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Volume of tubes in noncompact symmetric spaces

By X. GUAL-ARNAU (Castellón) and A. M. NAVEIRA (Burjassot)

Abstract. From the duality between symmetric spaces of compact type and sym-
metric spaces of noncompact type, we deduce an expression for the “infinitesimal change
of volume function” of geodesic balls and tubes around certain submanifolds of a non-
compact symmetric space of arbitrary rank. We also give a formula for the volume of
a geodesic ball in a noncompact symmetric space.

0. Introduction

The theory of tubes and geodesic balls in symmetric spaces of rank
one has been fully developed without making an explicit reference mention
to the theory of roots of the symmetric space [AGV], [G].

One important fact that arises for compact symmetric spaces of rank
one is that the isotropy representation acts transitively on the unit sphere
of the tangent space of any point. Since that property is not satisfied for
symmetric spaces of rank greater than one, we have to use the theory of
restricted roots and orbital geometry of the linear action of the isotropy
group of a compact symmetric space, to obtain an expression for the area of
geodesic balls and tubes around a submanifold of that compact symmetric
space [N-G].

The aim of this work is to use the duality between compact and non-
compact symmetric spaces to show that some of the formulae obtained in
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[N-G] for geodesic balls and tubes in compact symmetric spaces of arbi-
trary rank are easily adaptable to the noncompact case.

Finally, if we restrict our results to symmetric spaces of rank one we
can deduce the well-known formulae for geodesic balls and tubes in these
spaces. For instance, the volume of a geodesic ball in an n-dimensional
sphere of constant curvature λ = 1 is given by

(1) V 1
m(r) =

2π
n
2

Γ(n
2 )

∫ r

0

sinn−1(t) d t,

and the volume of a geodesic ball in the hyperbolic space of constant
curvature λ = −1 is

(2) V 2
m(r) =

2π
n
2

Γ(n
2 )

∫ r

0

sinhn−1(t) d t.

So, the formulas for the case of sectional curvature λ < 0 can be found
by changing all of the trigonometric functions, which appear for the case of
sectional curvature λ > 0, to hyperbolic functions. Similar remarks apply
to all rank one symmetric spaces and, as we will see in this work, also for
symmetric spaces of arbitrary rank.

To illustrate this program we will use the symmetric spaces of type
AIII as examples. Therefore, the complex projective space (compact case)
and the complex hyperbolic space (noncompact case) are included in these
examples.

1. Duality for symmetric spaces

Let M0 = G0/K be a noncompact symmetric space and M = G/K

a compact symmetric space dual to M0. We denote by g0 the orthogonal
involutive Lie algebra associated to M0. Let

(3) g0 = k + m0

be the Cartan decomposition of g0 (k is the Lie algebra of K). If g denotes
the complexification of g0, then the compact real form gc of g, given by

(4) gc = k + m where m = im0, (i =
√−1),

is the orthogonal Lie algebra associated with M .
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Let hm0 denote a maximal abelian subspace of m0 and let h0 be any
maximal abelian subalgebra of g0 containing hm0 . We denote by h the
subspace of g generated by h0 and hm = ihm0 denotes a maximal abelian
subspace of m.

We give M0 the unique G0-invariant Riemannian structure induced by
the restriction of the Killing form B of g to m0×m0. Similarly, the space
M will be given the unique G-invariant Riemannian structure induced by
the restriction of −B of g to m×m.

Let ∆ denote the set of all nonzero roots of g with respect to h, and
let ∆m0 denote the set of those roots which do not vanish identically on
hm0 . Each α ∈ ∆ is a C-linear function on h which is real-valued on hm0 ;
therefore, we get in this way an ordering of ∆m0 . Let ∆+ denote the subset
of positive roots in ∆m0 .

The sectional curvature of the symmetric spaces M0 and M is given,
by means of the roots in ∆+, as follows:

Let H0 and X0 be two unit vectors in hm0 and m0, respectively; the
sectional curvature of M0 is

(5)
KH0X0 = 〈R(H0, X0)H0, X0)〉

= 〈−[H0, [H0, X0]], X0〉 = −α2(H0), α ∈ ∆+.

