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On the uniqueness
of rings of coefficients in skew polynomial rings

By YASUYUKI HIRANO (Okayama)

Abstract. Let R be a ring, let a be an automorphism of R, and let 6 be an a-
derivation of R. The ring R is said to be strongly invariant in a skew polynomial ring
R[X; «, §] if for any isomorphism ¥ of R[X; «, d] to any skew polynomial ring S[Y, 3, 9],
there holds W(R) = S. We consider what conditions imply that R is strongly invariant
inT.

1. Introduction

Throughout this paper, all rings are associative with unit. Let «
be an automorphism of a ring R. An «-derivation of R is any additive
map 6 : R — R such that §(ab) = a(a)d(b) + d(a)b for all a,b € R.
The skew polynomial ring R[X;«,d] is a ring of polynomials in X over
R with the usual addition and with multiplication subject to the rule
Xa = a(a)X +9(a) for all a € R (see [2, Definition, p. 10]). A ring T' may
be viewed as a skew polynomial ring over a subring 7" if and only if there
exists an isomorphism ® from a skew polynomial ring R[X, «, d] to T such
that ®(R) = T". In fact, if there exists such an isomorphism @, then o/ =
®BP~! is an automorphism of T/ = ®(R), §’ = P! is an o’-derivation
of T', T is a free left T’-module with the basis 1, ®(X),®(X)?,... and
®(X)a = o/ (a)P(X) + §(a) for all a € T'. Therefore we obtain T' =
T'[®(X);a/,d']. There may possibly be many different ways to represent
T as a skew polynomial ring over a subring. For example, consider the first
Weyl algebra A; (K) over a field K. This is an algebra over K generated by
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x, y with relation zy — yxr = 1. We may write 4;(K) = K|[y| [x; 1, d%} =
Klz] [y;1,—-L]. Hence two different subrings K [y], K [z] can become rings
of coefficients of A;(K). In this paper, we consider what conditions imply
R to be unique as a ring of coefficients of T = R[X; «, 4.

2. Strongly invariant rings

To discuss the uniqueness of rings of coefficients in skew polynomial
rings, we need the following two definitions.

Definition 1. A ring R is strongly invariant in a skew polynomial ring
R[X; «, ] if for any isomorphism ¥ of R[X;«,d] to any skew polynomial
ring S[Y; 3, 0], there holds ¥(R) = S.

Definition 2. A ring R is reduced if R contains no nonzero nilpotent
elements. A reduced ring R with an automorphism « is a-reduced if, for
any r € R, ra(r) = 0 implies r = 0.

We give an example of a reduced ring which is not a-reduced. Let
K be a field, and let R = K @& K. Then R is reduced. Consider the
automorphism « of R given by a(a,b) = (b,a). Then (1,0)a(1,0) =
(1,0)(0,1) = (0,0). Therefore R is not a-reduced.

Now we begin with the following lemma.

Lemma 1. Let R be a ring, let o be an automorphism of R, and let
0 be an a-derivation of R. Suppose that R is a-reduced and let a,b € R.

(1) If ab =0, then a’(a)a?(b) = 0 for any integers i, j.

(2) If ab =0, then §%(a)é?(b) = 0 for any non-negative integers i, j.

(3) Ifab =0, then aX™bX" = 0 in R[X; o, 0] for any nonnegative integers
m, n.

PROOF. (1) Assume ab = 0. Then ba(a)a(ba(a)) = ba(ab)a®(a) = 0.
Since R is a-reduced, we have ba(a) = 0. Since R is reduced, (a(a)b)? = 0
implies a(a)b = 0. Similarly (ba)? = 0 implies ba = 0. Hence, by the same
way as above, we obtain aa(b) = 0. Using these repeatedly, we obtain
a‘(a)a’ (b) = 0 for any non-negative integers i, j. Take a positive integer
n and apply a~" to this equation, we have a'~"(a)a/~"(b) = 0. This
proves the claim.

