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On the (H, L) typeness of the maximal function
of Cesàro means of two-parameter

integrable functions on bounded Vilenkin groups

By I. BLAHOTA (Nýıregyháza)

Abstract. In this paper we prove that the operator σ∗f := supn∈N2 |σnf | from

the Hardy space H to L1(Gm×Gem) is bounded, where the quotient of the coordinates
of n is bounded. In other words σ∗ is of type (H, L).

1. Introduction

Let us briefly introduce the necessary definitions and notations. Let
m := (m0,m1, . . . ) denote a sequence of positive integers not less than 2.
Denote by Zmj := {0, 1, . . . ,mj−1} the additive group of integers modulo
mj (j ∈ N). Zmj is endowed by the discrete topology, i.e. every subset of
Zmj is open.

Define the group Gm as the cartesian product of the discrete cyclic
groups Zmj ,

Gm :=
∞×

j=0
Zmj .

The elements of Gm can be represented by sequences
x := (x0, x1, . . . , xj , . . . ) (xj ∈ Zmj , j ∈ N). The group operation on
Gm(+) is the coordinate-wise additon, the inverse operation is −. The
topology on Gm is the product topology, and Gm is a compact Abelian
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group. A base In(x), n = 0, 1, . . . for the topology of Gm can be given in
the following way. Set

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}
for x ∈ Gm, n ∈ P := N \ {0}. The element (0, 0, . . . ) is the nullelement of
Gm it will be denoted by 0. Put In = In(0) (n ∈ N), and observe that In

is a subgroup of Gm (n ∈ N). The direct product µ of the measures

µk({j}) :=
1

mk
(j ∈ Zmk

, k ∈ N)

is the Haar measure on Gm with µ(Gm) = 1.
If M0 = 1, Mk+1 = mkMk (k ∈ N), then every n ∈ N can be uniquely

expressed as n =
∞∑

j=0

njMj , where nj ∈ Zmj (j ∈ N) and only a finitely

many of nj differ from zero.
The group Gm is metrizable. Define the distance between the elements

x ∈ Gm and y ∈ Gm by

d(x, y) :=
∞∑

k=0

|xk − yk|
Mk+1

.

The topology induced by this metric coincides with that of Gm. Denote
by Lp(Gm) the usual Lebesgue space with the corresponding norm.

‖f‖p :=
(∫

Gm

|f |p
) 1

p

(f ∈ Lp(Gm)), 1 ≤ p < ∞),

‖f‖∞ := inf{r : r > 0, µ(|f | > r) = 0} (f ∈ L∞(Gm)).

Let Ĝm := {ψn : n ∈ N} denote the character group of Gm. We enu-
merate the elements as follows. Denote on Gm the generalized Rademacher
functions by

rk(x) := exp
2πıxk

mk
(ı2 := −1, x ∈ Gm, k ∈ N).

It is known that the functions

ψn(x) :=
∞∏

k=0

rnk

k (x) (n ∈ N)
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on Gm are elements of the character group of Gm, and all the elements of
the character group are of this form.

The system (ψn : n ∈ N) is called a Vilenkin system and Gm a
Vilenkin group.

Let An be the σ-algebra generated by the cosets In(z), where n ∈ N,
z ∈ Gm. Let αk

j , αn (k, j, n ∈ N) be functions satisfying the following
conditions:

(i) αk
j : Gm → C is Aj-measurable (k, j ∈ N),

(ii) |αk
j | := αk

0 := α0
j := αk

j (0) := 1 (k, j ∈ N),

(iii) αn :=
∞∏

j=0

αn(j)

j

(
n ∈ N, n(j) :=

∞∑
k=j

nkMk

)
.

Let χn = ψnαn (n ∈ N). A function system {χn : n ∈ N} of this type
is called a ψα (Vilenkin-like) system on the Vilenkin group Gm. [Gát1, 2]

In [Gát2] it is proved that a Vilenkin-like system is orthonormal and
complete in L1(Gm).

We mention some examples.
1. If αk

j = 1 for each k, j ∈ N, then we obtain the “ordinary” Vilenkin
systems [Vil].

2. If mj = 2 for all j ∈ N and αn(j)

j = (βj)nj , where

βj(x) = exp
(
2πı

(xj−1

22
+ · · ·+ x0

2j+1

))
(n, j ∈ N, x ∈ Gm),

then we get the character system of the group of 2-adic integers (see e.g.
[Tai, HR, Gát7]).

