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Purely cubic function fields with short periods

By R. SCHEIDLER (Newark)

Abstract. A “function field version” of Voronoi’s algorithm can be used to com-
pute the fundamental unit of a purely cubic complex congruence function field of char-
acteristic at least 5. This is accomplished by generating a sequence of minima in the
maximal order of the field. The number of mimima computed is the period of the field.
Generally, the period is very large – it is proportional to the regulator and exponential
in the genus of the field – but there are classes of fields with very short periods. For sev-
eral infinite families of such fields, we explicitly compute the Voronoi continued fraction
expansions and the fundamental units. We also investigate the case of period length 1
where the minima in the maximal order are exactly the units of the field. Finally, we
explore the connection between regulator and period and other cases of small periods
and regulators.

1. Introduction

Voronoi’s algorithm [7], [1, pp. 273–304] computes the fundamental
unit of a complex cubic number field by generating the “Voronoi continued
fraction expansion” of the unit. An explicit implementation in purely cubic
fields was given by Williams et al. [9], and Williams’ version was adapted
to purely cubic congruence function fields of characteristic at least 5 and
unit rank 1 in [4, 5]. In short, the method produces a chain (θn)n∈N of
successive minima in the maximal order of the field by starting with θ1 = 1
and computing adjacent minima θn of increasing absolute value such that
θn+1 = µnθn and µn is the minimum adjacent to 1 in the reduced fractional
principal ideal an = (θ−1

n ) (n ∈ N). If l ∈ N is the first index such that θl+1
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has constant norm, then θl+1 is the fundamental unit of positive degree of
the field, and l is the period of the fundamental unit (or of the field).

Usually, l is exponentially large in the genus of the field, but in fields
with very small fundamental units, the period is as small as linear in the
genus of the field. In [3], the fundamental units for a number of infinite
classes of such fields were explicitly given. In all these fields, the generating
polynomial of the field is of the form D = (M3−F )/E3 where E, F , M are
polynomials such that E3 divides M3−F and F divides M2. In this paper,
we determine the periods of several infinite subfamilies of these fields. We
should point out that similar investigations were previously performed for
purely cubic number fields with short periods in [8]. We also analyze the
situation of small periods and regulators; in particular, the case where
the period is 1. This setting is of particular interest because here, the
fundamental unit is the minimum adjacent to 1 in the maximal order of
the field, and moreover, the minima θn (n ∈ N) in the Voronoi chain are
exactly the units in the field.

A general introduction to function fields can be found in [6]; the purely
cubic case is discussed in considerable detail in [2] and [4, 5]. Let k = Fq be
a finite field of order q whose characteristic is not 3. If t is a transcendental
element over k, denote by k[t] and k(t) the ring of polynomials and the field
of rational functions, respectively, over k in the variable t. Let D ∈ k[t] be
a nonconstant cubefree polynomial and let ρ be a fixed cube root of D in
some algebraic closure of k(t). Then the other cube roots of D are uρ and
u2ρ where u is a primitive cube root of unity which lies in an algebraic
extension of k of degree at most 2. The cubic extension K = k(t, ρ) of k(t)
is a purely cubic (congruence) function field over the field of constants k.
The maximal order of K is the integral closure O = k[t] of k[t] in K. O is
both a ring and a k[t]-module of rank 3; a t-integral basis of K is a k[t]-basis
of O (which consequently is also a k(t)-basis of K). If D = GH2 where
G,H ∈ k[t] are both squarefree and relatively prime, then an integral basis
of K is given by {1, ρ, ω} where ρ is as before and ω = ρ2/H. We have
ρ3 = D and ω3 = D where D = G2H. ω is also a generator of K over k(t),
and in the corresponding integral basis, one simply has to reverse the roles
of ρ and ω. We point out that in contrast to the number field case, it is a
simple matter to determine H from D; namely H = gcd(D,D′) where D′

is the formal derivative of D with respect to t. The bases {1, ρ, ρ2} and
{1, ω, ω2} generate submodules Oρ and Oω of O, respectively. Oρ = O if
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and only if D = G is squarefree and Oω = O if and only if D = H2 is a
square.

The conjugates of an element α = A + Bρ + Cω ∈ K (A,B, C ∈ k(t))
are α′ = A + Buρ + Cu2ω and α′′ = A + Bu2ρ + Cuω. The norm and
trace of α (over k(t)) are the respective quantities

N(α) = αα′α′′ = A3 + B3GH2 + C3G2H − 3ABCGH,

Tr(α) = α + α′ + α′′ = 3A.

