On the (H, L) typeness of the maximal function of Cesàro means of two-parameter integrable functions on bounded Vilenkin groups

By I. BLAHOTA (Nyíregyháza)

Abstract

In this paper we prove that the operator $\sigma^{*} f:=\sup _{n \in \mathbb{N}^{2}}\left|\sigma_{n} f\right|$ from the Hardy space H to $L^{1}\left(G_{m} \times G_{\tilde{m}}\right)$ is bounded, where the quotient of the coordinates of n is bounded. In other words σ^{*} is of type (H, L).

1. Introduction

Let us briefly introduce the necessary definitions and notations. Let $m:=\left(m_{0}, m_{1}, \ldots\right)$ denote a sequence of positive integers not less than 2. Denote by $Z_{m_{j}}:=\left\{0,1, \ldots, m_{j}-1\right\}$ the additive group of integers modulo $m_{j}(j \in \mathbb{N}) . Z_{m_{j}}$ is endowed by the discrete topology, i.e. every subset of $Z_{m_{j}}$ is open.

Define the group G_{m} as the cartesian product of the discrete cyclic groups $Z_{m_{j}}$,

$$
G_{m}:=\underset{j=0}{\infty} Z_{m_{j}} .
$$

The elements of G_{m} can be represented by sequences
$x:=\left(x_{0}, x_{1}, \ldots, x_{j}, \ldots\right)\left(x_{j} \in Z_{m_{j}}, j \in \mathbb{N}\right)$. The group operation on $G_{m}(+)$ is the coordinate-wise additon, the inverse operation is - . The topology on G_{m} is the product topology, and G_{m} is a compact Abelian

Mathematics Subject Classification: 42C99.
Key words and phrases: Vilenkin-like systems, two parameter Cesàro $(C, 1)$ means, a.e. pointwise convergence.
Research is supported by OTKA-F020334, FKFP 0710/1997, PFP-1997/5307 and PFP1885/1998.
group. A base $I_{n}(x), n=0,1, \ldots$ for the topology of G_{m} can be given in the following way. Set

$$
I_{0}(x):=G_{m}, \quad I_{n}(x):=\left\{y=\left(y_{i}, i \in \mathbb{N}\right) \in G_{m}: y_{i}=x_{i} \text { for } i<n\right\}
$$

for $x \in G_{m}, n \in \mathbb{P}:=\mathbb{N} \backslash\{0\}$. The element $(0,0, \ldots)$ is the nullelement of G_{m} it will be denoted by 0 . Put $I_{n}=I_{n}(0)(n \in \mathbb{N})$, and observe that I_{n} is a subgroup of $G_{m}(n \in \mathbb{N})$. The direct product μ of the measures

$$
\mu_{k}(\{j\}):=\frac{1}{m_{k}} \quad\left(j \in Z_{m_{k}}, k \in \mathbb{N}\right)
$$

is the Haar measure on G_{m} with $\mu\left(G_{m}\right)=1$.
If $M_{0}=1, M_{k+1}=m_{k} M_{k}(k \in \mathbb{N})$, then every $n \in \mathbb{N}$ can be uniquely expressed as $n=\sum_{j=0}^{\infty} n_{j} M_{j}$, where $n_{j} \in Z_{m_{j}}(j \in \mathbb{N})$ and only a finitely many of n_{j} differ from zero.