The (about) 25 years old conjecture of M. H. Taibleson [Tai], namely
that σnf → f (f ∈ L1) a.e. (with respect to this system) was proved by
Gát [Gát7]. In [BG] the two-dimensional version of this question was also
solved.

3. If

tn(x) := exp
(

2πı

( ∞∑

j=0

nj

Mj+1

) ∞∑

j=0

xjMj

)
(x ∈ Gm, n ∈ N),

then we have a Vilenkin-like system which is a useful tool in the ap-
proximation theory of limit periodic, almost even arithmetical functions
(cf. [Gát3]).
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Define the Fourier coefficients, the partial sums of the Fourier series
and the Fejér means with respect to the Vilenkin-like system χ in the
following way:

f̂(n) :=
∫

Gm

fχ̄n, Snf :=
n−1∑

k=0

f̂χ(k)χk, σnf :=
1
n

n−1∑

k=0

Sχ
k f

(
n ∈ P, f̂χ(0) :=

∫

Gm

f, f ∈ L1(Gm)
)

.

For more details about Vilenkin and Vilenkin-like systems see [SWS,
AVD, Vil, Gát1-Gát5].

For (n1, n2) = n ∈ N2 set ∨n := max (n1, n2), ∧n := min (n1, n2). Let
m̃ also a sequence of integers with the same properties as m. In the sequel
the boundedness of the Vilenkin groups Gm, Gem is supposed. Denote
the Lp(Gm ×Gem) norm of any function f by ‖f‖p (1 ≤ p ≤ ∞).

Let Ĩ denote the n-th interval generated by m̃. Define ñ = ñ(n) :=
min(l ∈ N : Mn ≤ M̃l) (n ∈ N). Then there exists a constant c for which
Mn ≤ M̃en < cMn for all n ∈ N (c does not depend on n, but depends on
max
j∈N

mj and max j ∈ N→ max m̃j).

So, from now on we are going to use cMn instead of M̃en (in some
inequalities below).

The Kronecker product {χn,m : n, m ∈ N} of two Vilenkin-like sys-
tems {χn : n ∈ N} and {χ̃n : n ∈ N} is said to be a two-dimensional (or
double) Vilenkin-like system. Thus

χn,m(x, y) := χn(x)χ̃m(y),

where x ∈ Gm, y ∈ Gem.
If f ∈ L1(Gm×Gem) then the (n, k)-th Fourier coefficients, the (n, k)-

th partial sum of Fourier series and the Fejér means of order (n, k) of
double Fourier series are the following

f̂(n, k) :=
∫

Gm×Gem fχn,k, Sn,kf :=
n−1∑

j=0

k−1∑

l=0

f̂(j, l)χj,l,

σn,kf :=
1
nk

n−1∑

j=0

k−1∑

l=0

Sj,lf.
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For each f ∈ L1(Gm×Gem) let the maximal function and the diagonal
maximal function be defined by

f? := sup
n1,n2∈N

∣∣∣SMn1 ,fMn2
f
∣∣∣ f◦ := sup

n∈N

∣∣∣SMn,fMenf
∣∣∣

and

‖f‖H := ‖f?‖1, ‖f‖H◦ := ‖f◦‖1.

Define the Hardy space H to be the collection of functions f ∈ L1(Gm ×
Gem) such that ‖f‖H < ∞ i.e.

H := {f ∈ L1(Gm ×Gem) : ‖f‖H < ∞},

and the diagonal Hardy space H◦ as

H◦ := {f ∈ L1(Gm ×Gem) : ‖f‖H◦ < ∞}.

Since ‖f‖H◦ ≤ ‖f‖H , thus H◦ ⊂ H.
The atomic decomposition is a useful characterisation of Hardy spaces.

In order to show this, we introduce the concept of an atom.
We say that a ∈ L∞(Gm ×Gem) is a H◦ atom if

(i) there exist x = (x1, x2) and k ∈ N such that supp a ⊂ Ik(x1)× Ĩek(x2),

(ii) ‖a‖∞ ≤ MkM̃ek,
(iii) (Eka)(y) := (Ek,eka)(y) = 0 for all y ∈ Gm × Gem (Er,sf)(y) =

MrM̃s

∫
In(y1)×eIs(y2)

f .

