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On the solutions of the functional equation:

FUF@)Fz + f(2)'y) = Mf(x)f(y)

By NICOLE BRILLOUET-BELLUOT (Nantes)

Let E be a real Hausdorff topological vector space. We consider on
R x E the following binary law:

(o, 8) * (o', 8) = (Aad/, a5 + '8 (for (o, 8), (<, 3) € R x E)

where A is a fixed real number, k and ¢ are fixed integers. When we
look for the subgroupoids of (R x E, %) which depend faithfully on a set of
parameters (cf. [1], [2]), we have to solve the following functional equation:

(1) FUF@) e+ f(2)'y) = Af(2)f(y) (z,y € E)

where f is a function mapping F into R.

Let DB; be the set of all functions from R into R which are in class
I of Baire and have the Darboux property.

In [1], all the solutions of (1) in the class of functions DB; are given
in the case where A is a non-negative real number. All the continuous
solutions f : E — R of (1) are also obtained.

In [3], J. BRZDEK obtained all the continuous solutions of (1) when A
is an arbitrary non zero real number and k, £ are distinct positive integers.

Here, we obtain first all the solutions of (1) in the class of functions
DB and then all the continuous solutions f : F — R of (1) when X is
an arbitrary real number and k, ¢ are arbitrary integers. This result is
an answer to a question asked by J. BRzDEK at the 27" International
Symposium on Functional Equations in Bielsko—Biala in 1989 (cf. [4]).

1. Let us first recall the results obtained in [1] for some particular
cases.

If A =0 and if k and ¢ are arbitrary integers, the unique solution of
(1) in the class of functions f : E — R which have the property that, for
every z in E, the function defined by: f.(t) = f(tz) (¢ € R) belongs to
DBy, is f =0 (cf. [1]).
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In the case where ¥ = ¢ = 0 and X is an arbitrary non-zero real
number, all the solutions of (1) are given by:

(1) f=0

(i) fz)= e (zeE)

where g : E — R is an arbitrary additive function.

2. Before considering the case where k = 0, we give some property of
the function ¢ defined by:

((zy) = f)ra+ f(@)'y (z,y€E)

in the case where E = R.

Lemma 1. Let us suppose that A\ is a non-zero real number. If f is
a non identically zero solution of (1) in DBy, the function v defined by:
Y(x) = ((x,z0) (x € R) is continuous when x is any non zero real number

satisfying f(xg) # 0.

PROOF of Lemma 1. Since f is in DBy, the graph of the function
2o f(.)" is connected (cf. [6]). Therefore, because the function:

R? — R?
(t.s) — (t, f(zo0)"t + )

is continuous, the graph of the function 1 is also connected and, thus, ¥
has the Darboux property. Moreover, v is one-to-one (cf. [3]). Therefore,
1 is continuous (cf. [6]).

So, let us consider now the functional equation (1) when k =0, ¢ is a
positive integer and A is a non zero real number.

If f is a non identically zero solution of (1) in DBy, there exists xg in
R — {0} such that f(z¢) # 0. By Lemma 1, the function ¢ (z) = ((x, )
(z € R) is continuous. We deduce that the function g(z) = f(z)¢ (x € R)
is continuous. Moreover, ¢ is a solution of:

(2) g(z +g(x)y) = X'g(x)g(y) (,y €R)
which is similar to the Golab—Schinzel functional equation. By taking
=1y =0in (2), we obtain either g(0) = 0 or g(0) = A~*. When ¢(0) =0,
we get g = 0 as we can see by taking y = 0 in (2).

So, we consider now the case where g(0) = A~*. By taking 2 = 0 in
(2), we get:

(3) 9)=9g(A\"") (yeR)



On the solutions of the functional equation: f(f(y)*z + f(z)%y) = \f(z)f(y) 215

and therefore:
(4) 9(y) =9g(A™y) (yeR)

for every positive integer n.

When || is different from 1, (4) implies: g = g(0) = A~ and therefore
f= 1
When A is equal to 1, (2) is just the functional equation of Golab—
Schinzel for which we know all the continuous solutions (cf. [2]).

