Publ. Math. Debrecen 54 / 3-4 (1999), 377–381

On weakly symmetric Riemannian spaces

By U. C. DE (Kalyani) and SOMNATH BANDYOPADHYAY (Kalyani)

Abstract. The object of this paper is to present the modified form of weakly symmetric Riemannian spaces introduced by TAMÁSSY and BINH [1] with an illustrative example.

1. Introduction

The notions of weakly symmetric and weakly projective symmetric spaces were introduced by TAMÁSSY and BINH [1]. A non-flat Riemannian space V_n (n > 2) is called a weakly symmetric space if the curvature tensor R_{hijk} satisfies the condition:

$$(1.1) R_{hijk,l} = a_l R_{hijk} + b_h R_{lijk} + c_i R_{hljk} + d_j R_{hilk} + e_k R_{hijl}$$

where a, b, c, d, e are 1-forms (non-zero simultaneously) and the comma ',' denotes covariant differentiation with respect to the metric tensor of the space.

The 1-forms a, b, c, d, e are called the associated 1-forms of the space and an *n*-dimensional space of this kind is denoted by $(WS)_n$. It may be mentioned in this connection that although the definition of a $(WS)_n$ is similar to that of a generalized pseudo-symmetric space studied by CHAKI and MONDAL [2], the defining condition of a $(WS)_n$ is weaker than that of a generalized pseudo-symmetric space. A reduction in generalized pseudosymmetric spaces has been obtained by Chaki and Mondal. But in this paper $(WS)_n$ is investigated and a reduction in $(WS)_n$ is obtained in a simpler form.

Mathematics Subject Classification: 53B35, 53B05.

Key words and phrases: weakly symmetric Riemannian space, curvature tensor.

In Section 2 it is shown that the 1-forms c and e are identical with b and d, respectively. Then the defining condition of a $(WS)_n$ can always be expressed in the following form:

(1.2)
$$R_{hijk,l} = a_l R_{hijk} + b_h R_{lijk} + b_i R_{hljk} + d_j R_{hilk} + d_k R_{hijl}$$

In Section 3 an example of a weakly symmetric space has been given.

2. Associated 1-forms of a $(WS)_n$

In this section it will be shown that the five associated 1-forms a, b, c, d, e of a $(WS)_n$ cannot be all different.

Interchanging h and i in (1.1) we get

$$(2.1) R_{ihjk,l} = a_l R_{ihjk} + b_i R_{lhjk} + c_h R_{iljk} + d_j R_{ihlk} + e_k R_{ihjl}$$

Now, adding (1.1) and (2.1) we obtain

$$(b_h - c_h)R_{lijk} + (b_i - c_i)R_{lhjk} = 0$$

or

where $A_h = b_h - c_h$. We want to show that $A_h = 0$ (h = 1, ..., n). Suppose on the contrary that there exists a fixed index q for which $A_q \neq 0$. Putting h = l = q in (2.2) we get $A_q R_{qijk} = 0$ which implies that $R_{qijk} = 0$ for all l, j, k. Next, putting i = q in (2.2) we obtain $A_h R_{lqjk} + A_q R_{lhjk} = 0$ which implies that $R_{hljk} = 0$ for all l, h, j, k, since $R_{qijk} = 0$ for all i, j, kand $A_q \neq 0$. Then the space is flat contradicting our hypothesis. Hence $A_h = 0$ for all h, which implies that

$$(2.3) b_h = c_h ext{ for all } h.$$

Similarly, interchanging j and k in (1.1) and proceeding as before we get

(2.4)
$$d_h = e_h \quad \text{for all } h.$$

From (2.3) and (2.4) we see that the associated 1-forms a, b, c, d, e are not all different, because b = c and d = e. In virtue of this we can state the following

Theorem 1. The defining equation of $(WS)_n$ can always be expressed in the following form:

$$R_{hijk,l} = a_l R_{hijk} + b_h R_{lijk} + b_i R_{hljk} + d_j R_{hilk} + d_k R_{hijl}.$$

3. Example of a $(WS)_n$

In this section we give an example of a $(WS)_n$.

Let each Latin index run over 1, 2, ..., n and each Greek index over 2, 3, ..., n-1.

We define the metric g in the coordinate space $R^n \ (n \geq 4)$ by the formula

(3.1)
$$ds^{2} = \varphi(dx^{1})^{2} + k_{\alpha\beta}dx^{\alpha}dx^{\beta} + 2dx^{1}dx^{n},$$

where $[k_{\alpha\beta}]$ is a symmetric and non-singular matrix consisting of constants and φ is independent of x^n . Thus R_n becomes a Riemannian space V_n .

