On the solutions of the functional equation:

$$
f\left(f(y)^{k} x+f(x)^{\ell} y\right)=\lambda f(x) f(y)
$$

By NICOLE BRILLOUËT-BELLUOT (Nantes)

Let E be a real Hausdorff topological vector space. We consider on $\mathbb{R} \times E$ the following binary law:

$$
(\alpha, \beta) *\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(\lambda \alpha \alpha^{\prime}, \alpha^{\prime k} \beta+\alpha^{\ell} \beta^{\prime}\right) \quad\left(\text { for } \quad(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathbb{R} \times E\right)
$$

where λ is a fixed real number, k and ℓ are fixed integers. When we look for the subgroupoids of $(\mathbb{R} \times E, *)$ which depend faithfully on a set of parameters (cf. [1], [2]), we have to solve the following functional equation:

$$
\begin{equation*}
f\left(f(y)^{k} x+f(x)^{\ell} y\right)=\lambda f(x) f(y) \quad(x, y \in E) \tag{1}
\end{equation*}
$$

where f is a function mapping E into \mathbb{R}.
Let $D B_{1}$ be the set of all functions from \mathbb{R} into \mathbb{R} which are in class I of Baire and have the Darboux property.

In [1], all the solutions of (1) in the class of functions $D B_{1}$ are given in the case where λ is a non-negative real number. All the continuous solutions $f: E \rightarrow \mathbb{R}$ of (1) are also obtained.

In [3], J. Brzdȩk obtained all the continuous solutions of (1) when λ is an arbitrary non zero real number and k, ℓ are distinct positive integers.

Here, we obtain first all the solutions of (1) in the class of functions $D B_{1}$ and then all the continuous solutions $f: E \rightarrow \mathbb{R}$ of (1) when λ is an arbitrary real number and k, ℓ are arbitrary integers. This result is an answer to a question asked by J. BRZDȨK at the $27^{\text {th }}$ International Symposium on Functional Equations in Bielsko-Biala in 1989 (cf. [4]).

1. Let us first recall the results obtained in [1] for some particular cases.

If $\lambda=0$ and if k and ℓ are arbitrary integers, the unique solution of (1) in the class of functions $f: E \rightarrow \mathbb{R}$ which have the property that, for every x in E, the function defined by: $f_{x}(t)=f(t x) \quad(t \in \mathbb{R})$ belongs to $D B_{1}$, is $f \equiv 0$ (cf. [1]).

In the case where $k=\ell=0$ and λ is an arbitrary non-zero real number, all the solutions of (1) are given by:

$$
\begin{aligned}
& \text { (i) } f=0 \\
& \text { (ii) } f(x)=\frac{1}{\lambda} e^{g(x)} \quad(x \in E)
\end{aligned}
$$

where $g: E \rightarrow \mathbb{R}$ is an arbitrary additive function.
2. Before considering the case where $k=0$, we give some property of the function ζ defined by:

$$
\zeta(x, y)=f(y)^{k} x+f(x)^{\ell} y \quad(x, y \in E)
$$

in the case where $E=\mathbb{R}$.
Lemma 1. Let us suppose that λ is a non-zero real number. If f is a non identically zero solution of (1) in $D B_{1}$, the function ψ defined by: $\psi(x)=\zeta\left(x, x_{0}\right)(x \in \mathbb{R})$ is continuous when x_{0} is any non zero real number satisfying $f\left(x_{0}\right) \neq 0$.

Proof of Lemma 1. Since f is in $D B_{1}$, the graph of the function $x_{0} f(.)^{\ell}$ is connected (cf. [6]). Therefore, because the function:

$$
\begin{aligned}
\mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(t, s) & \rightarrow\left(t, f\left(x_{0}\right)^{k} t+s\right)
\end{aligned}
$$

is continuous, the graph of the function ψ is also connected and, thus, ψ has the Darboux property. Moreover, ψ is one-to-one (cf. [3]). Therefore, ψ is continuous (cf. [6]).

So, let us consider now the functional equation (1) when $k=0, \ell$ is a positive integer and λ is a non zero real number.