We will use the following decomposition theorem (similar and others
can be found in [Wei1]).

Theorem 1. A function f ∈ L1(Gm × Gem) is in the diagonal Hardy
space H◦ if and only if there exist a sequence (ak : k ∈ N) of H◦-atoms
and a sequence (λk : k ∈ N) of real numbers such that

(1) f =
∞∑

k=0

λkak

and

(2)
∞∑

k=0

|λk| < ∞.
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Moreover, ‖f‖H◦ and inf(
∑∞

k=0 |λk|) are equivalent norms, where the in-

fimum is taken over all decompositions of f .

To prove Theorem 1 recall the first steps of the decomposition algo-
rithm of Calderon–Zygmund (for the original version see [CZ], [SWS]). For
any f ∈ L1(Gm ×Gem) and λ > 0 set

Ω0 :=
{

I0(x0
1)× Ĩ0(x0

2) if |E0f(x0)| > λ

∅ otherwise

and

Ωk :=





⋃
i Ik(xi

1)× Ĩek(xi
2) if |Ekf(xi)| > λ,(

Ik(xi
1)× Ĩek(xi

2)
)
∩

(⋃k−1
j=0 = Ωj

)
= ∅

∅ otherwise,

where xi = (xi
1, x

i
2) ∈ Gm × Gem, and Ik(xi

1) × Ĩek(xi
2) denotes the ith

rectangle defined in the course of procedure (start the counting from zero).
For the elements of Ωk we introduce the following notation Ii

k :=
Ik(xi

1)× Ĩek(xi
2), where i ∈ N. Let

f i
k := f1Ii

k
−

(
MkM̃ek

∫

Ii
k

f

)
1Ii

k

fλ := f1∪Ωk
+

∑

i,k

(
MkM̃ek

∫

Ii
k

f

)
1Ii

k
,

where 1Ii
k

is the characteristic function of Ii
k. Thus f = fλ +

∑
i,k f i

k

and the number of elements of Ωk is finite. These facts imply a modyfied
version of the Calderon–Zygmund decomposition lemma, (see [CZ], [SW]):

Lemma 2. Let f ∈ L1(Gm×Gem), λ > ‖f‖1. Then f = fλ+
∑∞

n=1 fn,

where ‖fλ‖∞ < cλ, supp fn ⊆ In
kn

for some rectangles (xn
1 ∈ Gm, xn

2 ∈ Gem,

kn ∈ N),
∫

In
kn

fn = 0, ‖fn‖1 ≤ cλµ(In
kn

) (n ∈ P). The rectangles In
kn

are

disjoint, furthermore µ(Ω) = µ
(⋃

n∈P In
kn

) ≤ c‖f‖1λ .

Proof of Theorem 1. Throughout this paper c will denote a constant
which may vary at different occurances and may depend only on β (definied
later), sup mn and sup m̃n.
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For a H◦-atom a we have

‖a‖H◦ =
∥∥∥∥sup

n∈N
|Ena|

∥∥∥∥
1

≤
∥∥∥∥sup

n∈N
En

(
MkM̃ek1Ik(x1)×eIek(x2)

)∥∥∥∥
1

≤ 1.

Consequently, if a function f in L1(Gm×Gem) is of the form f =
∑∞

i=0 λiai

with (2) then

‖f‖H◦ ≤
∞∑

i=0

|λi|‖ai‖H◦ ≤
∞∑

i=0

|λi| < ∞,

that is, f is in H◦. The first part of the proof is complete.
Conversely, use the Calderon–Zygmund decomposition lemma with

λ = 2q and q ∈ Z. We have

f = f2q +
∞∑

n=1

f2q,n,

where ‖f2q‖∞ ≤ c2q, and for a fixed q ∈ Z the sets supp f2q,n = In
kq,n

are pairwise disjoint. Moreover, from the decomposition algorithm we
obtain 2q < |Eqf2q,i| < c2q, and |Ejf2q,n| ≤ 2q for any j = 0, 1, . . . , q − 1.
However, f2q → f and f−2q → 0 as q →∞, thus

f =
∞∑

q=−∞
(f2q+1 − f2q ) =

∞∑
q=−∞

( ∞∑
n=1

f2q,n −
∞∑

j=1

f2q+1,j

)

can be written. There exist for a j ∈ P and n ∈ P such that supp f2q+1,j ⊂
supp f2q,n. Let

bq,n := f2q,n −
∑

j: supp f2q+1,j⊂supp f2q,n

f2q+1,j .