When M is equal to —1 (i.e. A = —1 and ¢ odd), (3) implies by
changing y into —y in (2):

g(r — g(x)y) = —g(z)g(y) (=,y €R)

This means that —g is a continuous solution of the functional equation of
Golab—Schinzel.
So, we obtain the following result:

Proposition 2. When ) is an arbitrary real number and £ is a positive
integer, all the solutions in the class of functions DBy of the following
functional equation:

(5) fle+ f(@)y) = Af(@)f(y) (.9 €R)
are given by:

i) f=0
and

(i) ifA#Oand |\ #1 f=3
(iii) if A =1 and if ¢ is odd
f(z) = (14 ax)'/* (z €R)
and f(z) = Sup(1 + az,0))"/* (z € R)
(iv) ifA=1 and if ¢ is even
f(z) = (Sup(1 + az,0))"/* (z € R)
(v) if A= —1 and if ¢ is odd
f(z) = -1+ azx)'/t (x € R) and
f(z) = —(Sup(1 + az,0))/* (z € R)
(vi) if A= —1and if{ is even f(x) = —(Sup(1+az,0))/* (z € R)
where a is an arbitrary non zero real number.

With the same method, we obtain all the continuous solutions f :
E — R of (1) when FE is a real Hausdorff topological vector space, namely:

Proposition 3. When A is an arbitrary real number and { is a positive
integer, all the continuous solutions f : E — R of the following functional
equation:

() fla+ f(2)y) = Af(2)f(y) (z,y € E)
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are given by:

(i) f=0

(i) ifA#O0and |\|#1 f=1
(iii) if A =1 and if ¢ is odd

f(x) =1+ (z,2*)V/* (z € E) and

f(z) = (Sup(L + (z,2%),0))"/* (x € E)
(iv) ifA=1 and if ¢ is even

f(z) = (Sup(L + (z,2%),0))"/* (x € E)
(v) if A= —1 and if ¢ is odd

f(x) = -1+ (z,2*))* (z € E) and

f(@) = —(Sup(1 + (z,27)),0)"/* (x € E)
(vi) if A= —1 and if ¢ is even

f(z) = —(Sup(1 + (z,2*),0))"/* (z € E)

where x* is an arbitrary non zero element of the topological dual of E.

Let us finally mention that J. Brzdek studied in detail the functional
equation (5) in the case A =1 in his Doctor Thesis (cf. [5]).

3. Let us consider now the general case where A is a non zero real
number and k, £ are positive integers.

In [3], J. BRZDEK proved that, if & # ¢, all the continuous solutions
f:R—=Rof (1) are: f=0and f = % It is not difficult to see that
this result is also valid for the class of functions DB;. In fact, the proofs
in [3] use only the Darboux property of f, the continuity of the functions:
x — ((z,y) and y — ((z,y) (given by Lemma 1 when f belongs to DB)
and the continuity of the function g(x) = f(x)’ (z € R). Now, if f is a
non identically zero solution of (1) in DBj, the continuity of ¢ is deduced
from the fact that, if xg is a non zero real number satisfying f(zo) # 0,
the function (z,z0) = f(xo)*x + f(z)’xo is continuous by Lemma 1.

So, we have to study now the case where k = £ is a positive integer
and A is a non zero real number.

If f:R — R is a solution of (1), the function: g(x) = f(x)’ (z € R)
satisfies the following functional equation:

(6) g(g(y)z + g(x)y) = Ng(z)g(y) (z,y €R)

Moreover, if f belongs to DBy, ¢ is continuous as we have noticed it
previously.
Now, all the continuous solutions g : R — R of (6) are known when

A is a positive real number (cf. [2]). Let us recall the result:

and

Lemma 4. All the continuous solutions g : R — R of the functional
equation:

(7) 9(g(y)x + g(x)y) = pg(x)g(y) where >0
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are given by:
. .. 1
i) g=0 i) g=—
(i) (ii) .

and, in the case p = 2 only:
(i) g(x)
(iv) g(x)

where « is an arbitrary non zero real number.

ar (r €R)
Sup(azx,0) (x €R)

Let us find now all the continuous solutions g : R — R of (7) when px
is a negative real number. We shall prove the following result:

Lemma 5. All the continuous solutions g : R — R of the functional
equation:

(7) 9(9(y)z + g(z)y) = pg(x)g(y) where p <0
are given by:

(i) g=0 (i) g =

=~

PROOF of Lemma 5. By taking x = y = 0 in (7), we have either

9(0) = L or g(0) = 0.

a) Let us first consider the case g(0) = i
By taking y = 0 in (7), we get:
x .
(8) glx) =g () for every = in R.
1

Therefore, we have for every x in R and for every positive integer n:
€z n
g@%:gQw>=g@M)

If p # —1, we see, as n goes to 400 and by using the continuity of g
at 0, that: g(x) = g(0) = % for every x in R.

