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On a class of QR-submanifolds of quaternion space forms

By CALIN AGUT (Oradea)

Abstract. Let M be a QR-submanifolds (cf. A. Bejancu [2]) of a quaternion
space form N(c) such that every geodesic of M is a circle of N(c). Then we prove that
either c = 0 or M is a totally real submanifold.

1. Introduction

Let N be a quaternion Kaehlerian manifold of real dimension 4n.
Then there exist on N a Riemannian metric g and a vector bundle V of
tensors of type (1,1) with a local basis of Hermitian structures J1, J2, J3

such that J1J2 = −J2J1 = J3. Moreover, for each local section S of V and
vector field X on N , ∇̃XS is also a section of V , where ∇̃ is the Levi–Civita
connection on N with respect to g. If the quaternion sectional curvature
of N is a constant c then we say that N is a quaternion space form and
denote it by N(c). As it is well known (cf. K. Yano and M. Kon [10],
p. 172) the curvature tensor R̃ of ∇̃ on N(c) is given by

(1.1)

R̃(X, Y )Z =
c

4

{
g(Y,Z)X − g(X, Z)Y

+
3∑

a=1

{g(JaY, Z)JaX − g(JaX, Z)JaY + 2g(X,JaY )JaZ}
}

for any X, Y, Z ∈ Γ(TN(c)).
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Throughout the paper we use the following notations:
F (N) – the algebra of smooth functions on N ,
Γ(E) – the F (N)-module of smooth sections of a vector bundle E

over N . The same notations will be used for any other manifold.
Next, we consider an m-dimensional Riemannian manifold M isomet-

rically immersed in N . Then M is said to be a quaternion-real submanifold
(QR-submanifold) (cf. A. Bejancu [2]) if there exist a vector subbundle
ν of the normal bundle TM⊥ such that

Ja(νx) = νx and Ja(ν⊥x ) ⊂ TxM,

for any x ∈ M and a ∈ {1, 2, 3}, where ν⊥ is the complementary orthogonal
vector bundle to ν in TM⊥. If, in particular, ν = TM⊥ (resp. ν = {0}),
M is said to be a quaternion submanifold (cf. B.Y. Chen [4]) (resp. anti-
quaternion submanifold , cf. J.S. Pak [8]).

Denote by s the rank of ν⊥, that is, each fibre of ν⊥ is of dimen-
sion s. Then consider the s-dimensional vector subspaces Da,x = Ja(ν⊥x ),
a ∈{1,2,3} of TxM which are mutually orthogonal. Thus we obtain a
globally defined distribution

D⊥ : x → D⊥
x = D1,x ⊕D2,x ⊕D3,x,

on M . Also, we have

Ja(Da,x) = ν⊥x and Ja(Db,x) = Dc,x,

for any x ∈ M , where (a, b, c) is a cyclic permutation of (1, 2, 3). Denote
by D the complemetary orthogonal distribution to D⊥ in TM . It is easy
to see that D is a quaternion distribution on M , that is, Ja(Dx) = Dx for
any x ∈ M and a ∈ {1, 2, 3}.

Finally, we recall from K. Nomizu and K. Yano [6] the notion of circle
in N . A curve C : x = x(t) with arc-length parameter t in N is said to be
a circle if there exists a field of unit vectors Yt along C, which, together
with the unit tangent vectors Xt, satisfies the differential equations

(1.2) ∇̃tXt = kYt and ∇̃tYt = −kXt,

where k is a positive constant.
The main purpose of this note is to prove the following

Theorem 1. Let M be a QR-submanifold of N(c), such that each
geodesic of M is a circle in N(c). Then either c = 0 or D = {0}.
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2. Preliminaries

First, from the general theory of submanifolds we recall the formulas
of Gauss and Weingarten (cf. B.Y. Chen [3], p. 39):

∇̃XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM)(2.1)

and

∇̃Xξ = −AξX +∇⊥Xξ, ∀X ∈ Γ(TM), ξ ∈ Γ(TM⊥),(2.2)

respectively, where ∇, ∇⊥, h and Aξ are the Levi–Civita connection on
M , the normal connection of M , the second fundamental form and the
shape operator of M , respectively. Also, h and Aξ are related by

(2.3) g(h(X, Y ), ξ) = g(AξX, Y ), ∀X,Y ∈ Γ(TM), ξ ∈ Γ(TM⊥).

The covariant derivative of h is defined by

(2.4)
(∇Xh)(Y,Z) = ∇⊥X(h(Y, Z))− h(∇XY,Z)− h(Y,∇XZ),

∀X, Y, Z ∈ Γ(TM).

