that
ex = x. If, moreover, σx ◦ σx = id then a generalized symmetric space is
called symmetric (E. Cartan).

1.6. Let (M, (σx)x∈M ) = 〈M, ·〉 be a ts-space. One can introduce

(4) P (x, z, y) = P z
x y = x×

z
y = ρ−1

ez x · σ−1
z y.

Then x×
z

z = x, z ×
z

y = y, and a×
z

y = b, x×
z

a = b are uniquely solvable

(locally) which means that 〈M,×
z
, z〉 is a local smooth loop with two-sided

neutral element z.
In such a way we have obtained a so-called canonical loopuscular

covering (structure) of a ts-space (M, (σx)x∈M ).
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One can regard now a ts-space 〈M, ·〉 as a smooth partial algebra
〈M, P 〉 with the ternary operation P .

1.7. The formula

(5) ∇XaY =
{

d

dt
[(P a

γ(t))
−1
∗,aYγ(t)]

}

t=0

,

Y being a vector field, γ(0) = a, γ̇(0) = Xa, introduces an affine connection
into ts-spaces (M, (σx)x∈M ) (see [5], [6]), which is called the canonical
affine connection of a transsymmetric space (M, (σx)x∈M ). It is known
that the canonical connection is reductive (∇T = 0, ∇R = 0). See [4].

1.8. Any affine connection ∇ uniquely defines the system of geodesic
odules centered at every point z ∈ M (see [5], [6]) with local smooth
operations x ∗

z
y = Lz

x y = L(x, z, y) and tz y = ωt(z, y), where Lz
xy means

the parallel displacement of the geodesic arc
^
zy along the geodesic arc

^
zx.

Thus (M,∇) may be considered as a smooth algebraic system
〈M, L, (ωt)t∈R〉, a geoodular manifold with characteristic geoodular iden-
tities. See [5], [6].

The affine connection may be restored from its geoodular manifold in
a unique way (see [5], [6]).

For a reductive affine connection ∇

tzx ∗
z

(uzx ∗
z

y) = (t + u)zx ∗
z

y (Left monoalternativity),

La
b (x ∗

z
y) = La

bx ∗
La

b z
La

by (Left reductivity)

are valid. See [5], [6].

2. Perfect ts-spaces

Definition 2.1. A ts-space (M, (σx)x∈M ) is called perfect if σx◦σ−1
y in-

duces a parallel displacement along the geodesic arc {tyσxey}t∈[0,1] joining
y and σxey.
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Proposition 2.2. Let (M, (σx)x∈M ) be a perfect ts-space. Then

(6) σρ−1
ez y ◦ σ−1

z = Lz
y,

where Lz
yw = y ∗

z
w is the composition in geodesic loop at a point z ∈ M ,

ϕz = σz ◦ e ∈ End〈Q, ∗
z
, z〉.

Proof. According to [7], [8], P z
y = Lz

ρ−1
ez y

◦ Lz
(−1)zϕzρ−1

ez y
. On the

other hand, due to (4), P z
x = σρ−1

ez x ◦ σ−1
z . The Definition 1.6 shows that

P z
y = Lz

y and σρ−1
ez y ◦ σ−1

z = Lz
y = Lz

ρ−1
ez y

◦ L(−1)zϕzρ−1
ez y. ¤

Corollary 2.3. If (M, (σx)x∈M ) is a perfect ts-space, then its canon-

ical loopuscular structure coincides with its tangent geoodular structure

and, consequently, is leftmonoalternative.

Conversely, if a canonical loopuscular structure is leftmonoalternative

(after adding the canonical unary operations), see [9], then (M, (σx)x∈M )
is a perfect ts-space.

2.4. Since 〈M, P, (ωt)t∈R〉 is reductive, the whole structure is de-
termined by a geodesic odule 〈M, ∗

ε
, (tε)t∈R〉 at an arbitrarily fixed point

ε ∈ M .
Using (3) one can obtain the characteristic identities of such an odule

(see [7], [8]) in the form (for the sake of simplicity we set x ∗ y, tx instead
of x ∗

ε
y, tεy, etc.):

x ∗ [y ∗ (ϕx\z)] = [x ∗ (y ∗ [ϕx]−1)] ∗ z, (ϕ = ϕε = σε ◦ e),(7)

ϕ(x ∗ y) = ϕx ∗ ϕy.(8)

(7) is the so called M -identity . See [10], [11].
Due to the leftmonoalternativity we get further

(9) x ∗ [(y ∗ [ϕx]−1) ∗ z] = [x ∗ (y ∗ [ϕx]−1)] ∗ z, (Left half Bol identity).