For every element x of supp f2q,n the equation bq,n(x) = f2q+1(x)−f2q (x)
holds, consequently |bq,n| ≤ c2q. Let aq,n := MqM̃eq 1

c2q bq,n, and λq,n :=
c2q 1

Mq
fMeq , q ∈ Z, n ∈ P then

f =
∞∑

q=−∞

∞∑
n=1

λq,naq,n,



424 I. Blahota

where the functions aq,n are H◦-atoms with supports In
kq,n

.

∞∑
q=−∞

∞∑
n=1

|λq,n| = c

∞∑
q=−∞

2q
∞∑

n=1

µ(In
kq,n

)

≤ c

∞∑
q=−∞

2qµ(f◦ > 2q) ≤ c‖f◦‖1 = c‖f‖H◦ .

This completes the proof. ¤

2. The (H, L) typeness of the maximal operator

Define the maximal operator of Cesàro means of two parameter inte-
grable functions on bounded Vilenkin groups as follows

σ∗f := sup
(n1,n2)∈N2

β−1≤n1
n2
≤β

|σnf | (n = (n1, n2)),

where β > 1 is some fixed parameter.
In order to prove the main theorem we need the corollary of the fol-

lowing lemma (see [BG], and for the Walsh case see [Gát6]).

Lemma 3. Let A, k ∈ N be fixed, A > k − c. Set supp f ⊆ Ik(x1) ×
Ĩek(x2), f ∈ L1(Gm ×Gem) ((x1, x2) ∈ Gm ×Gem). Then we have

∫

(Gm×Gem)\Ik(x1)×eIek(x2)

sup
{|σnf | : n ∈ P2, ∧n ≥ MA, β−1 ≤ n1/n2 ≤ β

}

≤ c

(
Mk

MA

) 1
2

‖f‖1.

Corollary 4. Suppose that supp f ⊆ Ik(x1)×Ĩek(x2) and f ∈ L1(Gm×
Gem) (k ∈ N, (x1, x2) ∈ Gm ×Gem). Then we have

∫

(Gm×Gem)\Ik(x1)×eIek(x2)

σ∗f ≤ c‖f‖1.
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Theorem 5. The operator σ∗ is of type (H◦, L) i.e.

‖σ∗f‖1 ≤ c‖f‖H◦ (f ∈ H).

Proof of Theorem 5. Recall that the operator σ∗ from Lp(Gm×Gem)
to Lp(Gm × Gem) is bounded for p > 1, (because of the week (1,1) and
(∞,∞) typeness of the operator σ∗ (see [BG])). Suppose that a is an H◦-
atom with support Ik(x1)× Ĩek(x2). Using Corollary 4, Hölder’s inequality
and the boundedness of σ∗, we get

∫

Gm×Gem σ∗a =
∫

Ik(x1)×eIek(x2)

σ∗a +
∫

(Gm×Gem)\(Ik(x1)×eIek(x2))

σ∗a

≤
(∫

Gm×Gem(σ∗a)p

) 1
p

µ(Ik(x1)× Ĩek(x2))1−
1
p + c‖a‖1

≤ cp

(∫

Ik(x1)×eIek(x2)

|a|p
) 1

p

µ(Ik(x1)× Ĩek(x2))1−
1
p + c

≤ cp

(
(MkM̃ek)p 1

MkM̃ek
) 1

p
(

1

MkM̃ek
)1− 1

p

+ c ≤ c.

Using the atomic decomposition of the function f and the σ-sublinearity
of the operator σ∗,

‖σ∗f‖1 =

∥∥∥∥∥σ∗
( ∞∑

i=1

λiai

)∥∥∥∥∥
1

≤
∞∑

i=1

|λi|‖σ∗ai‖1 ≤ c

∞∑

i=1

|λi| ≤ c‖f‖H◦ .

This completes the proof. ¤

Since ‖ . ‖H◦ ≤ ‖ .‖H , we have H ⊂ H◦. Consequently, we also have

Corollary 6. The operator σ∗ is of type (H, L).

Corollary 6 with respect to the ordinary Vilenkin systems (bounded
case) can be found [Wei2].
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