If f is a non identically zero solution of (1) in $D B_{1}$, there exists x_{0} in $\mathbb{R}-\{0\}$ such that $f\left(x_{0}\right) \neq 0$. By Lemma 1 , the function $\psi(x)=\zeta\left(x, x_{0}\right)$ $(x \in \mathbb{R})$ is continuous. We deduce that the function $g(x)=f(x)^{\ell}(x \in \mathbb{R})$ is continuous. Moreover, g is a solution of:

$$
\begin{equation*}
g(x+g(x) y)=\lambda^{\ell} g(x) g(y) \quad(x, y \in \mathbb{R}) \tag{2}
\end{equation*}
$$

which is similar to the Golab-Schinzel functional equation. By taking $x=y=0$ in (2), we obtain either $g(0)=0$ or $g(0)=\lambda^{-\ell}$. When $g(0)=0$, we get $g \equiv 0$ as we can see by taking $y=0$ in (2).

So, we consider now the case where $g(0)=\lambda^{-\ell}$. By taking $x=0$ in (2), we get:

$$
\begin{equation*}
g(y)=g\left(\lambda^{-\ell} y\right) \quad(y \in \mathbb{R}) \tag{3}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
g(y)=g\left(\lambda^{-n \ell} y\right) \quad(y \in \mathbb{R}) \tag{4}
\end{equation*}
$$

for every positive integer n.
When $|\lambda|$ is different from $1,(4)$ implies: $g \equiv g(0)=\lambda^{-\ell}$ and therefore $f \equiv \frac{1}{\lambda}$.

When λ^{ℓ} is equal to 1 , (2) is just the functional equation of GolabSchinzel for which we know all the continuous solutions (cf. [2]).

When λ^{ℓ} is equal to -1 (i.e. $\lambda=-1$ and ℓ odd), (3) implies by changing y into $-y$ in (2):

$$
g(x-g(x) y)=-g(x) g(y) \quad(x, y \in \mathbb{R})
$$

This means that $-g$ is a continuous solution of the functional equation of Golab-Schinzel.

So, we obtain the following result:
Proposition 2. When λ is an arbitrary real number and ℓ is a positive integer, all the solutions in the class of functions $D B_{1}$ of the following functional equation:

$$
\begin{equation*}
f\left(x+f(x)^{\ell} y\right)=\lambda f(x) f(y) \quad(x, y \in \mathbb{R}) \tag{5}
\end{equation*}
$$

are given by:

$$
\text { (i) } f \equiv 0
$$

and
(ii) if $\lambda \neq 0$ and $|\lambda| \neq 1 f \equiv \frac{1}{\lambda}$
(iii) if $\lambda=1$ and if ℓ is odd

$$
f(x)=(1+a x)^{1 / \ell}(x \in \mathbb{R})
$$

$$
\text { and } f(x)=\operatorname{Sup}(1+a x, 0))^{1 / \ell}(x \in \mathbb{R})
$$

(iv) if $\lambda=1$ and if ℓ is even
$f(x)=(\operatorname{Sup}(1+a x, 0))^{1 / \ell}(x \in \mathbb{R})$
(v) if $\lambda=-1$ and if ℓ is odd
$f(x)=-(1+a x)^{1 / \ell}(x \in \mathbb{R})$ and
$f(x)=-(\operatorname{Sup}(1+a x, 0))^{1 / \ell}(x \in \mathbb{R})$
(vi) if $\lambda=-1$ and if ℓ is even $f(x)=-(\operatorname{Sup}(1+a x, 0))^{1 / \ell}(x \in \mathbb{R})$
where a is an arbitrary non zero real number.
With the same method, we obtain all the continuous solutions f : $E \rightarrow \mathbb{R}$ of (1) when E is a real Hausdorff topological vector space, namely:

Proposition 3. When λ is an arbitrary real number and ℓ is a positive integer, all the continuous solutions $f: E \rightarrow \mathbb{R}$ of the following functional equation:

$$
\begin{equation*}
f\left(x+f(x)^{\ell} y\right)=\lambda f(x) f(y) \quad(x, y \in E) \tag{5}
\end{equation*}
$$

are given by:
(i) $f \equiv 0$
and
(ii) if $\lambda \neq 0$ and $|\lambda| \neq 1 \quad f \equiv \frac{1}{\lambda}$
(iii) if $\lambda=1$ and if ℓ is odd

$$
f(x)=\left(1+\left\langle x, x^{*}\right\rangle\right)^{1 / \ell}(x \in E) \text { and }
$$

$$
f(x)=\left(\operatorname{Sup}\left(1+\left\langle x, x^{*}\right\rangle, 0\right)\right)^{1 / \ell}(x \in E)
$$