The group G_{m} is metrizable. Define the distance between the elements $x \in G_{m}$ and $y \in G_{m}$ by

$$
d(x, y):=\sum_{k=0}^{\infty} \frac{\left|x_{k}-y_{k}\right|}{M_{k+1}} .
$$

The topology induced by this metric coincides with that of G_{m}. Denote by $L^{p}\left(G_{m}\right)$ the usual Lebesgue space with the corresponding norm.

$$
\begin{aligned}
\|f\|_{p} & \left.:=\left(\int_{G_{m}}|f|^{p}\right)^{\frac{1}{p}} \quad\left(f \in L^{p}\left(G_{m}\right)\right), \quad 1 \leq p<\infty\right) \\
\|f\|_{\infty} & :=\inf \{r: r>0, \quad \mu(|f|>r)=0\} \quad\left(f \in L^{\infty}\left(G_{m}\right)\right) .
\end{aligned}
$$

Let $\widehat{G}_{m}:=\left\{\psi_{n}: n \in \mathbb{N}\right\}$ denote the character group of G_{m}. We enumerate the elements as follows. Denote on G_{m} the generalized Rademacher functions by

$$
r_{k}(x):=\exp \frac{2 \pi \imath x_{k}}{m_{k}} \quad\left(\imath^{2}:=-1, x \in G_{m}, k \in \mathbb{N}\right)
$$

It is known that the functions

$$
\psi_{n}(x):=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x) \quad(n \in \mathbb{N})
$$

on G_{m} are elements of the character group of G_{m}, and all the elements of the character group are of this form.

The system $\left(\psi_{n}: n \in \mathbb{N}\right)$ is called a Vilenkin system and G_{m} a Vilenkin group.

Let \mathcal{A}_{n} be the σ-algebra generated by the cosets $I_{n}(z)$, where $n \in \mathbb{N}$, $z \in G_{m}$. Let $\alpha_{j}^{k}, \alpha_{n}(k, j, n \in \mathbb{N})$ be functions satisfying the following conditions:
(i) $\alpha_{j}^{k}: G_{m} \rightarrow \mathbb{C}$ is \mathcal{A}_{j}-measurable $(k, j \in \mathbb{N})$,
(ii) $\left|\alpha_{j}^{k}\right|:=\alpha_{0}^{k}:=\alpha_{j}^{0}:=\alpha_{j}^{k}(0):=1(k, j \in \mathbb{N})$,
(iii) $\alpha_{n}:=\prod_{j=0}^{\infty} \alpha_{j}^{n^{(j)}}\left(n \in \mathbb{N}, n^{(j)}:=\sum_{k=j}^{\infty} n_{k} M_{k}\right)$.

Let $\chi_{n}=\psi_{n} \alpha_{n}(n \in \mathbb{N})$. A function system $\left\{\chi_{n}: n \in \mathbb{N}\right\}$ of this type is called a $\psi \alpha$ (Vilenkin-like) system on the Vilenkin group G_{m}. [Gát1, 2]

In [Gát2] it is proved that a Vilenkin-like system is orthonormal and complete in $L^{1}\left(G_{m}\right)$.

We mention some examples.

1. If $\alpha_{j}^{k}=1$ for each $k, j \in \mathbb{N}$, then we obtain the "ordinary" Vilenkin systems [Vil].
2. If $m_{j}=2$ for all $j \in \mathbb{N}$ and $\alpha_{j}^{n^{(j)}}=\left(\beta_{j}\right)^{n_{j}}$, where

$$
\beta_{j}(x)=\exp \left(2 \pi \imath\left(\frac{x_{j-1}}{2^{2}}+\cdots+\frac{x_{0}}{2^{j+1}}\right)\right) \quad\left(n, j \in \mathbb{N}, x \in G_{m}\right)
$$

then we get the character system of the group of 2-adic integers (see e.g. [Tai, HR, Gát7]).

The (about) 25 years old conjecture of M. H. Taibleson [Tai], namely that $\sigma_{n} f \rightarrow f\left(f \in L^{1}\right)$ a.e. (with respect to this system) was proved by GÁt [Gát7]. In [BG] the two-dimensional version of this question was also solved.
3. If

$$
t_{n}(x):=\exp \left(2 \pi \imath\left(\sum_{j=0}^{\infty} \frac{n_{j}}{M_{j+1}}\right) \sum_{j=0}^{\infty} x_{j} M_{j}\right) \quad\left(x \in G_{m}, n \in \mathbb{N}\right),
$$

then we have a Vilenkin-like system which is a useful tool in the approximation theory of limit periodic, almost even arithmetical functions (cf. [Gát3]).

