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On the (H, L) typeness of the maximal function
of Cesaro means of two-parameter
integrable functions on bounded Vilenkin groups

By I. BLAHOTA (Nyiregyhdza)

Abstract. In this paper we prove that the operator o* f := sup,,cy2 |on f| from
the Hardy space H to L'(Gm x G;) is bounded, where the quotient of the coordinates
of n is bounded. In other words o* is of type (H, L).

1. Introduction

Let us briefly introduce the necessary definitions and notations. Let
m := (mg, my,...) denote a sequence of positive integers not less than 2.
Denote by Z,,, :={0,1,...,m; — 1} the additive group of integers modulo
m; (j € N). Zp, is endowed by the discrete topology, i.e. every subset of
Zm,; is open.

Define the group G,, as the cartesian product of the discrete cyclic
groups Zy,,

o0
Gm = X Zp,-
j=0
The elements of G,, can be represented by sequences
r = (20,%1,...,%5,...) (; € Zm,, j € N). The group operation on
G (+) is the coordinate-wise additon, the inverse operation is —. The
topology on (,, is the product topology, and G,, is a compact Abelian
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group. A base I,,(z), n=0,1,... for the topology of G,, can be given in
the following way. Set

Iy(z) := Gpy In(z):={y= (y;,i € N) € Gy, : y; = x; for i <n}

for x € Gp,, n € P:= N\ {0}. The element (0,0, ...) is the nullelement of
G, it will be denoted by 0. Put I,, = I,,(0) (n € N), and observe that I,
is a subgroup of G, (n € N). The direct product u of the measures

. 1 .
Nk({J}) = (] € Zmy, k € N)
my

is the Haar measure on G, with u(G,,) = 1.

If My =1, M1 = mp My, (k € N), then every n € N can be uniquely
expressed as n = ) n;M;, where n; € Z,,, (j € N) and only a finitely

j=0

many of n; differ from zero.

The group G, is metrizable. Define the distance between the elements
r € Gy, and y € G, by

The topology induced by this metric coincides with that of G,,. Denote
by LP(G,,) the usual Lebesgue space with the corresponding norm.

1fllp = (/C:mlfl”); (f € LP(Gm)), 1<p <o),

[flloo := inf{r: r>0, u(lfl>r)=0} (f€L¥(Gn)).

Let ém := {4, : n € N} denote the character group of G,,. We enu-
merate the elements as follows. Denote on G, the generalized Rademacher
functions by

(12 :=—1, x € Gy, k €N).

It is known that the functions

oo

Un(z) = [[ri*(@) (neN)

k=0
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on G, are elements of the character group of G,,, and all the elements of
the character group are of this form.

The system (¢, : n € N) is called a Vilenkin system and G,, a
Vilenkin group.

Let A, be the o-algebra generated by the cosets I,,(z), where n € N,
z € Gp,. Let a?,an (k,j,n € N) be functions satisfying the following
conditions:

(i) af : Gy — Cis Aj-measurable (k,j € N),

(ii) |of|:=af = a9 :=a%(0) :==1 (k,j €N),

(iii) ap =[] a?m (n eN, nl) =% nkMk>
J=0 k=j

Let xp, = ¥na, (n € N). A function system {x,, : n € N} of this type
is called a Yo (Vilenkin-like) system on the Vilenkin group G,,. [G&tl, 2]

In [G4t2] it is proved that a Vilenkin-like system is orthonormal and
complete in L (G,,).

We mention some examples.

1. If ozf =1 for each k, j € N, then we obtain the “ordinary” Vilenkin
systems [Vil].

2. If m; =2 for all j € N and a?(]) = (B8;)™, where

Bj(x) = exp <2m (wj_l b o

02 2j+1)> (n,jeN, ze€Gp),

then we get the character system of the group of 2-adic integers (see e.g.
[Tai, HR, G4t7]).

The (about) 25 years old conjecture of M. H. TAIBLESON [Tai], namely
that o, f — f (f € L) a.e. (with respect to this system) was proved by
GAT [G4t7]. In [BG] the two-dimensional version of this question was also
solved.

3. If
tn(x) := exp (2m<z ]\;j > Z:vaj> (x € Gm,n € N),
j=0 It/ =

then we have a Vilenkin-like system which is a useful tool in the ap-
proximation theory of limit periodic, almost even arithmetical functions

(ct. [G4t3)).
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Define the Fourier coefficients, the partial sums of the Fourier series
and the Fejér means with respect to the Vilenkin-like system x in the
following way:

n—1 n—1
foi= [ fxe Sufi= Y PW ouf =0 3 S)S
Gm k=0 k=0

<neIP>, (0) == /Gm f, f€ Ll(Gm)).