We have N(α), Tr(α) ∈ k(t), and if α ∈ O, then N(α), Tr(α) ∈ k[t].
The group O∗ of (t-)units of O is an Abelian group whose torsion

part is the group of nozero constants k∗. Its rank is the (t-)unit rank of K

and a set of generators of the torsion-free part is a system of fundamental
(t-)units of K. If α ∈ O, then N(α) ∈ k∗ if and only if α is a unit in
O. Depending on the form of q and D, the unit rank can be 0, 1, or 2
(see [4] for details); this is in contrast to purely cubic number fields, which
are complex cubic fields and thus always have unit rank 1. In [4], it was
shown that a purely cubic function field is complex , i.e. has unit rank 1,
if and only if q ≡ 2 (mod 3), the degree deg(D) of D is a multiple of 3,
and the leading coefficient sgn(D) of D is a cube in k∗. Then k does not
contain any primitive cube roots of unity, so if α ∈ K, then α′, α′′ /∈ K,
but α′α′′ = N(α)α−1 ∈ K. Under these conditions, K can embedded in
the field k((1/t)) of Puiseux series over k. Nonzero elements in k((1/t))
are of the form α =

∑∞
i=m ai/ti ∈ k((1/t)) (m ∈ Z, ai ∈ k for i ≥ m,

am 6= 0). Denote by

deg(α) = −m the degree of α,

|α| = qdeg(α) = q−m the (absolute) value of α,

sgn(α) = am the sign of α,

bαc =
0∑

i=m

ai

ti
the principal part of α.

We also set deg(0) = −∞, |0| = 0, and b0c = 0. Note that bαc ∈ k[t]
and |α − bαc| < 1 for any α ∈ k((1/t)). If α ∈ K, then we let deg(α′) =
deg(α′′) = deg(α′α′′)/2 and |α′| = |α′′| =

√
|α′α′′| = qdeg(α′).
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Henceforth, we assume K to be a purely cubic complex function field.
Then we have one fundamental unit ε of positive degree that is unique
up to factors in k∗. The (t-)regulator of K is the positive integer R =
deg(ε)/2 = −deg(ε′). The genus of K is g = deg(GH)− 2.

To make this paper somewhat self-contained, we briefly review Voro-
noi’s algorithm as described in [4] in the next section. The case of period
length 1 is analyzed in Section 3 and connections between the regulator and
the period as well as instances of small periods are explored in Section 4.

2. Voronoi’s Algorithm

Recall that a subset a of O is an integral (O-)ideal if for any α, β ∈ a

and θ ∈ O, α+β ∈ a and θα ∈ a. A subset a of K is a fractional (O-)ideal
if there exists a nonzero polynomial d ∈ k[t] such that da is an integral
ideal of O. Henceforth, we assume all ideals to be nonzero, so the term
“ideal” will be synonymous with “nonzero ideal”. Every fractional ideal a

of O is a k[t]-module of rank 3; if {λ, µ, ν} is a k[t]-basis of a (λ, µ, ν ∈ K),
write a = [λ, µ, ν]. A fractional ideal a is principal if a is of the form
a = {θα | θ ∈ O} for some α ∈ K; write a = (α).

If a is a fractional ideal and α ∈ a, α 6= 0, then α is a minimum in a

if for nonzero β ∈ a, |β| ≤ |α| and |β′| ≤ |α′| imply β ∈ k∗α, i.e. β and
α differ only by a nonzero constant factor. a is reduced if 1 ∈ a and 1 is
a minimum in a. O is reduced, and in fact every unit in O is a minimum
in O. Let a be a fractional ideal and let θ ∈ a be a minimum in a. An
element φ ∈ a is a minimum adjacent to θ in a if φ is a minimum in a,
|θ| < |φ|, and for no α ∈ a, |θ| < |α| < |φ| and |α′| < |θ′|. φ always exists
and is unique up to a trivial unit factor, so we will henceforth speak of
the minimum adjacent to an element in a fractional ideal, keeping in mind
that it is only unique up to a trivial unit factor. If a is a fractional ideal
and θ = θ1 is a minimum in a, then a sequence (θn)n∈N of elements in
a where θn+1 is the minimum adjacent to θn in a (n ∈ N) is a chain of
successive minima in a.