(iv) if $\lambda=1$ and if ℓ is even
$f(x)=\left(\operatorname{Sup}\left(1+\left\langle x, x^{*}\right\rangle, 0\right)\right)^{1 / \ell}(x \in E)$
(v) if $\lambda=-1$ and if ℓ is odd
$f(x)=-\left(1+\left\langle x, x^{*}\right\rangle\right)^{1 / \ell}(x \in E)$ and
$\left.f(x)=-\left(\operatorname{Sup}\left(1+\left\langle x, x^{*}\right\rangle\right), 0\right)\right)^{1 / \ell}(x \in E)$
(vi) if $\lambda=-1$ and if ℓ is even

$$
f(x)=-\left(\operatorname{Sup}\left(1+\left\langle x, x^{*}\right\rangle, 0\right)\right)^{1 / \ell}(x \in E)
$$

where x^{*} is an arbitrary non zero element of the topological dual of E.
Let us finally mention that J. Brzdȩk studied in detail the functional equation (5) in the case $\lambda=1$ in his Doctor Thesis (cf. [5]).
3. Let us consider now the general case where λ is a non zero real number and k, ℓ are positive integers.

In [3], J. Brzdȩk proved that, if $k \neq \ell$, all the continuous solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of (1) are: $f \equiv 0$ and $f \equiv \frac{1}{\lambda}$. It is not difficult to see that this result is also valid for the class of functions $D B_{1}$. In fact, the proofs in [3] use only the Darboux property of f, the continuity of the functions: $x \rightarrow \zeta(x, y)$ and $y \rightarrow \zeta(x, y)$ (given by Lemma 1 when f belongs to $D B_{1}$) and the continuity of the function $g(x)=f(x)^{\ell}(x \in \mathbb{R})$. Now, if f is a non identically zero solution of (1) in $D B_{1}$, the continuity of g is deduced from the fact that, if x_{0} is a non zero real number satisfying $f\left(x_{0}\right) \neq 0$, the function $\zeta\left(x, x_{0}\right)=f\left(x_{0}\right)^{k} x+f(x)^{\ell} x_{0}$ is continuous by Lemma 1 .

So, we have to study now the case where $k=\ell$ is a positive integer and λ is a non zero real number.

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of (1), the function: $g(x)=f(x)^{\ell}(x \in \mathbb{R})$ satisfies the following functional equation:

$$
\begin{equation*}
g(g(y) x+g(x) y)=\lambda^{\ell} g(x) g(y) \quad(x, y \in \mathbb{R}) \tag{6}
\end{equation*}
$$

Moreover, if f belongs to $D B_{1}, g$ is continuous as we have noticed it previously.

Now, all the continuous solutions $g: \mathbb{R} \rightarrow \mathbb{R}$ of (6) are known when λ^{ℓ} is a positive real number (cf. [2]). Let us recall the result:

Lemma 4. All the continuous solutions $g: \mathbb{R} \rightarrow \mathbb{R}$ of the functional equation:

$$
\begin{equation*}
g(g(y) x+g(x) y)=\mu g(x) g(y) \quad \text { where } \quad \mu>0 \tag{7}
\end{equation*}
$$

On the solutions of the functional equation: $f\left(f(y)^{k} x+f(x)^{\ell} y\right)=\lambda f(x) f(y) \quad 217$
are given by:

$$
\text { (i) } g \equiv 0 \quad \text { (ii) } g \equiv \frac{1}{\mu}
$$

and, in the case $\mu=2$ only:

$$
\begin{aligned}
& \text { (iii) } g(x)=\alpha x \quad(x \in \mathbb{R}) \\
& \text { (iv) } g(x)=\operatorname{Sup}(\alpha x, 0) \quad(x \in \mathbb{R})
\end{aligned}
$$

where α is an arbitrary non zero real number.
Let us find now all the continuous solutions $g: \mathbb{R} \rightarrow \mathbb{R}$ of (7) when μ is a negative real number. We shall prove the following result:

Lemma 5. All the continuous solutions $g: \mathbb{R} \rightarrow \mathbb{R}$ of the functional equation:

$$
\begin{equation*}
g(g(y) x+g(x) y)=\mu g(x) g(y) \quad \text { where } \quad \mu<0 \tag{7}
\end{equation*}
$$

are given by:

$$
\text { (i) } g \equiv 0 \quad \text { (ii) } g \equiv \frac{1}{\mu} \text {. }
$$

Proof of Lemma 5. By taking $x=y=0$ in (7), we have either $g(0)=\frac{1}{\mu}$ or $g(0)=0$.
a) Let us first consider the case $g(0)=\frac{1}{\mu}$

By taking $y=0$ in (7), we get:

$$
\begin{equation*}
g(x)=g\left(\frac{x}{\mu}\right) \quad \text { for every } x \text { in } \mathbb{R} \tag{8}
\end{equation*}
$$

Therefore, we have for every x in \mathbb{R} and for every positive integer n :

$$
g(x)=g\left(\frac{x}{\mu^{n}}\right)=g\left(x \mu^{n}\right)
$$

If $\mu \neq-1$, we see, as n goes to $+\infty$ and by using the continuity of g at 0 , that: $g(x)=g(0)=\frac{1}{\mu}$ for every x in \mathbb{R}.

If $\mu=-1$, (8) becomes: $g(x)=g(-x)$ for every x in \mathbb{R}. By taking $y=-x$ in (7), we get:

$$
g(g(-x) x-g(x) x)=-g(x) g(-x) \text { for every } x \text { in } \mathbb{R}
$$

or, with (8):

$$
g(0)=-1=-g(x)^{2} \quad \text { for every } x \text { in } \mathbb{R}
$$

Using the continuity of g, we deduce:

$$
g(x)=-1 \quad \text { for every } x \text { in } \mathbb{R} .
$$

b) Let us now consider the case $g(0)=0$.

Let g be a non identically zero continuous solution of (7). By taking $y=x$ in (7), we see that the set of all real numbers x such that $g(x)<0$ is a non empty open subset of \mathbb{R}. The continuity of g implies then that $g(\mathbb{R})$ is an interval of \mathbb{R} containing an interval of the form $] \alpha, 0]$.

Let us suppose that g is bounded below by b, with $-\infty<b<0$. We have: $g(x)>b$ for every x in \mathbb{R}. By taking $y=x$ in (7), we get:

$$
|g(x)|<\sqrt{\frac{b}{\mu}} \quad \text { for every } x \text { in } \mathbb{R} .
$$

We have now:

$$
g(x)>-\sqrt{\frac{b}{\mu}} \quad \text { for every } x \text { in } \mathbb{R} .
$$

By taking again $y=x$ in (7), we get:

$$
|g(x)|<\frac{|b|^{1 / 4}}{|\mu|^{\frac{1}{2}+\frac{1}{4}}} \quad \text { for every } x \text { in } \mathbb{R}
$$

Iterating this argument, we get for every positive integer n :

$$
|g(x)|<\frac{|b|^{\frac{1}{2^{n}}}}{|\mu|^{\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n}}}} \quad \text { for every } x \text { in } \mathbb{R} \text {. }
$$

As n goes to $+\infty$, we obtain:

$$
\begin{equation*}
\left\lvert\, g(x) \leq \frac{1}{|\mu|} \quad\right. \text { for every } x \text { in } \mathbb{R} \tag{9}
\end{equation*}
$$

Let us define: $\phi(x, y)=g(y) x+g(x) y \quad(x, y \in \mathbb{R})$. Since g is bounded and not identically zero, we have: $\phi(s, \mathbb{R})=\mathbb{R}$ for every real number s such that $g(s) \neq 0$. So, for every real number x, there exists a real number t such that $\phi(s, t)=x$. In view of the Darboux property of g, we may choose x and s in \mathbb{R} such that: $0<|g(s)|<|g(x)|$. By using (7) and (9), we obtain:

$$
0<|g(s)|<|g(x)|=|g(\phi(s, t))|=|\mu||g(s)||g(t)| \leq|g(s)|
$$

which is a contradiction.
We deduce that g is not bounded below. Therefore, $g(\mathbb{R})$ is an interval of \mathbb{R} which contains $]-\infty, 0]$.