Define the Fourier coefficients, the partial sums of the Fourier series and the Fejér means with respect to the Vilenkin-like system χ in the following way:

$$
\begin{gathered}
\widehat{f}(n):=\int_{G_{m}} f \bar{\chi}_{n}, \quad S_{n} f:=\sum_{k=0}^{n-1} \widehat{f}^{\chi}(k) \chi_{k}, \quad \sigma_{n} f:=\frac{1}{n} \sum_{k=0}^{n-1} S_{k}^{\chi} f \\
\left(n \in \mathbb{P}, \widehat{f}^{\chi}(0):=\int_{G_{m}} f, f \in L^{1}\left(G_{m}\right)\right) .
\end{gathered}
$$

For more details about Vilenkin and Vilenkin-like systems see [SWS, AVD, Vil, Gát1-Gát5].

For $\left(n_{1}, n_{2}\right)=n \in \mathbb{N}^{2}$ set $\vee n:=\max \left(n_{1}, n_{2}\right), \wedge n:=\min \left(n_{1}, n_{2}\right)$. Let \widetilde{m} also a sequence of integers with the same properties as m. In the sequel the boundedness of the Vilenkin groups $G_{m}, G_{\widetilde{m}}$ is supposed. Denote the $L^{p}\left(G_{m} \times G_{\tilde{m}}\right)$ norm of any function f by $\|f\|_{p}(1 \leq p \leq \infty)$.

Let \widetilde{I} denote the n-th interval generated by \widetilde{m}. Define $\widetilde{n}=\widetilde{n}(n):=$ $\min \left(l \in \mathbb{N}: M_{n} \leq \widetilde{M}_{l}\right)(n \in \mathbb{N})$. Then there exists a constant c for which $M_{n} \leq \widetilde{M}_{\tilde{n}}<c M_{n}$ for all $n \in \mathbb{N}(c$ does not depend on n, but depends on $\max _{j \in \mathbb{N}} m_{j}$ and $\left.\max j \in \mathbb{N} \rightarrow \max \widetilde{m}_{j}\right)$.

So, from now on we are going to use $c M_{n}$ instead of $\widetilde{M}_{\widetilde{n}}$ (in some inequalities below).

The Kronecker product $\left\{\chi_{n, m}: n, m \in \mathbb{N}\right\}$ of two Vilenkin-like systems $\left\{\chi_{n}: n \in \mathbb{N}\right\}$ and $\left\{\widetilde{\chi}_{n}: n \in \mathbb{N}\right\}$ is said to be a two-dimensional (or double) Vilenkin-like system. Thus

$$
\chi_{n, m}(x, y):=\chi_{n}(x) \widetilde{\chi}_{m}(y),
$$

where $x \in G_{m}, y \in G_{\widetilde{m}}$.
If $f \in L^{1}\left(G_{m} \times G_{\widetilde{m}}\right)$ then the (n, k)-th Fourier coefficients, the (n, k) th partial sum of Fourier series and the Fejér means of order (n, k) of double Fourier series are the following

$$
\begin{gathered}
\widehat{f}(n, k):=\int_{G_{m} \times G_{\widetilde{m}}} f \bar{\chi}_{n, k}, \quad S_{n, k} f:=\sum_{j=0}^{n-1} \sum_{l=0}^{k-1} \widehat{f}(j, l) \chi_{j, l}, \\
\sigma_{n, k} f:=\frac{1}{n k} \sum_{j=0}^{n-1} \sum_{l=0}^{k-1} S_{j, l} f .
\end{gathered}
$$