(2) Since R is reduced, ab = 0 implies ba = 0, and hence ba(a) = 0 by
(1). Since 0 = §(ab) = a(a)d(b) + §(a)b, {a(a)d(b)}?= — §(a)ba(a)d(b)=0,
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so that a(a)d(b) = 0. Hence ad(b) = 0 by (1). Using ba = 0, we similarly
obtain d(a)b = 0. Using these repeatedly, we can prove our claim.

(3) Using the rule Xr = a(r)X + §(r) for each r € R, we can write
aX"™bX"™ = CpinX™" + Cpppn 1 XM 4 oo+ 1 X + ¢g. Then we
see that ¢y = ad™(b), ¢pin_1 = Z;n:_ol aa™ " 15a'(a), and in gen-
eral ¢ is the sum of some terms of the form aa'*§’* 2672 .- ' 67t (b)
with i1 + j1 + -+- + ¢ + j+ = m. However, using (1) and (2), we see
aa’ §irqi2§2 ... it 5t (b) = 0 for each iy,... it j1,- .. , i, and therefore
c, =0for k=0,1,... , m+n.

The following theorem improves [4, Proposition 3.4].

Theorem 2. Let R be a ring, let « be an automorphism of R, and let
6 be an a-derivation of R. If R is a-reduced, then the set of all units in
R[X; a, 0] equals the set of all units in R.

ProoF. Let f(X) = YI",a;X" be a unit in R[X,«,d] and let
9(X) = 220y b;X7 be its inverse. Then we can write 1 = f(X)g(X)
_ ?;)n(zi+j:k aiXiijj) — Cm+nXm+n + Cm+n_1Xm+n—l I
c1 X + cg. We prove that f(X) € R. Suppose, on the contrary, that m > 0
and a,, # 0. We claim that asb; = 0 for s +t > m. We can easily see
that ¢pyn = ama™(b,) = 0. Thus we obtain a,,b, = 0 by Lemma 1(1).
This proves our claim for s +t = m + n. Let p be an integer such that
m+n > p > m, and suppose that as;b; = 0 if s+t > p. We shall prove that

asby = 0 when s +¢ = p. By Lemma 1(3), we have >, ._, a; X; X7 =0
foru=m+n,m+n—1,...,p+ 1. Hence we obtain
(1) cp = Z a;a’(bj) = 0.

i+j=p

Since asby = 0 for s +t > p, a;a®(b) = 0 for s +¢ > p by Lemma 1(1),
and hence a®(b;)as = 0 for s+t > p because R is reduced. Multipling the
equation (1) on the right by a,, we obtain

0= { Z aiai(bj)}ap = apaP (bo)ay.
i+j=p
Since R is reduced, apa?(by) = 0, so that a,by = 0 by Lemma 1(1). Now

the equation (1) becomes

(2) > aiai(b) =0.

i+j=p
Jj=1
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Multipling the equation (2) on the right by a,_1, we have a,_1a?~!(by) x
ap—1 = 0. Hence ap_lap_l(bl) = 0, so that ap,—1b7 = 0. Continuing

this process, we have a;b; = 0 for all 4,57 with ¢ + 7 = p. Thus we
have proved asb; = 0 for s +¢ > m. In particular, we have a,,b, =

ambp—1 = -+ = amby = 0. Thus a,, X"g(X) = 0 by Lemma 1(3),
and hence (37" a; X?)g(X) = 1. Therefore we obtain 37" ' a; X? =
(Cmta XD g(X) f(X) = f(X) = X7 a; X', This implies a,, = 0, a
contradiction. This completes the proof.

As a consequence of Theorem 2, we obtain the following corollary.

Corollary 3. Let R be a ring, let a be an automorphism of R, and
let 0 be an a-derivation of R. Suppose that R is a-reduced and that R
is generated by its units. Then W(R) = R for any automorphism ¥ of
R[X;a,d].

A ring is called an integral domain if the product of nonzero elements

is always nonzero. For example, a division ring is an integral domain.

