On weakly symmetric Riemannian spaces

By U. C. DE (Kalyani) and SOMNATH BANDYOPADHYAY (Kalyani)

Abstract

The object of this paper is to present the modified form of weakly symmetric Riemannian spaces introduced by TAMÁSSY and Binh [1] with an illustrative example.

1. Introduction

The notions of weakly symmetric and weakly projective symmetric spaces were introduced by Tamássy and Binh [1]. A non-flat Riemannian space $V_{n}(n>2)$ is called a weakly symmetric space if the curvature tensor $R_{\text {hijk }}$ satisfies the condition:

$$
\begin{equation*}
R_{h i j k, l}=a_{l} R_{h i j k}+b_{h} R_{l i j k}+c_{i} R_{h l j k}+d_{j} R_{h i l k}+e_{k} R_{h i j l} \tag{1.1}
\end{equation*}
$$

where a, b, c, d, e are 1-forms (non-zero simultaneously) and the comma ',' denotes covariant differentiation with respect to the metric tensor of the space.

The 1-forms a, b, c, d, e are called the associated 1-forms of the space and an n-dimensional space of this kind is denoted by $(W S)_{n}$. It may be mentioned in this connection that although the definition of a $(W S)_{n}$ is similar to that of a generalized pseudo-symmetric space studied by CHAKI and Mondal [2], the defining condition of a $(W S)_{n}$ is weaker than that of a generalized pseudo-symmetric space. A reduction in generalized pseudosymmetric spaces has been obtained by Chaki and Mondal. But in this paper $(W S)_{n}$ is investigated and a reduction in $(W S)_{n}$ is obtained in a simpler form.

Mathematics Subject Classification: 53B35, 53B05.
Key words and phrases: weakly symmetric Riemannian space, curvature tensor.

In Section 2 it is shown that the 1 -forms c and e are identical with b and d, respectively. Then the defining condition of a $(W S)_{n}$ can always be expressed in the following form:

$$
\begin{equation*}
R_{h i j k, l}=a_{l} R_{h i j k}+b_{h} R_{l i j k}+b_{i} R_{h l j k}+d_{j} R_{h i l k}+d_{k} R_{h i j l} . \tag{1.2}
\end{equation*}
$$

In Section 3 an example of a weakly symmetric space has been given.

2. Associated 1-forms of a $(W S)_{n}$

In this section it will be shown that the five associated 1-forms a, b, c, d, e of a $(W S)_{n}$ cannot be all different.

Interchanging h and i in (1.1) we get

$$
\begin{equation*}
R_{i h j k, l}=a_{l} R_{i h j k}+b_{i} R_{l h j k}+c_{h} R_{i l j k}+d_{j} R_{i h l k}+e_{k} R_{i h j l} . \tag{2.1}
\end{equation*}
$$

Now, adding (1.1) and (2.1) we obtain

$$
\left(b_{h}-c_{h}\right) R_{l i j k}+\left(b_{i}-c_{i}\right) R_{l h j k}=0
$$

or

$$
\begin{equation*}
A_{h} R_{l i j k}+A_{i} R_{l h j k}=0 \tag{2.2}
\end{equation*}
$$

where $A_{h}=b_{h}-c_{h}$. We want to show that $A_{h}=0(h=1, \ldots, n)$. Suppose on the contrary that there exists a fixed index q for which $A_{q} \neq 0$. Putting $h=l=q$ in (2.2) we get $A_{q} R_{q i j k}=0$ which implies that $R_{q i j k}=0$ for all l, j, k. Next, putting $i=q$ in (2.2) we obtain $A_{h} R_{l q j k}+A_{q} R_{l h j k}=0$ which implies that $R_{h l j k}=0$ for all l, h, j, k, since $R_{q i j k}=0$ for all i, j, k and $A_{q} \neq 0$. Then the space is flat contradicting our hypothesis. Hence $A_{h}=0$ for all h, which implies that

$$
\begin{equation*}
b_{h}=c_{h} \quad \text { for all } h . \tag{2.3}
\end{equation*}
$$

Similarly, interchanging j and k in (1.1) and proceding as before we get

$$
\begin{equation*}
d_{h}=e_{h} \quad \text { for all } h . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we see that the associated 1-forms a, b, c, d, e are not all different, beacuse $b=c$ and $d=e$. In virtue of this we can state the following

Theorem 1. The defining equation of $(W S)_{n}$ can always be expressed in the following form:

$$
R_{h i j k, l}=a_{l} R_{h i j k}+b_{h} R_{l i j k}+b_{i} R_{h l j k}+d_{j} R_{h i l k}+d_{k} R_{h i j l} .
$$

3. Example of a $(W S)_{n}$

In this section we give an example of a $(W S)_{n}$.
Let each Latin index run over $1,2, \ldots, n$ and each Greek index over $2,3, \ldots, n-1$.

We define the metric g in the coordinate space $R^{n}(n \geq 4)$ by the formula

$$
\begin{equation*}
d s^{2}=\varphi\left(d x^{1}\right)^{2}+k_{\alpha \beta} d x^{\alpha} d x^{\beta}+2 d x^{1} d x^{n}, \tag{3.1}
\end{equation*}
$$

where $\left[k_{\alpha \beta}\right]$ is a symmetric and non-singular matrix consisting of constants and φ is independent of x^{n}. Thus R_{n} becomes a Riemannian space V_{n}.

