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Rigid body with a free spinning rotor
and nonlinear stability

By I. CASU̧ (Timişoara), F. CREŢ (Timişoara), M. PUTA (Timişoara)

and A. VOITECOVICI (Timişoara)

Dedicated to Professor Lajos Tamássy on his 75th birthday

Abstract. The dynamics and the stability of the rigid body with a free spinning
rotor are discussed and some of their properties are pointed out.

1. Introduction

The study of the rigid body with a free spinning rotor has a long
history dues to its deep connections with engineering and robotic problems.
However its first successful application was carried out in the RCA Satcom
I satellite in December 1975.

On the other hand, the first step in the program of understanding
the geometry of its dynamics was made by Krishnaprasad [4]. He has
proved that the system has a Lie–Poisson realization on the dual of the
Lie algebra so(3) × R, and then using this realization he has proved the
stability of some equilibrium states via Lasalle’s principle (see also [1]).

The goal of our paper is to make a similar study, but using another
Poisson structure which will substantially simplify the computations. This
new realization of the rigid body with a free spinning rotor as an Hamilton-
Poisson mechanical system on R3 will give us the possibility to discuss the
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stability of the equilibrium states (0,M, 0) via the energy-Casimir method.
Also we shall make some remarks concerning the numerical integration of
the equations of motion via the Kahan’s integrator and we shall point out
some of its mechanical and geometrical properties.

2. Rigid body with a free spinning rotor

Consider a rigid body B carrying a free spinning rotor. Denote the
system center of mass by O in the body frame and at this point place a
set of orthonormal body axes {x1

b , x
2
b , x

3
b}. Assume that our rotor belongs

to the axis Ox2
b , see Fig. 1.

The configuration space of the system is so(3) × S1 and on the dual
of its Lie algebra, i.e. on so(3)∗ × R∗ ≈ R4, the equations of motion can
be written in the following form:

(2.1)





ṁ1 =
(

1
λ3
− 1

λ2

)
m2m3 +

l2
λ3

m3

ṁ2 =
(

1
λ1
− 1

λ3

)
m1m3

ṁ3 =
(

1
λ2
− 1

λ1

)
m1m2 − l2

λ1
m1

l̇2 = 0

where m1, m2, m3 represent the components of the angular momentum
of B, l2 is the angular momentum of the spinning rotor and λi’s are the
principal axes moments of inertia. We suppose as usually that

(2.2) λ1 > λ2 > λ3.

Some geometrical and dynamical properties of this equations can be found
in [2], [4], [5] and [8].

3. Hamilton-Poisson realization

It is easy to see that

l2 = B = constant,
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Figure 1: The rigid body with a free spinning rotor

and so the equations (2.1) can be put in the equivalent form:

(3.1)





ṁ1 =
(

1
λ3
− 1

λ2

)
m2m3 +

B

λ3
m3

ṁ2 =
(

1
λ1
− 1

λ3

)
m1m3

ṁ3 =
(

1
λ2
− 1

λ1

)
m1m2 − B

λ1
m1.

Theorem 3.1. The equations (3.1) can be realized as an Hamilton-

Poisson mechanical system with the phase space R3, the Poisson structure

given by the matrix

(3.2) Π =




0 −m3 m2 + B

m3 0 −m1

−m2 −B m1 0




and the Hamiltonian H given by:

(3.3) H(m1,m2,m3) =
1
2

(
m2

1

λ1
+

m2
2

λ2
+

m2
3

λ3

)
.
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Moreover, a Casimir of our configuration (R3, Π) is given by:

(3.4) C(m1, m2,m3) =
1
2

[
m2

1 + (m2 + B)2 + m2
3

]
.

Proof. Let {·, ·} be the canonical bracket on C∞(R3,R) generated
by the matrix Π, i.e.