The basic idea for Voronoi’s algorithm is as follows. Start with the
reduced ideal a1 = O and the minimum θ1 = 1 in a1. Define a sequence
of reduced fractional ideals an and minima θn ∈ O (n ∈ N) as follows.
Let µn be the minimum adjacent to 1 in an and set θn+1 = µnθn, an+1 =
µ−1

n an = (θ−1
n+1). Then it can be shown that θn+1 is the minimum adjacent
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to θn in O and an+1 is a reduced fractional ideal. Thus, we have a chain
of successive minima in O given by

(2.1) (θn)n∈N where θ1 = 1, θn =
n−1∏

i=1

µi for n ≥ 2.

This chain can be shown to contain in fact all the minima in O of nonneg-
ative degree, so in particular, the fundamental unit ε of K must appear
in the chain. Specifically, if l ∈ N is the first index such that N(θl+1) is
constant, then θl+1 is equal to ε up to a constant factor. l is the period of
ε (or of K). Since aml+i = ai and µml+i = µi for all m, i ∈ N, the sequence
(2.1) is equal to

1, θ2, . . . , θl, ε, εθ2, . . . , εθl, ε
2, ε2θ2, . . . , ε3, . . .

and contains all nonpositive powers of ε. We note that l = 1 if and only
if (2.1) consists exactly of all the nonpositive powers of ε; that is, every
minimum in O is a unit in O and vice versa.

The chain (2.1) is computed as follows. Each ideal an = (θ−1
n ) will

be given in terms of a reduced k[t]-basis {1, µn, νn} that satisfies certain
bounds and includes the minimum µn adjacent to 1 in an. The basis
elements µn and νn are of the form µn = (M0n + M1nρ + M2nω)/Un,
νn = (N0n + N1nρ + N2nω)/Un where M0i, N0i, Un ∈ k[t] for i = 0, 1, 2.
Then θn+1 = µnθn and an+1 = µ−1

n an = [1, 1/µn, νn/µn]. We now replace
this basis of an+1 by a new reduced k[t]-basis {1, µn+1, νn+1} where µn+1

is the minimum adjacent to 1 in an+1. This is accomplished by applying a
sequence of suitable unimodular transformations to the pair (1/µn, νn/µn)
of basis elements of an+1, until we obtain the reduced basis. Details on
how to compute such a basis will be given below. We then go on to
compute θn+2. The process terminates once a basis denominator Un+1

that is constant is encountered, in which case an+1 = O and θn+1 = ε

(up to a constant factor), i.e. n = l. The following algorithm computes
the fundamental unit ε of K. In each iteration, the current value of θn is
(E0 + E1ρ + E2ω)/V .

Algorithm 2.1 (Fundamental Unit Algorithm).
Input: The polynomials G, H where D = GH2.

Output: E0, E1, E2 ∈ k[t] where ε = E0 + E1ρ + E2ω is the fundamental

unit of K.
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Algorithm:

1. Set E0 = V = M1 = N2 = U = 1, E1 = E2 = M0 = M2 = N0 =
N1 = 0. (So θ1 = 1, µ = ρ, ν = ω.)

2. Repeat

(a) {Reduce the basis}
Use Algorithm 2.2 below to replace M0, M1, M2, N0, N1, N2, U

by the coefficients of a reduced basis;

(b) {Update θn}
i. Replace




E0

E1

E2

V


 by




E0M0 + (E1M2 + E2M1)GH

E0M1 + E1M0 + E2M2G

E0M2 + E1M1H + E2M0

UV




ii. Compute S = gcd(E0, E1, E2, V ). For i = 0, 1, 2, replace Ei

by Ei/S and V by V/S;

(c) {Update µ and ν}
i. Set

A0 = M2
0 −M1M2GH,

A1 = M2
2 G−M0M1,

A2 = M2
1 H −M0M2,

B = M3
0 + M3

1 GH2 + M3
2 G2H − 3M0M1M2GH = N(µ);

ii. Replace 


M0

M1

M2


 by




A0U

A1U

A2U


 ;

iii. Replace




N0

N1

N2


 by




A0N0 + (A1N2 + A2N1)GH

A0N1 + A1N0 + A2N2G

A0N2 + A1N1H + A2N0


 ;

iv. Replace U by B;
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v. Compute S = gcd(M0, M1,M2, N0, N1, N2, U). For

i = 0, 1, 2, replace Mi by Mi/S, Ni by Ni/S and U by U/S;

until U ∈ k∗.