So, there exists a non zero real number x_{0} such that $g\left(x_{0}\right)=\frac{1}{\mu}$. Let us denote: $h(x)=\phi\left(x, x_{0}\right)=\frac{x}{\mu}+x_{0} g(x) \quad(x \in \mathbb{R})$. h is continuous and satisfies the following functional equation

$$
\begin{equation*}
h(h(x))=\left(1+\frac{1}{\mu}\right) h(x)-\frac{1}{\mu} x \quad(x \in \mathbb{R}) \tag{10}
\end{equation*}
$$

Now, all the continuous solutions of (10) are known (cf. [7]). Namely, we have the following result (cf. [7]):

Proposition 6. All the continuous solutions of the functional equation:

$$
\begin{equation*}
h(h(x))=(1+\gamma) h(x)-\gamma x \quad(x \in \mathbb{R}) \tag{11}
\end{equation*}
$$

where γ is a negative given real number, are given by:
a) if $\gamma \neq-1 \quad$ (i) $h(x)=\gamma x+\delta$ with $\delta \in \mathbb{R}$ arbitrary
(ii) $h(x) \equiv x$
b) if $\gamma=-1$
(i) $h(x) \equiv x$
(ii) $h(x)= \begin{cases}\phi(x) & \text { for } x \in]-\infty, c] \\ \phi^{-1}(x) & \text { for } x \in[c,+\infty[\end{cases}$
where c is an arbitrary real number and ϕ is any strictly decreasing and continuous function mapping $]-\infty, c]$ onto $[c,+\infty[$.

The solution $h(x) \equiv x(x \in \mathbb{R})$ of (10) gives:

$$
g(x)=\left(1-\frac{1}{\mu}\right) \frac{x}{x_{0}} \quad(x \in \mathbb{R})
$$

which does not satisfy (7).
The solution: $h(x)=\frac{1}{\mu} x+\delta(x \in \mathbb{R})$ of (10) leads to a constant function g. This is not possible since we have supposed that $g(0)=0$ and g is not identically zero.

So, we have necessarily $\mu=-1$ and

$$
h(x)= \begin{cases}\phi(x) & \text { for } x \in]-\infty, c] \tag{12}\\ \phi^{-1}(x) & \text { for } x \in[c,+\infty[\end{cases}
$$

where ϕ is a strictly decreasing and continuous function mapping] $-\infty, c]$ onto $[c,+\infty$ [. The function: $x \rightarrow h(x)-x$ is continuous and strictly decreasing on \mathbb{R}. Therefore, it vanishes at most once. From $h(c)=c$ and $h(0)=0$, we deduce: (13) $c=0$. By taking $y=x_{0}$ in (7), we get:

$$
\begin{equation*}
g(h(x))=g(x) \quad \text { for every } x \text { in } \mathbb{R} \tag{14}
\end{equation*}
$$

Therefore, we may suppose that x_{0} is a positive real number. By taking $y=h(x)$ in (7) and using (14), we get:

$$
g\left(x g(x)+g(x)\left(x_{0} g(x)-x\right)\right)=-g(x)^{2}
$$

or

$$
\begin{equation*}
g\left(x_{0} g(x)^{2}\right)=-g(x)^{2} \quad(x \in \mathbb{R}) \tag{15}
\end{equation*}
$$

Since $g(\mathbb{R})$ is an interval which contains $]-\infty, 0]$, the set $\left\{x_{0} g(x)^{2} ; x \in \mathbb{R}\right\}$ is the interval $[0,+\infty[$. (15) implies:

$$
\begin{equation*}
g(x)=-\frac{x}{x_{0}} \quad \text { for every } x \text { in }[0,+\infty[\tag{16}
\end{equation*}
$$

For x in $]-\infty, 0]$, we may use (14) and the fact that $h(x)$ belongs to $[0,+\infty[$. (16) implies then:

$$
\left.\left.g(x)=g(h(x))=-\frac{h(x)}{x_{0}}=-g(x)+\frac{x}{x_{0}} \text { for } x \text { in }\right]-\infty, 0\right]
$$

or

$$
\left.\left.g(x)=\frac{x}{2 x_{0}} \quad \text { for every } x \text { in }\right]-\infty, 0\right]
$$

It is now easy to check that the function defined by:

$$
g(x)=\left\{\begin{array}{cl}
-\frac{x}{x_{0}} & \text { for } x \geq 0 \\
\frac{x}{2 x_{0}} & \text { for } x \leq 0
\end{array} \quad \text { does not satisfy } \quad(7)\right.
$$

Therefore, there does not exist a non identically zero continuous solution of (7) satisfying $g(0)=0$.