For each $f \in L^{1}\left(G_{m} \times G_{\tilde{m}}\right)$ let the maximal function and the diagonal maximal function be defined by

$$
f^{\star}:=\sup _{n_{1}, n_{2} \in \mathbb{N}}\left|S_{M_{n_{1}}, \widetilde{M}_{n_{2}}} f\right| \quad f^{\circ}:=\sup _{n \in \mathbb{N}}\left|S_{M_{n}, \widetilde{M}_{\tilde{n}}} f\right|
$$

and

$$
\|f\|_{H}:=\left\|f^{\star}\right\|_{1}, \quad\|f\|_{H^{\circ}}:=\left\|f^{\circ}\right\|_{1} .
$$

Define the Hardy space H to be the collection of functions $f \in L_{1}\left(G_{m} \times\right.$ $\left.G_{\widetilde{m}}\right)$ such that $\|f\|_{H}<\infty$ i.e.

$$
H:=\left\{f \in L_{1}\left(G_{m} \times G_{\widetilde{m}}\right):\|f\|_{H}<\infty\right\},
$$

and the diagonal Hardy space H° as

$$
H^{\circ}:=\left\{f \in L_{1}\left(G_{m} \times G_{\widetilde{m}}\right):\|f\|_{H^{\circ}}<\infty\right\} .
$$

Since $\|f\|_{H^{\circ}} \leq\|f\|_{H}$, thus $H^{\circ} \subset H$.
The atomic decomposition is a useful characterisation of Hardy spaces. In order to show this, we introduce the concept of an atom.

We say that $a \in L^{\infty}\left(G_{m} \times G_{\tilde{m}}\right)$ is a H° atom if
(i) there exist $x=\left(x_{1}, x_{2}\right)$ and $k \in \mathbb{N}$ such that $\operatorname{supp} a \subset I_{k}\left(x_{1}\right) \times \widetilde{I}_{\tilde{k}}\left(x_{2}\right)$,
(ii) $\|a\|_{\infty} \leq M_{k} \widetilde{M}_{\tilde{k}}$,
(iii) $\left(E_{k} a\right)(y):=\left(E_{k, \tilde{k}} a\right)(y)=0$ for all $y \in G_{m} \times G_{\widetilde{m}}\left(E_{r, s} f\right)(y)=$ $M_{r} \widetilde{M}_{s} \int_{I_{n}\left(y_{1}\right) \times \widetilde{I}_{s}\left(y_{2}\right)} f$.

We will use the following decomposition theorem (similar and others can be found in [Wei1]).

Theorem 1. A function $f \in L^{1}\left(G_{m} \times G_{\widetilde{m}}\right)$ is in the diagonal Hardy space H° if and only if there exist a sequence ($a_{k}: k \in \mathbb{N}$) of H°-atoms and a sequence $\left(\lambda_{k}: k \in \mathbb{N}\right)$ of real numbers such that

$$
\begin{equation*}
f=\sum_{k=0}^{\infty} \lambda_{k} a_{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|\lambda_{k}\right|<\infty . \tag{2}
\end{equation*}
$$

Moreover, $\|f\|_{H^{\circ}}$ and $\inf \left(\sum_{k=0}^{\infty}\left|\lambda_{k}\right|\right)$ are equivalent norms, where the infimum is taken over all decompositions of f.

To prove Theorem 1 recall the first steps of the decomposition algorithm of Calderon-Zygmund (for the original version see [CZ], [SWS]). For any $f \in L^{1}\left(G_{m} \times G_{\widetilde{m}}\right)$ and $\lambda>0$ set

$$
\Omega_{0}:= \begin{cases}I_{0}\left(x_{1}^{0}\right) \times \widetilde{I}_{0}\left(x_{2}^{0}\right) & \text { if }\left|E_{0} f\left(\mathbf{x}^{0}\right)\right|>\lambda \\ \emptyset & \text { otherwise }\end{cases}
$$