Then the Codazzi equation is given by

(2.5) R̃(X, Y )Z}⊥ = (∇Xh)(Y,Z)− (∇Y h)(X,Z), ∀X,Y, Z ∈ Γ(TM),

where {∗}⊥ means the normal part of ∗.
Now, suppose M is a QR-submanifold of a quaternion Kaehlerian

manifold N . Then according to C.L. Bejan [1] the second fundamental
form of M satisfies

(2.6) g(h(X,Y ), ξ) = 0, ∀X,Y ∈ Γ(D), ξ ∈ Γ(υ).

Let C : x = x(t) be a geodesic of M , that is, ∇tXt = 0. Thus from
(2.1) we deduce

∇̃tXt = h(Xt, Xt),

which, together with (2.2), implies

(2.7) ∇̃2
t Xt = −Ah(Xt,Xt)Xt +∇⊥t (h(Xt, Xt)).
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Suppose now C is a circle in N . Then by using (2.1) and (1.2) we
deduce

(2.8) ∇̃2
t Xt = −k2Xt.

Comparing (2.7) and (2.8) we infer

Ah(Xt,Xt)Xt = k2Xt,(2.9)

and

∇⊥t (h(Xt, Xt) = 0.(2.10)

Consider t = 0. Using (2.3) and (2.9) we obtain

g(h(X, X), h(X, X)) = k2

for any unit tangent vector X at a point x ∈ M . Thus there exists a
non-zero function λ such that

(2.11) g(h(X, X), h(X, X)) = λ2,

for any unit vector field X on M . According to O’Neill [7], the immersion
of M in N(c) is λ-isotropic. From (2.11) we deduce

(2.12) g(h(X, X), h(X, X)) = λ2g(X,X)g(X, X), ∀X ∈ Γ(TM),

which is equivalent to

(2.13)
g(h(X, Y ), h(Z, U)) + g(X, Z), h(U, Y )) + g(X,U), h(Y,Z))

= λ2{g(X, Y )g(Z, U) + g(X,Z)g(U, Y ) + g(X,U)g(Y, Z)},

for any X,Y, Z, U ∈ Γ(TM). Also, from (2.10) and (2.4), taking into
account that C is a geodesic, we deduce:

(2.14) (∇Xh)(X,X) = 0, ∀X ∈ Γ(TM),

which is equivalent to

(2.15)
(∇Xh)(Y, Z) + (∇Y h)(X, Z) + (∇Zh)(X,Y ) = 0,

∀X, Y, Z ∈ Γ(TM).
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Remark 1. K. Nomizu [5] obtained both (2.11) and (2.14) for a Kaehler
submanifold of a complex projective space. Actually, it is easy to see that
the above calculations hold good for a Riemannian submanifold whose
geodesics are circles in the ambient space.

3. Proof of the Theorem

First, differentiating (2.11) and taking account of (2.14) we deduce
X(λ) = 0 for any X∈ Γ(TM) that is, λ is locally constant on M . Then
we take Y = Z ∈ Γ(D) and X∈ Γ(D) in (2.15) and obtain

(∇Xh)(Y, Y ) + 2(∇Y h)(X, Y ) = 0.

On the other hand, by using (1.1) in (2.5) we derive

(∇Xh)(Y, Y )− (∇Y h)(X,Y ) = 0, ∀X, Y ∈ Γ(D).

Hence we have

(3.1) (∇Xh)(Y, Y ) = 0, ∀X, Y ∈ Γ(D).

Next, we take Y = Z = U ∈ Γ(D), X = J1η for η ∈ Γ(ν⊥) in
(2.13) and differentiate (2.13) with respect to W ∈ Γ(D). Then taking
into account that λ is locally constant and by using (3.1) we obtain

(3.2) g((∇W h)(J1η, Y ), h(Y, Y )) = 0, ∀Y,W ∈ Γ(D), η ∈ Γ(ν⊥).

By using again (1.1) and (2.5) we deduce

(∇W h)(J1η, Y )− (∇J1ηh)(W,Y ) =
c

4
g(J1W,Y )η,

and

(∇W h)(J1η, Y )− (∇Y h)(W,J1η) =
c

2
g(J1W,Y )η.

Adding the last two relations and taking account of (2.15) we get

(∇W h)(J1η, Y ) =
c

4
g(J1W,Y )η,

which together with (3.2) implies

(3.3)
c

4
g(J1W,Y )g(η, h(Y, Y )) = 0, ∀Y, W ∈ Γ(D), η ∈ Γ(ν⊥).
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Finally, we suppose c 6= 0 and D 6= {0}. Then we take Y = J1W in
(3.3) and by linearity obtain:

(3.4) g(h(X, Y ), η) = 0, ∀X, Y ∈ Γ(D), η ∈ Γ(ν⊥).

As a consequence of (2.6) and (3.4) we deduce h(X, Y ) = 0 for any
X, Y ∈ Γ(D), which contradict (2.11). This completes the proof of the
theorem.
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