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On a class of QR-submanifolds of quaternion space forms

By CALIN AGUT (Oradea)

Abstract. Let M be a QR-submanifolds (cf. A. BEJaNcU [2]) of a quaternion
space form N (c) such that every geodesic of M is a circle of N(c). Then we prove that
either ¢ = 0 or M is a totally real submanifold.

1. Introduction

Let N be a quaternion Kaehlerian manifold of real dimension 4n.
Then there exist on N a Riemannian metric g and a vector bundle V' of
tensors of type (1,1) with a local basis of Hermitian structures Jy, Jo, J3
such that J;Js = —JsJ; = J3. Moreover, for each local section S of V' and
vector field X on N, V xS is also a section of V', where V is the Levi-Civita
connection on N with respect to g. If the quaternion sectional curvature
of N is a constant ¢ then we say that NN is a quaternion space form and
denote it by N(c). As it is well known (cf. K. YANO and M. Kon [10],
p. 172) the curvature tensor Rof Von N (c) is given by

R(X,Y)Z = Z{g(Y, DX — g(X, 2)Y

(1.1) 3
Y {9UY, 20X = gUaX, 2) 1Y+ 29(X, JY) a2} |

a=1

for any X,Y,Z € T'(T'N(c)).
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Throughout the paper we use the following notations:

F(N) — the algebra of smooth functions on N,

I['(E) — the F(N)-module of smooth sections of a vector bundle E
over N. The same notations will be used for any other manifold.

Next, we consider an m-dimensional Riemannian manifold M isomet-
rically immersed in N. Then M is said to be a quaternion-real submanifold
(QR-submanifold) (cf. A. BEJANCU [2]) if there exist a vector subbundle
v of the normal bundle M~ such that

Jo(vy) =v, and J,(v}) C T, M,

for any x € M and a € {1,2,3}, where v is the complementary orthogonal
vector bundle to v in TM=. If, in particular, v = TM* (resp. v = {0}),
M is said to be a quaternion submanifold (cf. B.Y. CHEN [4]) (resp. anti-
quaternion submanifold, cf. J.S. PAK [8]).

Denote by s the rank of v+, that is, each fibre of v' is of dimen-
sion s. Then consider the s-dimensional vector subspaces D, , = Ja(uj),
a €{1,2,3} of T,M which are mutually orthogonal. Thus we obtain a
globally defined distribution

DJ_ X — Di_ = Dl@ D D2,$ @ D3,1‘7
on M. Also, we have

Jo(Daw) =vE and J(Dps) = Do,

x

for any x € M, where (a,b,c) is a cyclic permutation of (1,2,3). Denote
by D the complemetary orthogonal distribution to D+ in TM. It is easy
to see that D is a quaternion distribution on M, that is, J,(D,) = D, for
any © € M and a € {1,2,3}.

Finally, we recall from K. Nomizu and K. YANO [6] the notion of circle
in N. A curve C : z = z(t) with arc-length parameter ¢ in N is said to be
a circle if there exists a field of unit vectors Y; along C', which, together
with the unit tangent vectors Xy, satisfies the differential equations

(1.2) ViX; = kY, and V.Y, = —kX,,

where k is a positive constant.
The main purpose of this note is to prove the following

Theorem 1. Let M be a QR-submanifold of N(c), such that each
geodesic of M is a circle in N(c). Then either ¢ =0 or D = {0}.
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2. Preliminaries

First, from the general theory of submanifolds we recall the formulas
of Gauss and Weingarten (cf. B.Y. CHEN [3], p. 39):

(2.1) VxY = VxY +h(X,Y), VX,Y e (TM)
and
(22)  Vx&=-AX+Vx{ VX €D(TM), £ €T(TM?Y),

respectively, where V, V+, h and A¢ are the Levi-Civita connection on
M, the normal connection of M, the second fundamental form and the
shape operator of M, respectively. Also, h and A are related by

(23)  g(h(X,Y),€) =g(AcX,Y), VXY €D(TM), € (TM™).
The covariant derivative of h is defined by

(Vxh)(Y,Z) = Vx(h(Y, Z)) = h(VxY, Z) = h(Y,Vx Z),
24 VX,Y,Z € T(TM).
Then the Codazzi equation is given by
(2.5) R(X,Y)ZYE = (Vxh)(Y, Z) — (Vyh)(X,Z), V¥X,Y,ZeT(TM),

where {*}* means the normal part of .

Now, suppose M is a QR-submanifold of a quaternion Kaehlerian
manifold N. Then according to C.L. BEJAN [1] the second fundamental
form of M satisfies

(2.6) g(h(X,Y),6) =0, VX,Y €T(D), ¢ € T(v).

Let C : x = z(t) be a geodesic of M, that is, V;X; = 0. Thus from
(2.1) we deduce
VtXt — h(Xt,Xt),

which, together with (2.2), implies

(2.7) VX, = —Anx,xo Xe + Vi (WX, X0)).



454 Calin Agut

Suppose now C' is a circle in N. Then by using (2.1) and (1.2) we
deduce

(2.8) V2X, = —k*X,.