For more details about Vilenkin and Vilenkin-like systems see [SWS,
AVD, Vil, G&t1-G4t5].

For (n1,n2) = n € N2 set Vn := max (n1,n3), An := min (ny,n2). Let
m also a sequence of integers with the same properties as m. In the sequel
the boundedness of the Vilenkin groups G,,, G is supposed. Denote
the LP(G,, x G#) norm of any function f by ||f|, (1 <p < c0).

Let I denote the n-th interval generated by 7. Define 7t = 7i(n) :=
min(l € N: M, < ]\/Zl) (n € N). Then there exists a constant ¢ for which
M, < ]\7;; < ¢M,, for all n € N (¢ does not depend on n, but depends on
max m; and max j € N — max m;).

So, from now on we are going to use c¢M,, instead of Mﬁ (in some
inequalities below).

The Kronecker product {xn,m : n,m € N} of two Vilenkin-like sys-
tems {x, : n € N} and {X, : n € N} is said to be a two-dimensional (or
double) Vilenkin-like system. Thus

Xn,m (%, 9) = X (2) Xom ()
where x € G, y € G-
If f € LY(G,, x Gi) then the (n, k)-th Fourier coefficients, the (n, k)-
th partial sum of Fourier series and the Fejér means of order (n,k) of
double Fourier series are the following

n—1k—1

f(n> k) = /G o fYn,ka Sn,k:f = Z Zf/\(]a l)Xj,la

=0 1=0

n—1k—1

UnJmf:::%%;EE:ji:‘s}lf'

=0 =0
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For each f € L'(G,, x G7) let the maximal function and the diagonal
maximal function be defined by

f*:= sup ’SMM,J% f‘ fo = :EII\);’SM"’MZJC‘

ni,no €N

and

e = 1 s e = 17

Define the Hardy space H to be the collection of functions f € Li(G,, X
G ) such that ||f]|g < oo i.e.

H:={fe€Li(Gn xGgx):|fllg < oo},
and the diagonal Hardy space H® as
H° :={f € Li(Gpn X Gz) : ||fllge < c0}.

Since || fllge < ||f||m, thus H® C H.

The atomic decomposition is a useful characterisation of Hardy spaces.
In order to show this, we introduce the concept of an atom.

We say that a € L®(G,,, x G#) is a H® atom if

(i) there exist = (x1,22) and k € N such that suppa C Ij(x1) X f%(ﬂ?g),
(ii) lalloo < My,
(iii) (Ega)(y) = (Ek;,;a)(y) = 0 for all y € Gy, X G (Ersf)(y) =

MTMS fln(yl)XTS(lm) f

We will use the following decomposition theorem (similar and others
can be found in [Weil]).

Theorem 1. A function f € L'(G,, x Gg) is in the diagonal Hardy
space H° if and only if there exist a sequence (ay : k € N) of H°-atoms
and a sequence (A, : k € N) of real numbers such that

(1) f= Arax
k=0

o

(2) D ] < o0

k=0
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Moreover, ||f||ge and inf(>"7~, |\x|) are equivalent norms, where the in-
fimum is taken over all decompositions of f.

To prove Theorem 1 recall the first steps of the decomposition algo-
rithm of Calderon—Zygmund (for the original version see [CZ], [SWS]). For
any f € L'(Gp, x G) and X > 0 set

{ Io(29) x To(a§) if [ Eof(x°)| > A
QO .

0 otherwise
and
U, Te(}) x Ti(x3) if [Bef(a')] > A,
Q= <Ik(xil) x INﬁ;Wé)) n (U;:S = Qj) =0

0 otherwise,

where z = (24,2%) € G, x G, and Ij(x}) x flg(mé) denotes the ith
rectangle defined in the course of procedure (start the counting from zero).

For the elements of ) we introduce the following notation I} :=
I (zt) x Tg(azg), where ¢ € N. Let

o= 1 = (i [ 1)y

Iy

= f1@+2 <MkMg/ f)lffc,

i,k Iy

where 1 ri s the characteristic function of I}. Thus f = fy + sz I
and the number of elements of €2, is finite. These facts imply a modyfied
version of the Calderon-Zygmund decomposition lemma, (see [CZ], [SW]):

Lemma 2. Let f € L*(G, xGg), A > || fll1. Then f = fa+> ory fn,
where || fil|o < ¢, supp f, C I} for some rectangles (27 € Gy, 25 € G,
kn € N), [1n fo =0, [[falli < cAu(I) (n € P). The rectangles I}! are

kTL n n

disjoint, furthermore u(€)) = p (UneP I ) < c%.

n

PROOF of Theorem 1. Throughout this paper ¢ will denote a constant
which may vary at different occurances and may depend only on [ (definied
later), sup m,, and sup m.,.
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For a H°-atom a we have

sup | Enal
neN

<
1

lallme =

Sub Fn (M’“Mﬁllkm)xfg(m)) H1 =t
Consequently, if a function f in L' (G, x Gi) is of the form f = 377 Xia;
with (2) then

o0 o0
e < D0 illlallze <) 1Al < o0,
1=0 1=0

that is, f is in H°. The first part of the proof is complete.