and

$$
\Omega_{k}:= \begin{cases}\bigcup_{i} I_{k}\left(x_{1}^{i}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}^{i}\right) & \text { if }\left|E_{k} f\left(\boldsymbol{x}^{i}\right)\right|>\lambda, \\ & \left(I_{k}\left(x_{1}^{i}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}^{i}\right)\right) \cap\left(\bigcup_{j=0}^{k-1}=\Omega_{j}\right)=\emptyset \\ \emptyset & \text { otherwise },\end{cases}
$$

where $\boldsymbol{x}^{i}=\left(x_{1}^{i}, x_{2}^{i}\right) \in G_{m} \times G_{\widetilde{m}}$, and $I_{k}\left(x_{1}^{i}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}^{i}\right)$ denotes the i th rectangle defined in the course of procedure (start the counting from zero).

For the elements of Ω_{k} we introduce the following notation $I_{k}^{i}:=$ $I_{k}\left(x_{1}^{i}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}^{i}\right)$, where $i \in \mathbb{N}$. Let

$$
\begin{aligned}
f_{k}^{i} & :=f 1_{I_{k}^{i}}-\left(M_{k} \widetilde{M}_{\widetilde{k}} \int_{I_{k}^{i}} f\right) 1_{I_{k}^{i}} \\
f_{\lambda} & :=f 1_{\widetilde{U \Omega_{k}}}+\sum_{i, k}\left(M_{k} \widetilde{M}_{\widetilde{k}} \int_{I_{k}^{i}} f\right) 1_{I_{k}^{i}},
\end{aligned}
$$

where $1_{I_{k}^{i}}$ is the characteristic function of I_{k}^{i}. Thus $f=f_{\lambda}+\sum_{i, k} f_{k}^{i}$ and the number of elements of Ω_{k} is finite. These facts imply a modyfied version of the Calderon-Zygmund decomposition lemma, (see [CZ], [SW]):

Lemma 2. Let $f \in L^{1}\left(G_{m} \times G_{\widetilde{m}}\right), \lambda>\|f\|_{1}$. Then $f=f_{\lambda}+\sum_{n=1}^{\infty} f_{n}$, where $\left\|f_{\lambda}\right\|_{\infty}<c \lambda$, supp $f_{n} \subseteq I_{k_{n}}^{n}$ for some rectangles ($x_{1}^{n} \in G_{m}, x_{2}^{n} \in G_{\widetilde{m}}$, $\left.k_{n} \in \mathbb{N}\right), \int_{I_{k_{n}}^{n}} f_{n}=0,\left\|f_{n}\right\|_{1} \leq c \lambda \mu\left(I_{k_{n}}^{n}\right)(n \in \mathbb{P})$. The rectangles $I_{k_{n}}^{n}$ are disjoint, furthermore $\mu(\Omega)=\mu\left(\bigcup_{n \in \mathbb{P}} I_{k_{n}}^{n}\right) \leq c \frac{\|f\|_{1}}{\lambda}$.

Proof of Theorem 1. Throughout this paper c will denote a constant which may vary at different occurances and may depend only on β (definied later), $\sup m_{n}$ and $\sup \widetilde{m}_{n}$.

For a H°-atom a we have

$$
\|a\|_{H^{\circ}}=\left\|\sup _{n \in \mathbb{N}}\left|E_{n} a\right|\right\|_{1} \leq\left\|\sup _{n \in \mathbb{N}} E_{n}\left(M_{k} \widetilde{M}_{\widetilde{k}_{k}} 1_{I_{k}\left(x_{1}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}\right)}\right)\right\|_{1} \leq 1 .
$$