In the metric considered, the only non-vanishing components of the Christoffel symbols and the curvature tensor $R_{h i j k}$ are (see [3])

$$
\left\{\begin{array}{c}
\beta \\
11
\end{array}\right\}=-\frac{1}{2} k^{\beta \alpha} \varphi \cdot \alpha, \quad\left\{\begin{array}{c}
n \\
11
\end{array}\right\}=\frac{1}{2} \varphi \cdot 1, \quad\left\{\begin{array}{c}
n \\
1 \alpha
\end{array}\right\}=\frac{1}{2} \varphi \cdot \alpha,
$$

and

$$
\begin{equation*}
R_{1 \alpha \beta 1}=\frac{1}{2} \varphi \cdot \alpha \beta \tag{3.2}
\end{equation*}
$$

where (\cdot) denotes the partial differentiation, and $\left[k^{\beta \alpha}\right]$ is the inverse matrix. Here we consider $k_{\alpha \beta}$ as $\delta_{\alpha \beta}$ and $\varphi=K_{\alpha \beta} x^{\alpha} x^{\beta} e^{x^{1}}$. In this case $\varphi=$ $K_{\alpha \beta} x^{\alpha} x^{\beta} e^{x^{1}}$ reduces to

$$
\begin{equation*}
\varphi=\sum_{\alpha=2}^{n-1} x^{\alpha} x^{\alpha} e^{x^{1}} \tag{3.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\varphi \cdot \alpha \alpha=2 e^{x^{1}} \quad \text { and } \varphi \cdot \alpha \beta=0 \text { for } \alpha \neq \beta . \tag{3.4}
\end{equation*}
$$

It follows from (3.2) and (3.4) that the only non-zero components of $R_{h i j k}$ are

$$
\begin{equation*}
R_{1 \alpha \alpha 1}=e^{x^{1}} . \tag{3.5}
\end{equation*}
$$

Also we can easily show that the only non-zero components of $R_{h i j k, l}$ are

$$
\begin{equation*}
R_{1 \alpha \alpha 1,1}=e^{x^{1}} . \tag{3.6}
\end{equation*}
$$

Let

$$
\begin{gather*}
a_{i}=\left\{\begin{array}{ll}
\frac{1}{2} & \text { for } i=1, \\
0 & \text { otherwise. }
\end{array} \quad b_{i}= \begin{cases}\frac{1}{3} & \text { for } i=1, \\
0 & \text { otherwise. }\end{cases} \right. \\
d_{i}= \begin{cases}\frac{1}{6} & \text { for } i=1 \\
0 & \text { otherwise }\end{cases} \tag{3.7}
\end{gather*}
$$

In order to verify the relation (1.2) in our V_{n}, it is sufficient to check the following relations:
(A) $R_{1 \alpha \alpha 1,1}=a_{1} R_{1 \alpha \alpha 1}+b_{1} R_{1 \alpha \alpha 1}+b_{\alpha} R_{11 \alpha 1}+d_{\alpha} R_{1 \alpha 11}+d_{1} R_{1 \alpha \alpha 1}$
(B) $R_{11 \alpha 1, \alpha}=a_{\alpha} R_{11 \alpha 1}+b_{1} R_{\alpha 1 \alpha 1}+b_{1} R_{1 \alpha \alpha 1}+d_{\alpha} R_{11 \alpha 1}+d_{1} R_{11 \alpha \alpha}$
(C) $R_{1 \alpha 11, \alpha}=a_{\alpha} R_{1 \alpha 11}+b_{1} R_{\alpha \alpha 11}+b_{\alpha} R_{1 \alpha 11}+d_{1} R_{1 \alpha \alpha 1}+d_{1} R_{1 \alpha 1 \alpha}$.

As for any case other than (A), (B) and (C), the components of $R_{h i j k}$ and $R_{h i j k, l}$ vanish identically, and the relation (1.2) holds trivially.

From (3.5), (3.6) and (3.7) we get the following relation for the righthand side (r.h.s.) and the left-hand side (l.h.s.) of (A):

$$
\text { r.h.s. of }(\mathrm{A})=\left(a_{1}+b_{1}+d_{1}\right) R_{1 \alpha \alpha 1}=1 . e^{x^{1}}=R_{1 \alpha \alpha 1,1}=\text { l.h.s. of }(\mathrm{A}) \text {. }
$$

Now the r.h.s. of $(\mathrm{B})=b_{1}\left(R_{\alpha 1 \alpha 1}+R_{1 \alpha \alpha 1}\right)=0$, and the by antisymmetric property of $R_{h i j k}$ also the l.h.s. of (B) vanishes. By a similar argument as in (B), it can be shown that the relation (C) is also true. Hence R^{n} equipped with the metric g given in (3.1) is a weakly symmetric space.

Acknowledgement. The authors express their sincere thanks to the referee for his valuable suggestions for the improvement of the paper.

References

[1] L. Tamássy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 50 (1989), 663-670.
[2] M. C. Chaki and S. P. Mondal, On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen 51 no. 1-2 (1997), 35-42.
[3] W. Roter, On conformally related conformally recurrent metrics 1, Some general results, Colloquium Mathematicum 47 (1982), 39-46.
U. C. DE, SOMNATH BANDYOPADHYAY

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI
KALYANI 741235, W.B.
INDIA
(Received September 24, 1997; revised March 26, 1998)