{f, g} = (∇f)tΠ(∇g),

for each f, g ∈ C∞(R3,R). Now, it can be put in the equivalent form:

{f, g} = ∇C · (∇f ×∇g),

and then using a general result due to Marsden and Ratiu [6], it fol-
lows that it is a Poisson bracket on R3. C is obviously a Casimir of this
configuration and moreover we can easily check that

ṁi = {mi,H}, i = 1, 2, 3

and this leads us to the desired result. ¤

Remark 3.1. Since H and C are constants of motion it follows that
the dynamics takes place at the intersection of the ellipsoid:

1
2

(
m2

1

λ1
+

m2
2

λ2
+

m2
3

λ3

)
= constant

with the sphere

m2
1 + (m2 + B)2 + m2

3 = constant.

It is a natural problem to try to decide if the above Hamilton–Poisson
realization of (3.1) is an unique one. The answer is given in the following:

Theorem 3.2. The equations (3.1) may be realized as an Hamilton–

Poisson mechanical system in an infinite number of different ways.

Proof. Let α, β, γ, δ ∈ R such that αδ − βγ = 1, and Cαβ ,Hγδ ∈
C∞(R3,R) given respectively by:

Cαβ = αH + βC; Hγδ = γH + δC.
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Then a long but straightforward computation shows us that our system
(3.1) is an Hamilton–Poisson one with the phase space R3, the Poisson
bracket {·, ·}αβ given by

{f, g}αβ = ∇Cαβ · (∇f ×∇g),

for each f, g ∈ C∞(R3,R) and the Hamiltonian Hγδ. Moreover, a Casimir
of our configuration (R3, {·, ·}αβ) is given by Cαβ . ¤

4. Stability

We shall study now the stability of the equilibrium state (0,M, 0) of
our system (3.1). The following arise naturally:

Case 1: M,B > 0. Consider first the system linearized about (0,M, 0).
Its eigenvalues are given by the solutions of:

(4.1) t

[
t2 + M2 λ1 − M+B

M λ2

λ1λ2
· λ3 − M+B

M λ2

λ2λ3

]
= 0.

Since λ1 > λ2 > λ3 (see (2.2)) and

λ3 <
M + B

M
λ2

the equation (4.1) has two imaginary eigenvalues and one zero eigenvalue
if and only if

(4.2) λ1 <
M + B

M
λ2.

Under this restriction is the equilibrium state (0,M, 0) nonlinear (or Lya-
punov) stable? We shall prove that it is via the energy-Casimir method
[3]. Recall that the energy-Casimir method requires finding a constant of
motion for the system, H, usually the energy, and a family if constants of
motion C, such that for some C ∈ C, H + C has a critical point at the
equilibrium of interest. Often the C’s are taken to be Casimirs. Definite-
ness of δ2(H + C), the second variation of H + C, at the critical point is
sufficient to prove stability.
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Consider the energy-Casimir function Hϕ given by:

Hϕ(m1,m2,m3) = H(m1,m2,m3) + ϕ

(
1
2
(m2

1 + (m2 + B)2 + m2
3)

)
,

where ϕ ∈ C∞(R,R). Now, the first variation of Hϕ is given by:

δHϕ =
m1

λ1
δm1 +

m2

λ2
δm2 +

m3

λ3
δm3

+ ϕ̇[m1δm1 + (m2 + B)δm2 + m3δm3].

This equals zero at the equilibrium of interest (0, M, 0) if

ϕ̇

(
1
2
(M + B)2

)
= − M

(M + B)λ2
.

Then

δ2Hϕ(0,M, 0) =
[

1
λ1
− M

(M+B)λ2

]
(δm1)2+

[
1
λ2
− M

(M+B)λ2

]
(δm2)2

+
[

1
λ3
− M

(M + B)λ2

]
(δm3)2 + ϕ̈

(
1
2
(M + B)2

)
(M + B)2(δm2)2

or equivalent

δ2Hϕ(0,M, 0) = − M

M + B

1
λ1λ2

(
λ1 − M + B

M
λ2

)
(δm1)2

+
B

M + B

1
λ2

(δm2)2 − M

M + B

1
λ2λ3

(
λ3 − M + B

M
λ2

)
(δm3)2

+ ϕ̈

(
1
2
(M + B)2

)
(M + B)2(δm2)2.