Consequently, if a function f in $L^{1}\left(G_{m} \times G_{\widetilde{m}}\right)$ is of the form $f=\sum_{i=0}^{\infty} \lambda_{i} a_{i}$ with (2) then

$$
\|f\|_{H^{\circ}} \leq \sum_{i=0}^{\infty}\left|\lambda_{i}\right|\left\|a_{i}\right\|_{H^{\circ}} \leq \sum_{i=0}^{\infty}\left|\lambda_{i}\right|<\infty,
$$

that is, f is in H°. The first part of the proof is complete.
Conversely, use the Calderon-Zygmund decomposition lemma with $\lambda=2^{q}$ and $q \in \mathbb{Z}$. We have

$$
f=f_{2^{q}}+\sum_{n=1}^{\infty} f_{2^{q}, n}
$$

where $\left\|f_{2^{q}}\right\|_{\infty} \leq c 2^{q}$, and for a fixed $q \in \mathbb{Z}$ the sets supp $f_{2^{q}, n}=I_{k_{q, n}}^{n}$ are pairwise disjoint. Moreover, from the decomposition algorithm we obtain $2^{q}<\left|E_{q} f_{2^{q}, i}\right|<c 2^{q}$, and $\left|E_{j} f_{2^{q}, n}\right| \leq 2^{q}$ for any $j=0,1, \ldots, q-1$. However, $f_{2^{q}} \rightarrow f$ and $f_{-2^{q}} \rightarrow 0$ as $q \rightarrow \infty$, thus

$$
f=\sum_{q=-\infty}^{\infty}\left(f_{2^{q+1}}-f_{2^{q}}\right)=\sum_{q=-\infty}^{\infty}\left(\sum_{n=1}^{\infty} f_{2^{q}, n}-\sum_{j=1}^{\infty} f_{2^{q+1}, j}\right)
$$

can be written. There exist for a $j \in \mathbb{P}$ and $n \in \mathbb{P}$ such that $\operatorname{supp} f_{2^{q+1}, j} \subset$ $\operatorname{supp} f_{2^{q}, n}$. Let

$$
b_{q, n}:=f_{2^{q}, n}-\sum_{j: \operatorname{supp} f_{2 q+1, j} \subset \operatorname{supp} f_{2 q, n}} f_{2^{q+1, j}} .
$$

For every element \boldsymbol{x} of $\operatorname{supp} f_{2^{q}, n}$ the equation $b_{q, n}(\boldsymbol{x})=f_{2^{q+1}}(\boldsymbol{x})-f_{2^{q}}(\boldsymbol{x})$ holds, consequently $\left|b_{q, n}\right| \leq c 2^{q}$. Let $a_{q, n}:=M_{q} \widetilde{M}_{\widetilde{q}} \frac{1}{c 2^{q}} b_{q, n}$, and $\lambda_{q, n}:=$ $c 2^{q} \frac{1}{M_{q} \widetilde{M_{\tilde{q}}}}, q \in \mathbb{Z}, n \in \mathbb{P}$ then

$$
f=\sum_{q=-\infty}^{\infty} \sum_{n=1}^{\infty} \lambda_{q, n} a_{q, n}
$$

where the functions $a_{q, n}$ are H°-atoms with supports $I_{k_{q, n}}^{n}$.

$$
\begin{aligned}
& \sum_{q=-\infty}^{\infty} \sum_{n=1}^{\infty}\left|\lambda_{q, n}\right|=c \sum_{q=-\infty}^{\infty} 2^{q} \sum_{n=1}^{\infty} \mu\left(I_{k_{q, n}}^{n}\right) \\
\leq & c \sum_{q=-\infty}^{\infty} 2^{q} \mu\left(f^{\circ}>2^{q}\right) \leq c\left\|f^{\circ}\right\|_{1}=c\|f\|_{H^{\circ}} .
\end{aligned}
$$

This completes the proof.

2. The (H, L) typeness of the maximal operator

Define the maximal operator of Cesàro means of two parameter integrable functions on bounded Vilenkin groups as follows

$$
\sigma^{*} f:=\sup _{\substack{\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2} \\ \beta^{-1} \leq n_{1} \\ n_{2}} \beta}\left|\sigma_{n} f\right| \quad\left(n=\left(n_{1}, n_{2}\right)\right),
$$

where $\beta>1$ is some fixed parameter.
In order to prove the main theorem we need the corollary of the following lemma (see [BG], and for the Walsh case see [Gát6]).