This ends the proof of Lemma 5.
From Lemma 4 and Lemma 5, we obtain the possible expressions of $g(x)=f(x)^{\ell}(x \in \mathbb{R})$ when f is a solution of (1) in $D B_{1}$ in the case $k=\ell$. Using also the result of J. BRZDȨK in [3], we deduce then all the solutions of (1) in $D B_{1}$.

Theorem 7. When λ is a non zero real number and k, ℓ are positive integers, all the solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the functional equation (1) in the class of functions $D B_{1}$ are given by:
a) if $k \neq \ell$ or if $k=\ell$ and $\lambda^{\ell} \neq 2$

$$
\begin{array}{ll}
\text { (i) } f \equiv 0 & \text { (ii) } f \equiv \frac{1}{\lambda}
\end{array}
$$

On the solutions of the functional equation: $f\left(f(y)^{k} x+f(x)^{\ell} y\right)=\lambda f(x) f(y) \quad 221$
b) if $k=\ell$ is an odd integer and $\lambda=2^{1 / \ell}$
(i) $f \equiv 0$
(ii) $f \equiv \frac{1}{\lambda}$
(iii) $f(x)=\mu x^{1 / \ell} \quad(x \in \mathbb{R})$
(iv) $f(x)=\operatorname{Sup}\left(\mu x^{1 / \ell}, 0\right) \quad(x \in \mathbb{R})$
where μ is an arbitrary non zero real number.
c) if $k=\ell$ is an even integer and $\lambda=2^{1 / \ell}$
(i) $f \equiv 0$
(ii) $f \equiv \frac{1}{\lambda}$
(iii) $f(x)=(\operatorname{Sup}(\mu x, 0))^{1 / \ell} \quad(x \in \mathbb{R})$
where μ is an arbitrary non zero real number.
d) if $k=\ell$ is an even integer and $\lambda=-2^{1 / \ell}$
(i) $f \equiv 0$
(ii) $f \equiv \frac{1}{\lambda}$
(iii) $f(x)=-(\operatorname{Sup}(\mu x, 0))^{1 / \ell} \quad(x \in \mathbb{R})$
where μ is an arbitrary non zero real number.
As in [1], we may obtain now all the continuous solutions $f: E \rightarrow \mathbb{R}$ of (1) when E is a real Hausdorff topological vector space.

Theorem 8. Let E be a real Hausdorff topological vector space. When λ is a non zero real number and k, ℓ are positive integers, all the continuous solutions $f: E \rightarrow \mathbb{R}$ of the functional equation (1) are given by:
a) if $k \neq \ell$ or if $k=\ell$ and $\lambda^{\ell} \neq 2$

$$
\begin{array}{ll}
\text { (i) } f \equiv 0 & \text { (ii) } f \equiv \frac{1}{\lambda}
\end{array}
$$

b) if $k=\ell$ is an odd integer and $\lambda=2^{1 / \ell}$

$$
\begin{gathered}
\text { (i) } f \equiv 0 \quad \text { (ii) } f \equiv \frac{1}{\lambda} \quad \text { (iii) } f(x)=\left(\left\langle x, x^{*}\right\rangle\right)^{1 / \ell} \quad(x \in E) \\
\text { (iv) } f(x)=\operatorname{Sup}\left(\left(\left\langle x, x^{*}\right\rangle\right)^{1 / \ell}, 0\right) \quad(x \in E)
\end{gathered}
$$