We now tackle the problem of computing a reduced basis and, in
particular, the minimum µn+1 adjacent to 1 in the reduced fractional ideal
an+1 (n ∈ N0). Henceforth, we need to exclude the characteristic 2 case,
that is, we require k to be a finite field of characteristic at least 5. Let
α = A + Bρ + Cω ∈ K with A,B, C ∈ k(t). We define the quantities

(2.2)

ξα = Bρ + Cω,

ηα = Bρ− Cω,

ζα = 2A−Bρ− Cω.

We call a basis {1, µ, ν} of a reduced fractional ideal reduced if

(2.3) |ζµ| < 1, |ζν | < 1, |ξµ| > |ξν |, |ηµ| < 1 ≤ |ην |.

If {1, µ, ν} is a reduced basis of a, then it can be shown that µ is the
minimum adjacent to 1 in a. The following algorithm produces on input
of any basis of a reduced fractional ideal a reduced basis of that same ideal.

Algorithm 2.2 (Reduction Algorithm).

Input: A basis {1, µ̃, ν̃} of a reduced fractional ideal a.

Output: A reduced basis {1, µ, ν} of a.

Algorithm:

1. Set µ = µ̃, ν = ν̃.

2. If |ξµ| < |ξν | or if |ξµ| = |ξν | and |ηµ| < |ην |, replace

(
µ

ν

)
by

(
0 1
−1 0

)(
µ

ν

)
;

3. If |ηµ| ≥ |ην |
(a) while bξµ/ξνc = bηµ/ηνc, replace

(
µ

ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ

ν

)
;
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(b) Replace (
µ

ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ

ν

)
;

c) If |ηµ| = |ην |, replace

(
µ

ν

)
by

(
1 −a

0 1

) (
µ

ν

)

where a = sgn(ηµ) sgn(ην)−1 ∈ k∗;

4. (a) While |ην | < 1, replace

(
µ

ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ

ν

)
;

(b) While |ηµ| ≥ 1, replace

(
µ

ν

)
by

( bην/ηµc −1
1 0

)(
µ

ν

)
;

5. If |ζµ| ≥ 1, replace µ by µ− (1/2)bζµc;
If |ζν | ≥ 1, replace ν by ν − (1/2)bζνc.

3. The case of minimal period

Of particular interest is the situation where the period l = 1, in which
case ε is the minimum adjacent to 1 in O and can be computed using one
iteration of Algorithm 2.2.

Lemma 3.1. If α is an element in some reduced fractional ideal, then

|N(α)| > |GH|−2.

Proof. See Corollary 4.7 of [4]. ¤

Lemma 3.2. Let a be a reduced fractional ideal of O and let α ∈ a.

Then there exists a minimum θ ∈ a such that |θ| ≤ |α| and |θ′| ≤ |α′|.
Proof. The claim is clear if α is itself a minimum, so suppose α is

not a minimum in a. Then the set H(α) = {β ∈ a | |β| ≤ |α|, |β′| ≤
|α′|, β /∈ k∗α} is not empty. Let β ∈ H(α), then by Lemma 3.1 deg(β) =
deg(N(β))− 2 deg(β′) > −2(deg(GH) + deg(α′)). Thus, the set {deg(β) |
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β ∈ H(α)} is a nonempty subset of the integers that is bounded below. By
the Well-Ordering Principle, this set has a smallest element. Let θ ∈ H(α)
be of minimal degree, that is, |θ| ≤ |α|, |θ′| ≤ |α′|, θ /∈ k∗α, and for any
β ∈ H(α), |β| ≥ |θ|.

We claim that θ is a minimum in a. To see this, let β ∈ a, β 6= 0,
with |β| ≤ |θ| and |β′| ≤ |θ′|. Then |β| ≤ |α| and |β′| ≤ |α′|. If β ∈ k∗α,
then |β| = |α| ≥ |θ|. If β /∈ k∗α, then β ∈ H(α), so |β| ≥ |θ|. Either way,
|β| = |θ|.

Let γ = β − sgn(β) sgn(θ)−1θ, then |γ| < |θ| ≤ |α|, so γ /∈ k∗α. Also
|γ′| ≤ max{|β′|, |θ′|} ≤ |α′|. Since |γ| < |θ|, γ cannot lie in H(α). The
only way this is possible is if γ = 0, so β ∈ k∗θ. ¤

For the remainder of this section, we again assume that char(k) ≥ 5.

Theorem 3.3. If l = 1 and |G| > |H|, then D = M3 − a for some

M ∈ k[t] and a ∈ k∗.