If p =—1, (8) becomes: g(x) = g(—=x) for every x in R. By taking
y=—xin (7), we get:

g(g(—x)x — g(x)x) = —g(x)g(—z) for every z in R

or, with (8):
g(0) = -1 = —g(z)* for every x in R.
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Using the continuity of g, we deduce:

g(z) =—1 for every z in R.

b) Let us now consider the case g(0) = 0.

Let g be a non identically zero continuous solution of (7). By taking
y =z in (7), we see that the set of all real numbers x such that g(x) < 0
is a non empty open subset of R. The continuity of ¢ implies then that
g(R) is an interval of R containing an interval of the form ], 0].

Let us suppose that g is bounded below by b, with —oco < b < 0. We
have: g(x) > b for every z in R. By taking y = = in (7), we get:

lg(x)| < \/; for every x in R.
,u
b :
g(x) > —\/7 for every z in R.
i

By taking again y = z in (7), we get:
|b|1/4

We have now:

lg(x)| < for every = in R.

||z
Iterating this argument, we get for every positive integer n:

bl
ufb i

l9(x)] <

for every z in R.

As n goes to +00, we obtain:

1
9) lg(x) < T for every x in R.
W

Let us define: ¢(z,y) = g(y)z + g(x)y (z,y € R). Since g is bounded
and not identically zero, we have: ¢(s,R) = R for every real number s
such that g(s) # 0. So, for every real number z, there exists a real number
t such that ¢(s,t) = x. In view of the Darboux property of g, we may

choose = and s in R such that: 0 < |g(s)| < |g(z)|. By using (7) and (9),
we obtain:

0 <lg(s)l <lg(@)[ = lg(d(s, )] = lul lg(s)] lg(®)] < lg(s)]

which is a contradiction.
We deduce that ¢ is not bounded below. Therefore, g(R) is an interval

of R which contains | — oo, 0].
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So, there exists a non zero real number xy such that g(xzg) = i Let
us denote: h(z) = ¢(z,x0) = & + zog(x) (¢ € R). h is continuous and
satisfies the following functional equation

(10) h(h(z)) = (1 + ;) h(z) - ix (z € R)

Now, all the continuous solutions of (10) are known (cf. [7]). Namely, we
have the following result (cf. [7]):

Proposition 6. All the continuous solutions of the functional equa-
tion:

(11) h(h(z)) = (L+y)h(z) = vz (z€R)
where v is a negative given real number, are given by:
a) if y # —1 (i) h(z) =yx+ ¢ with 0 € R arbitrary
(ii) h(z)
b) if vy =—1 (i) h(x

X

T

() for x € | — 00, (]
¢~ !(2)

for x € [c, 40|

)
(ii) h(x)

where c is an arbitrary real number and ¢ is any strictly decreasing and

continuous function mapping | — oo, ¢] onto [c, +00].
The solution h(z) =z (z € R) of (10) gives:
1, =
gz)=(1—-—)— reR
@=0-1%  @eR)

which does not satisfy (7).
The solution: h(x) = ix + 6 (x € R) of (10) leads to a constant
function g. This is not possible since we have supposed that g(0) = 0 and

g is not identically zero.
So, we have necessarily y = —1 and

(12) h(z) = { (Z)(_iLl') for z € | — 00, (]

¢ 1(x) for x € [c,+o0]
where ¢ is a strictly decreasing and continuous function mapping | — oo, ]
onto [¢,+oo[. The function: =z — h(x) — x is continuous and strictly
decreasing on R. Therefore, it vanishes at most once. From h(c) = ¢ and
h(0) = 0, we deduce: (13) ¢ = 0. By taking y = x¢ in (7), we get:

(14) g(h(z)) = g(x) for every z in R.
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Therefore, we may suppose that x( is a positive real number. By taking
y = h(z) in (7) and using (14), we get:

g(zg(x) + g(z) (20 g(2) — 7)) = —g(x)?

or
(15) 9(@og(2)*) = —g(z)* (z€R)
Since g(R) is an interval which contains | — 0o, 0], the set {zog(z)?; = € R}

is the interval [0, +o0[. (15) implies:

(16) g(x) = L for every z in [0, o0l
Zo

For z in ] — 00,0], we may use (14) and the fact that h(x) belongs to
[0, +00]. (16) implies then:

o(@) = ghiw) = " — _g)+ L forain =00
i) i)
g(z) = 2i$0 for every x in | — 00,0].