Corollary 4. If R is an integral domain generated by its units, then
R is strongly invariant in R[X; «,d] for any automorphism « and for any
a-derivation J.

PROOF. Let S be a ring with an automorphism § and with a (-
derivation 9, and assume that ¥ : R[X;«,d] — S[Y,3;0] is an iso-
morphism. Since S also is an integral domain, the set of all units in
S[Y; 8,0] equals the set of all units in S by Theorem 2. Hence, by hy-
pothesis, we have U(R) C S. Clearly U(X) ¢ S, and so we can write
U(X) = s,YF + .- + 51V + 59 with some sq,...,sp(# 0) € S and
some k > 0. We have to prove ¥(R) = S. Suppose, on the contrary,
that W(R) G S and take an element s € S — W(R). Then there is
fX)=rp, X" +r, 1 X" 1+ 4+ X +79 € R[X;,d] with n > 0 and
some 7¢, ..., ,(# 0) € R such that U(f(X)) = s. Then ¥(r,)¥(X)" +
co U (r) U (X) + (U(rg) —s) = 0. Since the coefficient of Y"™* is zero, we
obtain W(r,,)sx B (s) 5% (s1) - - - B~k (sy,) = 0. Since r,, # 0 and s, # 0,
this is a contradiction. Consequently we obtain U(R) = S.

An integral domain R is called a local domain if R/J(R) is a division
ring, where J(R) denotes the Jacobson radical of R. It is easy to see
that a local domain R is generated by its units. Hence, by Corollary 4, R
is strongly invariant in any skew polynomial ring R[X;«a,d]. We give an
example of a commutative local domain with a non-trivial automorphism
« and with a non-trivial a-derivation.
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Ezample. Let K[[x]] denote the ring of formal power series over a field
K, and « the automorphism of K[[z]] defined by a(f(z)) = f(—=z) for all
f(z) € K[[z]]. We define a map § : K[[z]] — K][[z]] by

o0 o0
) E aia:l = — E a2i+1x2’.
=0 i=0

We can easily see that § is an a-derivation of K{[z]]. Since K[[z]] is a local
domain, it is generated by its units. By Corollary 4, K[[z]] is strongly
invariant in K{[z]][Y;a, d].

Recall that R is said to be von Neumann regular if, for each element
a of R, there exists an element x of R such that ¢ = axa. A reduced von
Neumann regular ring is called a strongly regular ring. It is well-known
that a von Neumann regular ring R is strongly regular if and only if every
idempotent of R is central.

Lemma 5. Let R be a ring, let a be an automorphism of R, and let §
be an a-derivation of R. If R is a-reduced, then R[X;«,d] is reduced. In
this case, a(e) = e and d(e) = 0 for any idempotent e € R. Conversely, if R
is a strongly regular ring and if R[X; a, 0] is reduced, then R is a-reduced.

PROOF. Let R be a a-reduced ring. Suppose, on the contrary, that
R[X; a,d] is not reduced. Then there exists a nonzero element feR[X; «v, 0]
such that f2 = 0. Since R is reduced, f € R. Let f = > a; X' with

ao, - ,am(# 0) € R. Since f2 =0, we have a,,a™(a,,) = 0. By Lemma
1(1) we obtain a2, = 0, and hence a,, = 0, a contradiction. Therefore

R[X;«,d] is reduced. Note that every idempotent in a reduced ring is
central (see [5, Lemma 1.12.2, p. 40]). Let e be any idempotent in R.
Then e is central in R[X; «,d], and hence eX = Xe = a(e)X + d(e). This
implies a(e) = e and d(e) = 0. Next assume that R is a strongly regular
ring. If R is not a-reduced, then there exists a nonzero element r € R
such that ra(r) = 0. Since R is strongly regular, there exists an element
2 € R such that 722 = r and ra@ = xr. If we set e = rz, then e is a nonzero
central idempotent of R and ea(e) = zra(r)a(x) = 0. Let f = eXe—eX.
Then f2 =0, but f = e(a(e)X +d(e))e—eX = ed(e) —eX # 0. Therefore
R[X; a, 0] is not reduced.