Lemma 3. Let $A, k \in \mathbb{N}$ be fixed, $A>k-c . \operatorname{Set} \operatorname{supp} f \subseteq I_{k}\left(x_{1}\right) \times$ $\widetilde{I}_{\widetilde{k}}\left(x_{2}\right), f \in L^{1}\left(G_{m} \times G_{\widetilde{m}}\right)\left(\left(x_{1}, x_{2}\right) \in G_{m} \times G_{\widetilde{m}}\right)$. Then we have

$$
\begin{gathered}
\int_{\left(G_{m} \times G_{\widetilde{m}}\right) \backslash I_{k}\left(x_{1}\right) \times \tilde{I}_{\widetilde{k}}\left(x_{2}\right)} \sup \left\{\left|\sigma_{n} f\right|: \mathbf{n} \in \mathbb{P}^{2}, \wedge n \geq M_{A}, \beta^{-1} \leq n_{1} / n_{2} \leq \beta\right\} \\
\leq c\left(\frac{M_{k}}{M_{A}}\right)^{\frac{1}{2}}\|f\|_{1} .
\end{gathered}
$$

Corollary 4. Suppose that $\operatorname{supp} f \subseteq I_{k}\left(x_{1}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}\right)$ and $f \in L^{1}\left(G_{m} \times\right.$ $\left.G_{\widetilde{m}}\right)\left(k \in \mathbb{N},\left(x_{1}, x_{2}\right) \in G_{m} \times G_{\widetilde{m}}\right)$. Then we have

$$
\int_{\left(G_{m} \times G_{\widetilde{m}}\right) \backslash I_{k}\left(x_{1}\right) \times \tilde{I}_{\widetilde{k}}\left(x_{2}\right)} \sigma^{*} f \leq c\|f\|_{1} .
$$

Theorem 5. The operator σ^{*} is of type $\left(H^{\circ}, L\right)$ i.e.

$$
\left\|\sigma^{*} f\right\|_{1} \leq c\|f\|_{H^{\circ}} \quad(f \in H)
$$

Proof of Theorem 5. Recall that the operator σ^{*} from $L^{p}\left(G_{m} \times G_{\widetilde{m}}\right)$ to $L^{p}\left(G_{m} \times G_{\tilde{m}}\right)$ is bounded for $p>1$, (because of the week $(1,1)$ and (∞, ∞) typeness of the operator σ^{*} (see [BG])). Suppose that a is an H° atom with support $I_{k}\left(x_{1}\right) \times \widetilde{I}_{\tilde{k}}\left(x_{2}\right)$. Using Corollary 4, Hölder's inequality and the boundedness of σ^{*}, we get

$$
\begin{aligned}
\int_{G_{m} \times G_{\widetilde{m}}} \sigma^{*} a & =\int_{I_{k}\left(x_{1}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}\right)} \sigma^{*} a+\int_{\left(G_{m} \times G_{\widetilde{m}}\right) \backslash\left(I_{k}\left(x_{1}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}\right)\right)} \sigma^{*} a \\
& \leq\left(\int_{G_{m} \times G_{\widetilde{m}}}\left(\sigma^{*} a\right)^{p}\right)^{\frac{1}{p}} \mu\left(I_{k}\left(x_{1}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}\right)\right)^{1-\frac{1}{p}}+c\|a\|_{1} \\
& \leq c_{p}\left(\int_{I_{k}\left(x_{1}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}\right)}|a|^{p}\right)^{\frac{1}{p}} \mu\left(I_{k}\left(x_{1}\right) \times \widetilde{I}_{\widetilde{k}}\left(x_{2}\right)\right)^{1-\frac{1}{p}}+c \\
& \leq c_{p}\left(\left(M_{k} \widetilde{M}_{\widetilde{k}}\right)^{p} \frac{1}{M_{k} \widetilde{M}_{\widetilde{k}}}\right)^{\frac{1}{p}}\left(\frac{1}{M_{k} \widetilde{M}_{\widetilde{k}}}\right)^{1-\frac{1}{p}}+c \leq c .
\end{aligned}
$$