It is now easy to check that the function defined by:

- forx >0

g(x) = ;0 does not satisfy (7).
— for x <0
2330

Therefore, there does not exist a non identically zero continuous solution
of (7) satisfying g(0) = 0.
This ends the proof of Lemma 5.

From Lemma 4 and Lemma 5, we obtain the possible expressions of
g(x) = f(z)* (z € R) when f is a solution of (1) in DB; in the case k = /.
Using also the result of J. BRZDEK in [3], we deduce then all the solutions
of (1) in DB;.

Theorem 7. When ) is a non zero real number and k,{ are positive
integers, all the solutions f : R — R of the functional equation (1) in the
class of functions DBy are given by:

a) ifk # £ or if k = ¢ and \* # 2

() f=0 (i) f:%
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b) if k = £ is an odd integer and A = 2'/*

(i) f(z) = gt (z €R)
(x € R)

>| =

0 r=0 (i) f=
(iv) f(x) = Sup(pa'/*,0

where p is an arbitrary non zero real number.
c) if k = ¢ is an even integer and \ = 2'/¢

~—

) F=0 () f=y (i) =)= (Sup(ur,0)" (x B

where v is an arbitrary non zero real number.
d) if k = ¢ is an even integer and \ = —2'/¢

M) F=0 () f=y (i) f()=—(Sup(ur,0)" (z<R)

where p is an arbitrary non zero real number.

As in [1], we may obtain now all the continuous solutions f : E — R
of (1) when FE is a real Hausdorff topological vector space.

Theorem 8. Let E be a real Hausdorff topological vector space. When
A is a non zero real number and k, ¢ are positive integers, all the continuous
solutions f : E — R of the functional equation (1) are given by:

a) ifk # ¢ orif k= { and \* # 2
() =0 Gi) f=

b) if k = £ is an odd integer and A = 2'/*

(i) f=0 (i) fi% (iii) f(x) = ({z,a"))"/* (z € E)
(iv) f(x) = Sup(({x,2"))"/*,0) (z € E)

where x* is a non zero element of the topological dual E* of E.
c) if k = ¢ is an even integer and \ = 2'/¢

(i) f=0 (i) fI% (iii) f(x) = (Sup((z,2"),0))"/* (z € E)

where z* is a non zero element of E*.
d) if k = ¢ is an even integer and \ = —2'/¢

(i) f=0 (i) f :% (iii) f(z) = —(Sup((z,2%),0)"" (z € E)
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where x* is a non zero element of E*.

PRrROOF of Theorem 8. Let f : E — R be a continuous solution of
(1). Then, f(0) is either 0 or . For every x # 0 in E, we consider the
function f, : R — R defined by: f.(t) = f(tz) (t € R). It is easy to see
that f, is a continuous solution of (1). By Theorem 7, if k # £ or if k =/
and A\ # 2, f, is a constant function for every z # 0 in E. Therefore,
we have: f, = f,(0) = f(0) = f.(1) = f, for every z # 0 in E. So, f is

identically equal either to 0 or to %

Now, if & = ¢ and A\’ = 2, the function g : E — R defined by:
g(z) = f(z)* (x € E) is a continuous solution of the following functional
equation:

(18) g(g(y)x +g(x)y) = 29(x)g(y) (z,y € E)

Now, all the continuous solutions g : E — R of (18) are known (cf. [2]
Theorem 15) and are given by:

5 (i) g(2) =(z,2") (z€E)
(iv) g(z) = Sup((z,2%),0) (€ E)

where x* is a non zero element of the topological dual E* of E. (We should
notice here that, in a private communication, K. BARON observed that
Theorem 15 of [2] stated for a real Hausdorff locally convex topological
vector space is also true for a general real Hausdorff topological vector
space).

We deduce then the continuous solutions of (1) given in b), ¢) and d).
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