Note that due to invertibility of ρez we get (differentiating γ(t) ∗
e(γ(t)) = γ(t) by t at t = 0, γ(0) = ε) that (ϕε)∗,ε − idε = (ρeε)∗,ε is
invertible.

We can present (9) as

(10) Lx ◦ Ly ◦ L(ϕx)−1 = Lx∗(y∗(ϕx)−1), (Lxy
def= x ∗ y).
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Due to leftmonoalternativity we get further L−1
(ϕx)−1◦L−1

y ◦L−1
x = L−1

q ,
or (putting y−1 = z, x−1 = Ix = p, w = q−1)

(11) LϕIp ◦ Lz ◦ Lp = Lw.

Applying both parts of (11) to ε, we get w = (ϕIp) ∗ (z ∗ p) and

(12) LϕIp ◦ Lz ◦ Lp = L(ϕIp)∗(z∗p).

Combining now (12) and (10) we obtain

Lx∗(y∗(ϕx)−1) = (Lx ◦ LϕIx) ◦ (L−1
ϕIx ◦ Ly ◦ L−1

x ) ◦ Lx ◦ L(ϕx)−1

= (Lx ◦ L(ϕx)−1) ◦ (Lϕx ◦ Ly ◦ LIx) ◦ (Lx ◦ L(ϕx)−1)

= Lx∗(ϕx)−1 ◦ Lϕx∗(y∗x−1) ◦ Lx∗(ϕx)−1 .

Thus

(13) Lλx ◦ Lw ◦ Lλx = Lλx∗(w∗λx), (∀w),

where λx = x ∗ (ϕx)−1.
But λ : x 7→ λx = x ∗ (ϕx)−1 is locally invertible near ε ∈ M , since

(λ)∗,ε = idε−ϕ∗,ε (which is invertible).
Consequently, in a suitable neighbourhood of ε,

(14) Ly ◦ Lw ◦ Ly = Ly∗(w∗y), (∀y, w) (Left Bol Property).

We have proved the following:

Proposition 2.5. Any geodesic loop of a perfect ts-space is a Bol loop.

Proposition 2.6. For any geodesic loop of a perfect ts-space, (ϕx)−1∗
x−1 ∈ Nl = {w;w∗(a∗b) = (w∗a)∗b, ∀a, b} – the left nucleus of 〈M, ∗, ε〉.

Proof.

L(ϕx)−1 ◦ Ly ◦ Lx = L(ϕx)−1∗(y∗x) =⇒ L(ϕx)−1∗(y∗x)

= (L(ϕx)−1 ◦ Lx−1) ◦ (Lx ◦ Ly ◦ Lx) = (L(ϕx)−1 ◦ Lx−1) ◦ Lx∗(y∗x).

Thus

(15) (L(ϕx)−1 ◦ Lx−1) ◦ Lz = Lw, (∀z).
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Further, at z = ε, L(ϕx)−1 ◦ Lx−1 = L(ϕx)−1∗x−1 .
Consequently,

(16) L((ϕx)−1∗x−1) ◦ Lz = L((ϕx)−1∗x−1)∗z, (∀z),

which proves our assertion. ¤

Remark 2.7. It is known that for a left Bol loop the left nucleus is a
normal subloop. See [10], [11].

Proposition 2.8. If for a loop

Lx ◦ Ly ◦ Lx = Lx∗(y∗x), (Left Bol property),

and

L((ϕx)−1∗x−1) ◦ Lz = L((ϕx)−1∗x−1)∗z,

then

L(ϕx)−1 ◦ Ly ◦ Lx = L(ϕx)−1∗(y∗x).

Proof.

(17)
L(ϕx)−1 ◦ Ly ◦ Lx = (L(ϕx)−1 ◦ Lx−1) ◦ (Lx ◦ Ly ◦ Lx)

= (L(ϕx)−1 ◦ Lx−1) ◦ Lx∗(y∗x).

Taking y = x−1, due to leftmonoalternativity we get L((ϕx)−1∗x−1) ◦
Lx = L(ϕx)−1 , or

(18) L(ϕx)−1 ◦ Lx−1 = L((ϕx)−1∗x−1).