Using the atomic decomposition of the function f and the σ-sublinearity of the operator σ^{*},

$$
\left\|\sigma^{*} f\right\|_{1}=\left\|\sigma^{*}\left(\sum_{i=1}^{\infty} \lambda_{i} a_{i}\right)\right\|_{1} \leq \sum_{i=1}^{\infty}\left|\lambda_{i}\right|\left\|\sigma^{*} a_{i}\right\|_{1} \leq c \sum_{i=1}^{\infty}\left|\lambda_{i}\right| \leq c\|f\|_{H^{\circ}} .
$$

This completes the proof.
Since $\|.\|_{H^{\circ}} \leq\|\cdot\|_{H}$, we have $H \subset H^{\circ}$. Consequently, we also have
Corollary 6. The operator σ^{*} is of type (H, L).
Corollary 6 with respect to the ordinary Vilenkin systems (bounded case) can be found [Wei2].

Acknowledgement. The author is grateful for Professor György Gát for his professional advices.

References

[BG] I. Blahota and G. GÁt, Pointwise convergence of double Vilenkin-Fejér means, (submitted).
[AVD] G. H. Agajev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinstein, Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, Izd. "ELM" (Baku, SSSR), 1981.
[CZ] A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[Gát1] G. GÁt, Vilenkin-Fourier Series and Limit Peridic Arithmetic Functions, Colloquia mathematica societatis János Bolyai 58 (1990), 315-332.
[Gát2] G. GÁt, Orthonormal systems on Vilenkin groups, Acta Mathematica Hungarica 58 (1-2) (1991), 193-198.
[Gát3] G. GÁt, On almost even arithmetical functions via orthonormal systems on Vilenkin groups, Acta Arithmetica LX. 2 (1991), 105-123.
[Gát4] G. GÁt, Investigation of some operators with respect to Vilenkin-like systems, Annales Univ. Sci. Budapest XIV. (1994), 61-70.
[Gát5] G. GÁt, Pointwise convergence of Fejér means on compact totally disconnected groups, Acta Sci. Math. (Szeged) 60 (1995), 311-319.
[Gát6] G. GÁт, Pointwise convergence of double Walsh-Fejér means, Annales Univ. Sci. Budapestiensis, Sect. Comp. 16 (1996), 173-184.
[Gát7] G. GÁt, On the almost everywhere convergence of Fejér means of functions on the group of 2-adic integers, Journal of Approx. Theory 90 (1) (1997), 88-96.
[HR] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer-Verlag, Heidelberg, 1963.
[SW] F. Schipp and W. R. Wade, A Fundamental Theorem of Dyadic Calculus for the Unit Square, Applicable Analysis 34 (1989), 203-218.
[SWS] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh series, "An Introduction to dyadic harmonic analysis", Adam Hilger, Bristol and New York, 1990.
[Tai] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, N.J., 1975.
[Vil] N. Ya. Vilenkin, A class of complete orthonormal systems, Izv. Akad. Nauk. SSSR, Ser. Mat. 11 (1947), 363-400.
[Wei1] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lectures Notes in Math., vol. 1568, Springer, Berlin, Heidelberg, New York, 1994.
[Wei2] F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, Bolyai Soc. Math. Studies, 5, Approximation Theory and Function Series, Budapest (Hungary), 1995, Budapest (1996), 353-367.
I. BLAHOTA

BESSENYEI COLLEGE
DEPARTMENT OF MATHEMATICS
H-4401, NYÍREGYHÁZA, P.O. BOX 166
HUNGARY
E-mail: blahota@agy.bgytf.hu
(Received November 24, 1997; revised August 10, 1998)