Comparing (2.7) and (2.8) we infer

(2.9) Apix, x0 Xt = K2 Xy,
and
(2.10) Vi (h(Xy, X;) = 0.

Consider ¢t = 0. Using (2.3) and (2.9) we obtain
g(h(X, X),h(X, X)) = k?

for any unit tangent vector X at a point x € M. Thus there exists a
non-zero function A such that

(2.11) g(h(X, X),h(X, X)) = N2,

for any unit vector field X on M. According to O’NEILL [7], the immersion
of M in N(c) is A-isotropic. From (2.11) we deduce

(2.12) g(h(X, X),h(X, X)) = Ng(X,X)g(X,X), VX ecTI(TM),
which is equivalent to

(2.13) g(M(X,Y),n(Z,U)) + 9(X, Z),h(U,Y)) + g(X,U), h(Y, Z))
. = )‘Q{Q(va)g(zv U) + g(X, Z)Q(U’ Y) + g(X, U)g(Y, Z)}a

for any X,Y,Z,U € I'(TM). Also, from (2.10) and (2.4), taking into
account that C is a geodesic, we deduce:

(2.14) (Vxh)(X,X)=0, VX el(TM),
which is equivalent to
(Vxh)(Y,Z)+ (Vyh)(X,Z) + (Vzh)(X,Y) =0,

(2.15)
VX,Y,Z € T(TM).
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Remark 1. K. NoMIzU [5] obtained both (2.11) and (2.14) for a Kaehler
submanifold of a complex projective space. Actually, it is easy to see that
the above calculations hold good for a Riemannian submanifold whose
geodesics are circles in the ambient space.

3. Proof of the Theorem

First, differentiating (2.11) and taking account of (2.14) we deduce
X(X) = 0 for any Xe I'(T'M) that is, A is locally constant on M. Then
we take Y = Z € I'(D) and Xe€ I'(D) in (2.15) and obtain

(Vxh)(Y,Y) 4+ 2(Vyh)(X,Y) = 0.
On the other hand, by using (1.1) in (2.5) we derive
(Vxh)(Y,Y) = (Vyh)(X,Y)=0, VX,Y eT(D).
Hence we have
(3.1) (Vxh)(Y,Y)=0, VX,Y eT(D).

Next, we take Y = Z = U € I'(D), X = Jin for n € T(v1) in
(2.13) and differentiate (2.13) with respect to W € I'(D). Then taking
into account that A is locally constant and by using (3.1) we obtain

(32)  g(Vwh) (L, Y),h(Y,Y) =0, YY,W € T(D), n € ().
By using again (1.1) and (2.5) we deduce

(Vwh)(in.Y) = (Vsyh)(W.Y) = Jg(LT.Y )y,
and

(Vwh)(Lin.Y) = (Vy)(W. Jun) = Sg(W.Y ).
Adding the last two relations and taking account of (2.15) we get
(Vwh)(Jin.Y) = Sg(IW, Y ),
which together with (3.2) implies

(3.3) gg(Jﬂ/V, Vg, h(Y,Y)) =0, YY,W € (D), ne ().
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Finally, we suppose ¢ # 0 and D # {0}. Then we take Y = J;W in
(3.3) and by linearity obtain:

(3.4) g(h(X,Y),n) =0, VX,Y eI'(D), nel(vh).

As a consequence of (2.6) and (3.4) we deduce h(X,Y) = 0 for any
X,Y € I'(D), which contradict (2.11). This completes the proof of the
theorem.

References

[1] C.-L. BEJAN, On QR-submanifolds of a quaternion Kaehlerian manifold, Tensor
46 (1987), 413-417.
[2] A. BEjaNncu, Geometry of CR-submanifolds, D. Reidel Publish. Comp., Dordrechit,
1986.
[3] B.-Y. CHEN, Geometry of submanifolds, M. Dekker, New York, 1973.
[4] B.-Y. CHEN, Totally umbilical submanifolds of quaternion space forms, J. Austral.
Math. Soc. 26 (1978), 154-162.
[5] K. Nowmizu, A characterization of the Veronese varieties, Nagoya Math. J. 60
(1976), 181-188.
[6] K. Nomizu and K. YANO, On circles and spheres in Riemannian geometry, Math.
Ann. 21 (1974), 163-170.
[7] B. O’NEILL, Isotropic and Kaehler immersions, Canad. J. Math. 17 (1965), 905-915.
[8] J. S. PaK, Anti-quaternion submanifolds of quaternion projective space, Kyungpook
Math. J. 18 (1981), 91-115.
[9] K. TsukaDpa, Parallel submanifolds in a quaternion projective space, Osaka J.
Math. 22 (1985), 187-241.
[10] K. YANO and M. KON, Structures on manifolds, World Scientific, Singapore, 1984.

CALIN AGUT

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ORADEA

STR. ARMATEI ROMANE NR. 5
ORADEA - 3700

ROMANIA

(Received December 1, 1997; revised July 7, 1998)