Now (17) and (18) imply

L(ϕx)−1 ◦ Ly ◦ Lx = L((ϕx)−1∗x−1) ◦ Lz = Lw,

which proves our assertion. ¤

As a result, due to the above considerations, we have reduced the
problem to investigate a perfect ts-space to the exploration of a smooth
local loop 〈M, ∗, ε〉 with certain properties. We summarize it in the fol-
lowing proposition.
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Proposition 2.9. Any geodesic loop 〈M, ∗, ε〉 of a perfect ts-space

(M, (σx)x∈M ) satisfies the identities

(1) Lx ◦Ly ◦Lx = Lx∗(y∗x) (Left Bol property), (which implies, as known,

leftmonoalternativity, see [5], [6]),

(2) Lϕx∗x ◦Ly = L(ϕx∗x)∗y, where σε ◦e = ϕ ∈ End〈M, ∗, ε〉, ϕ∗,ε− id∗,ε is

invertible (meaning that ϕx ∗ x ∈ Nl (left nucleus) which is a normal

subloop; moreover it is a group),

(3) l(a, b) = L−1
a∗b ◦ La ◦ Lb ∈ Aut〈M, ∗, ε〉, (Left A-property). (This last

property is due to the reductivity of (M, (σx)x∈M ), see [1].)

2.10. Since any smooth leftmonoalternative loop with the left A-
property (4) can be realized as a reductant Q in an appropriate reductive
space G/H (locally at least, see [5], [6]), it is evident that Nl ⊂ Q will be a
normal subgroup in G. Moreover, since in this case, as well known (see [8],
[9]), (x ∗ y) ∗ (x−1 ∗ y−1) ∈ Nl, we get a symmetric space (G/Nl)/(H/Nl).

Passing to the corresponding Lie algebras g, h, n for G, H, Nl, re-
spectively, we have

(19)
g = m +̇ h, [m, h] ⊂ m, n ⊂ m, expm = Q,

where n is an ideal of g, (g/n)/(h/n) is a symmetric pair.

As a result, we have got the following:

Proposition 2.11. If (M, (σx)x∈M ) is a perfect transsymmetric space,

then it is reductive, M = G/H (at least locally). Moreover if g, h are the

Lie algebras for G and H and m is a reductive complement to h in g

(g = m +̇ h, [m, h] ⊂ m), then m contains an ideal n of g such that (g/n)/
(h/n) is a symmetric pair.

Proposition 2.12. With notations and conditions as above, if

ϕ̃ =
{

ϕ∗,ε on m,

Id on h,

then ϕ̃ ∈ End g, ϕ̃m = m, ϕ̃ζ = ζ ⇐⇒ ζ ∈ h, ϕ̃n ⊂ n. Moreover [ϕ̃ζ, ζ] ⊂ n

for any ζ ∈ m.

Proof. Due to the above construction, all assertions except the last
one are evident.
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Let us consider ((ϕx)−1 ∗ x−1) ∈ Nl (the left nucleus of 〈M, ∗, ε〉),
∀x ∈ M . We may denote x−1 by y due to the arbitrariness of x. Thus
(ϕy ∗ y) ∈ Nl, ∀y ∈ Q. Further, [ϕ(γ(t)) ∗ γ(t)] ∈ Nl for any smooth arc
(γ(0) = ε). Since Nl = exp n, we get, after differentiation, (ϕ̃ + Id)m ⊂
n ⊂ m. ¤

Finally, we get the following infinitesimal description of a perfect
transsymmetric space.

Proposition 2.13. Any perfect transsymmetric space M is reductive

M = G/H (at least locally).

If (g, h) are the Lie algebras for G and H, respectively, and m is a

reductive complement to h in g (g = m +̇ h, [m, h] ⊂ m) then there exists

an endomorphism ϕ̃ of g such that ϕ̃m = m, ϕ̃ζ = ζ ⇐⇒ ζ ∈ h and an

ideal n of g such that n ⊂ m, (ϕ̃ + Id)m ⊂ n, which means in particular,

that (g/n)/(h/n) is a symmetric pair with the defining symmetry ϕ̃/n = s.

The above said means that a perfect transsymmetric space is “glued”
in a nontrivial way by means of some normal subgroup and a symmetric
space.

In particular, if G is simple, then the corresponding perfect transsym-
metric space is either a group space, or a symmetric space.

Remark 2.14. The theory of perfect spaces appeared for the first time
in [12] for s-spaces (a particular subcase of Transsymmetric spaces).
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