Therefore, since α(H0) ∈ R, KH0X0 < 0.
Now, let H = iH0 and X = iX0 be two unit vectors in hm and m,

respectively; the sectional curvature of M is

(6) KHX = 〈R(H,X)H, X〉 = −α2(H) = −α2(iH0) = α2(H0) > 0.

On the other hand, if we consider the linear actions

Ad : K ×m0 −→ m0 and Ad : K ×m −→ m,

it can be shown that the two actions have the same principal orbit type.
Moreover, if we denote by K/KH0 this principal orbit type, (KH0 is the
isotropy subgroup of K), the volume of the principal orbits K(H0) =⋃

k∈K Ad(k)H0, (H0 ∈ m0), and K(H) =
⋃

k∈K Ad(k)H, (H ∈ m) is
([H-H], [H-L]):

(7) v2(K(H0)) = c2
n∏

j=q+1

α2
j (H0) = c2

n∏

j=q+1

α2
j (H) = v2(K(H));

where c denotes the constant given by the volume of K/KH0 .
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2. The volume function
of a geodesic ball in a noncompact symmetric space

We begin this section by giving an expression for the infinitesimal
change of the volume function from the roots in ∆+. The infinitesimal
change of the volume function appears in the volume formula of a tube
and it is defined as follows: given a submanifold P of M0, the infinitesimal
change of the volume function ϑH0(t) of P in the direction of a unit vector
H0, normal to P , is given by ω(ξ(t)) = ϑH0(t) d H0 ∧ d P ∧ d t, where
ξ(t) is a geodesic of M satisfying ξ(0) = p ∈ P and ξ′(0) = H0, ω is the
Riemannian volume element of M0, dP that of P , and d H0 that of the
unit sphere in the normal space TpP

⊥. This definition makes sense when P

is a point p ∈ M0 and H0 is a unit vector in m0; in this case a geodesic ball
(tube around a point) is considered and we obtain the following expression
for the infinitesimal change of the volume function:

Proposition 2.1. Let M0 be a noncompact symmetric space and ξ(t)
a geodesic in M0 such that ξ(0) = p and ξ′(0) = H0 (H0 a unit vector in a

maximal abelian subspace hm0 of m0). Then, the infinitesimal change of

the volume function ϑH0(t) is given by

(8) ϑH0(t) = t−(n−q)
n∏

j=q+1

sinh(tαj(H0))
αj(H0)

.

where q is the rank of M0, (i.e. dim(hm0)), and αj varies in ∆+, where

without loss of generality we assume that 0 = α1(H0) = · · · = αq(H0) <

αq+1(H0) ≤ · · · ≤ αn(H0).

Proof. By analogy with the compact case (see [N-G]), we omit the
explicit proof of the proposition. The main difference between the two
cases is that for noncompact symmetric spaces the sectional curvature is
negative and the Riccati differential equations for the principal curvature
functions are:

(9)
k′i(t) = ki(t)2, i = 2, . . . , q;

k′j(t) = kj(t)2 − αj(H0)2, j = q + 1, . . . , n.

Now, starting with the expression (8) for the infinitesimal change of
volume function, our purpose is to simplify the integral over the unit sphere
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which appears in the next identity for the volume function of a geodesic
ball:

(10) V M0
p (r) =

∫ r

0

AM0
p (t) d t =

∫ r

0

∫

Sn−1(1)

tn−1ϑH0(t) dH0 d t.

In order to achieve this, we consider the next two properties, which
are satisfied for compact and noncompact symmetric spaces.

Proposition 2.2. The infinitesimal change of volume function ϑH0(t)
does not depend on the vector chosen in the orbit

⋃
k∈K Ad(k)H0.

Proposition 2.3. Let Sn−1(1) and Sq−1(1) be the unit spheres in

m0 and hm0 , respectively. Given a Weyl chamber D0 in hm0 we consider

C0 = D̄0 ∩ Sq−1(1), where D̄0 is the closure of D0; then,

(11) Sn−1(1) =
⋃

k∈K

Ad(k)C0.

(See [N-G] for the proofs of both propositions.)