The following theorem generalizes [1, Theorem 3] and also improves
[4, Theorem 4.5].
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Theorem 6. Let R be a strongly regular ring, let o be an automor-
phism of R, and let § be an a-derivation of R. Then the following state-
ments are equivalent:

(1) R is strongly invariant in R[X;«,d].
(2) ¥(R) = R for any automorphism ¥ of R[X;a,0].
(3) R is a-reduced.

PROOF. (1) = (2) is trivial.

(2) = (3). Suppose that R is not a-reduced. Then, by the same way
as in the proof of Lemma 5, we can find a nonzero central idempotent e
of R such that eax(e) = 0 and f = eXe —eX = ed(e) —eX # 0. Let ¥
denote the automorphism of R[X;«,d] defined by ¥(a) = (1 + f)a(l — f)
for all a € R[X;a,d]. Then ¥(e) = (14 fle(l — f) =e—ed(e) +eX € R,
and hence U(R) Z R.

(3) = (1). Since R is a-reduced, R[X;a,d] is reduced by Lemma
5. Let S be a ring with an automorphism ( and a (-derivation 0 and
assume that ¥ : R[X;a, d] — S[Y; 5, 0] is an isomorphism. Since S[Y; 3, 0]
is reduced, [3, Theorem 3.15] implies that the set of all idempotents in
S[Y;3,0] is contained in S. Let P be any prime ideal of R. Since R is
strongly regular, for each a € P, Ra is generated by a central idempotent
(cf. [5, Proposition 1.12.3, p. 40]). Since P = ) __p Ra, there exists a set
{ei | i € I} of central idempotents such that P = ). ; Re;. By Lemma 5,
a(e;) = e; and d(e;) = 0 for each ¢ € I. Hence P is stable under « and §.
Similarly » ;. ; SW¥(e;) is stable under 3 and 9. Since V(P(R[X;a,{])) =
V(D iereiR[X;a,0]) = > .0 ¥(e;)S[Y, 3,0], ¥ induces an isomorphism
U (R/P)[X;a,0] — (S/ 2,1 S¥(e))Y; B,0], where @, 0, 3 and 0 are
the maps induced by «, §, 8 and O respectively. Since R is strongly
regular, R/P is a division ring. By Corollary 4 we obtain ¥(R/P) =
S/ icr SV(es), thatis, S = W(R)+>,.; S¥(e;). Hence we have ¥(R) C
S. We need to prove ¥(R) = S. Suppose, on the contrary, that ¥(R) & S.
Then ¥~'(S) & R. Hence there is an element f(X) = an X" +a,_1 X" '+
cta1 X +ag € $T(S) with n > 0 and some ag, . .. ,a,(# 0) € R. Recall
that the prime radical N(R) of R is the intersection of all prime ideals of
R. Since N(R) is a nil ideal by [5, Proposition XV.1.2, p. 283] and since
R is reduced, N(R) = 0, that is, the intersection of all prime ideals of
R is zero. Since a, # 0, there exists a prime ideal () of R such that
a, ¢ Q. By a similar way as above, we can easily see that ¥ induces an
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isomorphism ¥ : (R/Q)[X; @&, 0] — (S/¥(P)S)[Y;3,d], where &, 6, § and
d are the maps induced by «, 8, 3 and 8, respectively. Since R is strongly
regular, R/Q is a division ring, so that ¥(R/Q) = S/¥(Q)S by Corollary
4. Therefore we have S = U(R) + ¥(Q)S. Hence ¥(f(X)) € S = ¥(R) +
U(Q)S C Y(R+ Q(R[X;a,d])). This implies f(X) € R+ Q(R[X;«,d)]),
and hence a,, € Q, a contradiction. Consequently we obtain ¥(R) = S.
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