where x^{*} is a non zero element of the topological dual E^{*} of E.
c) if $k=\ell$ is an even integer and $\lambda=2^{1 / \ell}$
(i) $f \equiv 0$
(ii) $f \equiv \frac{1}{\lambda}$
(iii) $f(x)=\left(\operatorname{Sup}\left(\left\langle x, x^{*}\right\rangle, 0\right)\right)^{1 / \ell} \quad(x \in E)$
where x^{*} is a non zero element of E^{*}.
d) if $k=\ell$ is an even integer and $\lambda=-2^{1 / \ell}$
(i) $f \equiv 0$
(ii) $f \equiv \frac{1}{\lambda}$
(iii) $f(x)=-\left(\operatorname{Sup}\left(\left\langle x, x^{*}\right\rangle, 0\right)\right)^{1 / \ell} \quad(x \in E)$
where x^{*} is a non zero element of E^{*}.
Proof of Theorem 8. Let $f: E \rightarrow \mathbb{R}$ be a continuous solution of (1). Then, $f(0)$ is either 0 or $\frac{1}{\lambda}$. For every $x \neq 0$ in E, we consider the function $f_{x}: \mathbb{R} \rightarrow \mathbb{R}$ defined by: $f_{x}(t)=f(t x)(t \in \mathbb{R})$. It is easy to see that f_{x} is a continuous solution of (1). By Theorem 7, if $k \neq \ell$ or if $k=\ell$ and $\lambda^{\ell} \neq 2, f_{x}$ is a constant function for every $x \neq 0$ in E. Therefore, we have: $f_{x} \equiv f_{x}(0)=f(0)=f_{x}(1)=f_{x}$ for every $x \neq 0$ in E. So, f is identically equal either to 0 or to $\frac{1}{\lambda}$.

Now, if $k=\ell$ and $\lambda^{\ell}=2$, the function $g: E \rightarrow \mathbb{R}$ defined by: $g(x)=f(x)^{\ell}(x \in E)$ is a continuous solution of the following functional equation:

$$
\begin{equation*}
g(g(y) x+g(x) y)=2 g(x) g(y) \quad(x, y \in E) \tag{18}
\end{equation*}
$$

Now, all the continuous solutions $g: E \rightarrow \mathbb{R}$ of (18) are known (cf. [2] Theorem 15) and are given by:

$$
\begin{array}{lll}
\text { (i) } g \equiv 0 & \text { (ii) } g \equiv \frac{1}{2} & \text { (iii) } g(x)=\left\langle x, x^{*}\right\rangle \quad(x \in E)
\end{array}
$$

$$
\text { (iv) } g(x)=\operatorname{Sup}\left(\left\langle x, x^{*}\right\rangle, 0\right) \quad(x \in E)
$$

where x^{*} is a non zero element of the topological dual E^{*} of E. (We should notice here that, in a private communication, K. Baron observed that Theorem 15 of [2] stated for a real Hausdorff locally convex topological vector space is also true for a general real Hausdorff topological vector space).

We deduce then the continuous solutions of (1) given in b), c) and d).

References

[1] N. Brillouët-Belluot, On Some Functional Equations of Golab-Schinzel type, to appear in Aequationes Mathematicae.
[2] N. Brillouët and J. Dhombres, Equations Fonctionnelles et Recherche de SousGroupes, Aequationes Mathematicae 31 (1986), 253-293.
[3] J. Brzdȩk, On the Solutions of the Functional Equation: $f\left(x f(y)^{\ell}+y f(x)^{k}\right)=$ $t f(x) f(y)$, to appear in Publ. Math. Debrecen.
[4] J. Brzdȩk, Remark and Problem 10, Report of Meeting, The $27^{\text {th }}$ International Symposium on Functional Equations, Aequationes Mathematicae 39 (1990), 305.
[5] J. Brzdȩk, O Rozwiazaniach Rownania Funkcyjnego $f\left(x+f(x)^{n} y\right)=f(x) f(y)$, Uniwersytet Slaski, Instytut Matematyki, Katowice, 1990.
[6] A. M. Bruckner and J.G. Ceder, Darboux Continuity, Jahresbericht Deutsche Mathematiker-Vereiningung 67 (1965), 93-117.

On the solutions of the functional equation: $f\left(f(y)^{k} x+f(x)^{\ell} y\right)=\lambda f(x) f(y) \quad 223$
[7] J. Dhombres, Some Aspects of Functional Equations, Lecture Notes, Chulalongkorn University, Department of Mathematics, Bangkok, Thailand, 1979.

```
NICOLE BRILLOUËT-BELLUOT
ÉCOLE NATIONALE SUPÉRIEURE DE MÉCANIQUE
SERVICE DE MATHÉMATIQUES
1 RUE DE LA NOË
4 4 0 7 2 ~ N A N T E S ~ - ~ C E D E X ~
FRANCE
```

(Received June 20, 1991)