Theorem 2.4. The volume of a geodesic ball in the noncompact sym-

metric space M0 is given by

(12)

V M0
p (r) =

∫ r

0

AM0
p (t) d t where

AM0
p (t) = ctq−1

∫

C0

n∏

j=q+1

sinh(tαj(H0)) dH0

where c denotes the constant given by the volume of the principal orbit

K/KH0 .

Proof. From Propositions 2.2 and 2.3, we can express tha area func-
tion of the geodesic ball as

(13) AM0
p (t) = tn−1

∫

C0

v(H0)ϑH0(t) d H0,

where v(H0) is the volume of the orbit
⋃

k∈K Ad(k)H0.
Now, replacing ϑH0(t) and v(H0) in (13), and having in mind (8) and

(7), respectively, we obtain the desired result. ¤
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3. Example: Symmetric spaces of type AIII

Now, we shall consider the noncompact symmetric space
M0 = SU(p, q)/S(Up × Uq), and we specialize the expression (12) for this
space. Here,

m =
{(

0 iZ

−iX̄t 0

)
: Z complex p× q matrix

}
;(14)

and

hm0 =
q∑

j=1

iR(Ej,p+j − Ep+j,j)(15)

where Ejk denotes the matrix (δajδbk).
Let H0 be a unit vector in hm0 which we identify with (x1, . . . , xq),

such that x2
1 + · · ·+ x2

q = 1. Then, from (5), the eigenvalues of RH0 are: 0
with multiplicity q, −x2

j with multiplicity 2(p− q), −4x2
j with multiplicity

1 and −(xj − xk)2, −(xj + xk)2 with multiplicity 2; for 1 ≤ j < k ≤ q.
A Weyl chamber in hm0 is given by D0 = {(x1, . . . , xq) : x1 > · · · >

xq > 0}.
From (12) we have that

(16)

AM0
p (t) = ctq−1

∫

C0

2(p−q)∏

j=1

sinh(txj)
q∏

j=1

sinh(2txj)

×
q∏

j=1
j<k

sinh2(t(xk − xj)) sinh2(t(xk + xj)) d x1 . . . dxq.

Remark 1. For q = 1, M0 is the complex hyperbolic space and the
area function of the geodesic ball is, [G],

(17) AM0
p (t) = c sinh2(p−1)(t) sinh(2t) = 2c sinh2p−1(t) cosh(t).

Remark 2. The area function AM
p (t) for the compact symmetric space

dual to M0 is given by changing in (16) all the hyperbolic functions to
trigonometric functions.

To end this section we plot the volume of a geodesic ball, up to the
same constant factor, in the compact and noncompact symmetric spaces
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of type AIII from 0 to the injectivity radius of the compact symmetric
space, which is π/2, [N-G].

SU(4)/S(U(2)× U(2)) SU(2, 2)/S(U(2)× U(2))

4. Tubes in noncompact symmetric spaces

In the preceding section we have computed the volume of a geodesic
ball in a noncompact symmetric space M0 as an adaptation of the volume
function of geodesic balls in the compact symmetric space M dual to M0.
In this section we consider tubes around totally geodesic submanifolds
compatible with M0.

Let P0 be a totally geodesic submanifold in M0; then ([He] and [W]),
P0 = U0/L is a noncompact symmetric space. Let µ0 denote the Lie
algebra of U0 and µ0 = ρ0 + l its canonical decomposition.

In order to get the compatibility condition of P0 with M0 we assume
that for all vectors H0 in ρ⊥0 the curvature operator satisfies the condition
of preserving the curvature RH0(ρ0) ⊂ ρ0 and RH0(ρ

⊥
0 ) ⊂ ρ⊥0 , (the first

inclusion is immediate because ρ0 is a Lie triple system).
Let P denote the compact symmetric space dual to P0, which is, in

its turn, a totally geodesic submanifold compatible with M .
In [N-G] we have computed the infinitesimal change of volume function

of P ; therefore, as we have seen in Proposition 2.1 for geodesic balls, the
infinitesimal change of the volume function of P0 is given by changing all
of the trigonometric functions, which appear in the infinitesimal change of
the volume function of P , to hyperbolic functions.

However, although we have an expression for the infinitesimal change
of the volume function of P0, it is not possible to obtain a finite value
for volume of a tube around P0 because P0 is a noncompact submanifold
of M0.
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