Conversely, use the Calderon—Zygmund decomposition lemma with
A =27 and ¢ € Z. We have

f="rfautd faum,
n=1

where || faa|loc < €29, and for a fixed ¢ € Z the sets supp fou,, = Iy
are pairwise disjoint. Moreover, from the decomposition algorithm we
obtain 29 < |E, foa ;| < €29, and |Ej faq | < 29 for any j =0,1,...,q — 1.

However, fos — f and f_9¢ — 0 as ¢ — oo, thus

oo [ee]

F=3 (faorr = fa) = > (ngq,n—2f2q+1,j>
n=1 Jj=1

g=—00 g=—00

can be written. There exist for a j € P and n € IP such that supp faa+1 ; C
supp foa . Let

bq,n = f2‘17n - Z f2q+1,j'

J:supp fyq+1 ;Csupp faa n

For every element @ of supp faq ,, the equation b, ,,(x) = fosr1(x) — faa(x)

holds, consequently |b, .| < c29. Let ag, := M;Mz=2=b,n, and Ay, =

ac2q
1
c24 By q € Z, n € P then

f: Z Z)\q,naq,na

g=—oon=1
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where the functions a, , are H°-atoms with supports I I?M'

DD Paml=c Yo 20 ull )

g=—ocon=1 q=—00 n=1
o)
<e > 2u(fo > 21 < el £l = el e
gq=—00
This completes the proof. O

2. The (H, L) typeness of the maximal operator

Define the maximal operator of Cesaro means of two parameter inte-
grable functions on bounded Vilenkin groups as follows

o' f = sup lonf|  (n = (n1,n2)),
(nl,n2)€N2
Bi<l<p

=ng =

where 3 > 1 is some fixed parameter.
In order to prove the main theorem we need the corollary of the fol-
lowing lemma (see [BG]J, and for the Walsh case see [Gat6]).

~ Lemma 3. Let A,k € N be fixed, A > k — c. Set supp f C I(z1) X
I (22), f € LY(Gm x Gg) ((21,22) € Gy X Giz). Then we have

sup {|onf| :n € P2, An > Ma, B <ni/ny < B}

Mo\ 2
<e(315) 1o

Corollary 4. Suppose that supp f C Ij(z1) Xflg(‘fg) and f € LY(G,, x
Gr) (k €N, (z1,22) € Gy, X Gi). Then we have

/(Gm XG =)\ Ik (1) x I (w2)

/ e <eflh
(Gm XG5 )\ Ik (z1) X I3 (22)
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Theorem 5. The operator o* is of type (H®,L) i.e.

lo* flly < el fllge (f € H).

PROOF of Theorem 5. Recall that the operator o* from LP(G,, X G#,)
to LP(Gy, X Gg) is bounded for p > 1, (because of the week (1,1) and
(00, 00) typeness of the operator o* (see [BG])). Suppose that a is an H°-
atom with support Ij(z1) X f%(mg) Using Corollary 4, Holder’s inequality
and the boundedness of o*, we get

/ o*a:/ ~ U*a—i—/ B o*a
GrmXG;l Ik(itl)xlz(l‘z) (GmXG;l)\(Ik(:El)XIE(:EQ))

- </acm (U*a)p> o) x T2 + clals

1

< ¢p (/ _ W’) (I (21) x I(ws)) ™7 +
Ik(Il)Xlz(rg)

1 1—1
~ 1 v 1 v
S Cp (MkM’E)pT —— +c S C.
MM )\ M M-

Using the atomic decomposition of the function f and the o-sublinearity
of the operator o*,

[ee] oo [ee]
lo" fllv = ||o” (Z /\iaz‘> <Y illle*aills < eIl < el fllae-
i=1 1 =1 i=1
This completes the proof. O
Since || . [|ge < || .||z, we have H C H°. Consequently, we also have

Corollary 6. The operator o* is of type (H, L).

Corollary 6 with respect to the ordinary Vilenkin systems (bounded
case) can be found [Wei2].
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