In the metric considered, the only non-vanishing components of the Christoffel symbols and the curvature tensor R_{hijk} are (see [3])

$$\left\{ \begin{array}{c} \beta\\11 \end{array} \right\} = -\frac{1}{2} k^{\beta \alpha} \varphi_{\cdot \alpha}, \quad \left\{ \begin{array}{c} n\\11 \end{array} \right\} = \frac{1}{2} \varphi_{\cdot 1}, \quad \left\{ \begin{array}{c} n\\1\alpha \end{array} \right\} = \frac{1}{2} \varphi_{\cdot \alpha},$$

and

(3.2)
$$R_{1\alpha\beta 1} = \frac{1}{2}\varphi_{\cdot\alpha\beta}$$

where (·) denotes the partial differentiation, and $[k^{\beta\alpha}]$ is the inverse matrix. Here we consider $k_{\alpha\beta}$ as $\delta_{\alpha\beta}$ and $\varphi = K_{\alpha\beta}x^{\alpha}x^{\beta}e^{x^{1}}$. In this case $\varphi = K_{\alpha\beta}x^{\alpha}x^{\beta}e^{x^{1}}$ reduces to

(3.3)
$$\varphi = \sum_{\alpha=2}^{n-1} x^{\alpha} x^{\alpha} e^{x^1}.$$

Hence

(3.4)
$$\varphi_{\cdot\alpha\alpha} = 2e^{x^1}$$
 and $\varphi_{\cdot\alpha\beta} = 0$ for $\alpha \neq \beta$.

It follows from (3.2) and (3.4) that the only non-zero components of R_{hijk} are

$$(3.5) R_{1\alpha\alpha1} = e^{x^1}.$$

Also we can easily show that the only non-zero components of $R_{hijk,l}$ are

$$(3.6) R_{1\alpha\alpha1,1} = e^{x^1}.$$

Let

$$a_{i} = \begin{cases} \frac{1}{2} & \text{for } i = 1, \\ 0 & \text{otherwise.} \end{cases} \qquad b_{i} = \begin{cases} \frac{1}{3} & \text{for } i = 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$(3.7)$$

$$d_{i} = \begin{cases} \frac{1}{6} & \text{for } i = 1, \\ 0 & \text{otherwise.} \end{cases}$$

In order to verify the relation (1.2) in our V_n , it is sufficient to check the following relations:

(A) $R_{1\alpha\alpha1,1} = a_1 R_{1\alpha\alpha1} + b_1 R_{1\alpha\alpha1} + b_\alpha R_{11\alpha1} + d_\alpha R_{1\alpha11} + d_1 R_{1\alpha\alpha1}$

(B)
$$R_{11\alpha1,\alpha} = a_{\alpha}R_{11\alpha1} + b_1R_{\alpha1\alpha1} + b_1R_{1\alpha\alpha1} + d_{\alpha}R_{11\alpha1} + d_1R_{11\alpha\alpha}$$

(C)
$$R_{1\alpha 11,\alpha} = a_{\alpha}R_{1\alpha 11} + b_1R_{\alpha\alpha 11} + b_{\alpha}R_{1\alpha 11} + d_1R_{1\alpha\alpha 1} + d_1R_{1\alpha 1\alpha}.$$

As for any case other than (A), (B) and (C), the components of R_{hijk} and $R_{hijk,l}$ vanish identically, and the relation (1.2) holds trivially.

From (3.5), (3.6) and (3.7) we get the following relation for the righthand side (r.h.s.) and the left-hand side (l.h.s.) of (A):

r.h.s. of (A) =
$$(a_1 + b_1 + d_1)R_{1\alpha\alpha 1} = 1.e^{x^1} = R_{1\alpha\alpha 1,1} = 1.h.s.$$
 of (A).

Now the r.h.s. of (B) = $b_1(R_{\alpha 1\alpha 1} + R_{1\alpha \alpha 1}) = 0$, and the by antisymmetric property of R_{hijk} also the l.h.s. of (B) vanishes. By a similar argument as in (B), it can be shown that the relation (C) is also true. Hence R^n equipped with the metric g given in (3.1) is a weakly symmetric space.

Acknowledgement. The authors express their sincere thanks to the referee for his valuable suggestions for the improvement of the paper.

380

References

- L. TAMÁSSY and T. Q. BINH, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 50 (1989), 663–670.
- [2] M. C. CHAKI and S. P. MONDAL, On generalized pseudo-symmetric manifolds, *Publ. Math. Debrecen* 51 no. 1-2 (1997), 35–42.
- [3] W. ROTER, On conformally related conformally recurrent metrics 1, Some general results, *Colloquium Mathematicum* 47 (1982), 39–46.

U. C. DE, SOMNATH BANDYOPADHYAY DEPARTMENT OF MATHEMATICS UNIVERSITY OF KALYANI KALYANI 741235, W.B. INDIA

(Received September 24, 1997; revised March 26, 1998)