Now, under the restriction (4.2) and choosing ϕ such that

ϕ̈

(
1
2
(M + B)2

)
≥ 0,

it is easy to see that the second variation is positive definite and we have
nonlinear stability.

Case 2: M,B < 0. We obtain the same result as in the Case 1.
Therefore we have proved:
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Theorem 4.1. Let M ·B > 0. Then the equilibrium state (0.M, 0) is

nonlinear stable if and only if

λ1 <
M + B

M
λ2.

Remark 4.1. As a consequence it follows that
(
0, B λ2

λ1−λ2
, 0

)
is a bi-

furcation point of the dynamics (3.1).
In the cases:

3. M > 0, B < 0, M > |B|;
4. M > 0, B < 0, M < |B|;
5. M < 0, B > 0, M < |B|;
6. M < 0, B > 0, M > |B|

similar arguments as in the Case 1 lead us to:

Theorem 4.2. Let M ·B < 0. Then the equilibrium state (0,M, 0) is

nonlinear stable if and only if

λ3 >
M + B

M
λ2.

Remark 4.2. As a consequence it follows that (0, Bλ2/(λ3 − λ2), 0) is
a bifurcation point of the dynamics (3.1).

Case 7: M = 0, B ∈ R. Then using as the Lyapunov function the
Hamiltonian (3.3) we can deduce immediately that the equilibrium state
(0, 0, 0) is nonlinear stable.

Case 8: B = 0, M ∈ R, M 6= 0. Then our system represents in fact
the dynamics of a free rigid body and so the equilibrium state (0, M, 0) is
unstable, see for details [6] and [7].

5. Numerically integration

In this last section we want to discuss the numerical integration of
the equations (3.1) using Kahan’s integrator (see [9] for some physical
motivations and historical remarks). In our case Kahan’s integrator can
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Figure 2: 4th order Runge-Kutta integrator for the rigid body with a free
spinning rotor with: λ1 = 1; λ2 = 1

2 ; λ3 = 1
3

Figure 3: Kahan’s integrator for the rigid body with a free spinning rotor
with: λ1 = 1; λ2 = 1

2 ; λ3 = 1
3
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be written in the following form:




mn+1
1 −mn

1 =
h

2

(
1
λ3
− 1

λ2

)
(mn+1

2 mn
3 + mn+1

3 mn
2 )+

Bh

2λ3
(mn+1

3 +mn
3 )

mn+1
2 −mn

2 =
h

2

(
1
λ1
− 1

λ3

)
(mn+1

1 mn
3 + mn+1

3 mn
1 )

mn+1
3 −mn

3 =
h

2

(
1
λ2
− 1

λ1

)
(mn+1

1 mn
2+mn+1

2 mn
1 )− Bh

2λ1
(mn+1

1 +mn
1 )

Using now MAPLEV we can prove the following

Theorem 5.1. The following statements are equivalent:

(i) Kahan’s integrator is a Poisson integrator;

(ii) Kahan’s integrator is energy preserving;

(iii) Kahan’s integrator is Casimir preserving;

(iv) λ1 = λ3.

In the particular case B = 0 we refined some results announced pre-
viously in [9].

A comparison between Kahan’s integrator and Runge-Kutta integra-
tor with 4-steps is given in Figures 2 and 3. It is clear that the results are
almost the same. However Kahan’s integrator has the advantage that it
can be easier implemented.
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ROMANIA

M. PUTA SEMINARUL DE GEOMETRIE–TOPOLOGIE
WEST UNIVERSITY OF TIMIŞOARA
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