Proof. Suppose |G| > |H|. Then |ρ3| = |GH2| < |G2H| = |ω|3,
so |ρ| < |ω|. Let α = bρc − ρ ∈ O, then |α| < 1 and since α′α′′ =
bρc2 + bρcρ + ρ2, |α′| = |ρ|. Also N(α) = bρc3 − D. If α is a minimum
in O, then α is a unit in O since l = 1. In this case, D = M3 − a with
M = bρc ∈ k[t] and a = N(α) ∈ k∗. Suppose now that α is not a minimum
in O. By Lemma 3.2, there exists a minimum θ ∈ O with |θ| ≤ |α| and
|θ′| ≤ |α′|. Then θ is also a unit in O.

Let θ = A + Bρ + Cω with A,B, C ∈ k[t]. Then A 6= 0, as otherwise
GH would divide the constant N(θ). Since |θ| ≤ |α| < 1, we must have
|θ′| > 1 because 1 is a minimum in O. Hence

|A| = |θ + θ′ + θ′′| ≤ |θ′| ≤ |α′| = |ρ|,
|Bρ + Cω| = |α−A| = |A| ≤ |ρ|,
|Bρ− Cω| = |θ′ − θ′′| ≤ |θ′| ≤ |ρ|.

Thus |Bρ|, |Cω| ≤ |ρ|. This implies |B| ≤ 1, so B ∈ k. Also |Cρ| < |Cω| ≤
|ρ| implies |C| < 1, so C = 0, and since |θ| < 1, B 6= 0, so B ∈ k∗. Since
N(θ) = A3 + B3D, we have D = M3 − a with M = −B−1A ∈ k[t] and
a = −B−3N(θ) ∈ k∗. ¤
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Lemma 3.4. If D = M3 − a with M ∈ k[t] and a ∈ k∗, then |G| >
|M | > |H|.

Proof. Suppose |G| ≤ |H|, then |M |3 = |GH2| ≤ |H|3, so |M | ≤
|H|. Taking the derivative of the equality GH2 = M3 − a shows that H
divides M2M ′. Since gcd(H, M) = 1, this implies that H divides M ′,
so |M | ≤ |H| ≤ |M ′| < |M |, a contradiction. Hence |G| > |H| and
|M |3 = |GH2| > |H|3, implying |M | > |H| and |G| = |M |3/|H|2 > |M |.

¤
Lemma 3.5. If D = M3 − a with M ∈ k[t] and a ∈ k∗, then the

fundamental unit of K is ε = M2 + Mρ + ρ2.

Proof. It is easier to prove that δ = M − ρ = (a(M2 + Mρ + ρ2))−1

is the fundamental unit of negative degree of K. To that extent, let δ = ηs

where η = A + Bρ + Cω ∈ O is the fundamental unit of K of negative
degree and s ∈ N. Then

|η′| = |δ′|1/s = |δ′δ′′|1/2s = |δ|−1/2s = |M2 + Mρ + ρ2|1/2s = |M |1/s.

Now a simple calculation shows

B =
1
3ρ

(η + u2η′ + uη′′),

C =
1
3ω

(η + uη′ + u2η′′),

where we recall that u is a primitive cube root of unity in some algbraic
closure of k. Since |ρ| = |M | and |ρ2| = |Hω| ≥ |ω|, we have

|B| ≤ |η′|
|ρ| ≤

|M | 1s
|ρ| = |M | 1s−1,

|C| ≤ |η′|
|ω| ≤

|M | 1s
|ρ|2 = |M | 1s− 1

2 .

If B 6= 0, then 1/s− 1 ≥ 0, implying s = 1 and η = δ = M − ρ. Suppose
B = 0, then C 6= 0 as otherwise η = A and |η| < 1 together imply a
contradiction. In this case, 1/s− 1/2 ≥ 0, so s ≤ 2. Suppose s = 2, then
comparing coefficents of ω in (A + Cω)2 = M − ρ yields 2AC = 0. Since
char(k) 6= 2, we must have A = 0, implying the contradiction 1 > |η| =
|Cω|. ¤
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Theorem 3.6. If D = M3 − a with M ∈ k[t] and a ∈ k∗, then l = 1.

Proof. If D = M3 − a, then gcd(M,H) = 1, so there exist poly-
nomials X, Y ∈ k[t] with |Y | < |H| and HX − MY = 1. Set µ =
M2 + Mρ + Hω = M2 + Mρ + ρ2, ν = bXρ + Y ωc/2 + Xρ + Y ω. Then
µ, ν ∈ O and {1, µ, ν} is a basis of O. Since µ is the fundamental unit
of K by Lemma 3.5, we see that l = 1 if µ is the minimum adjacent to 1
in O, so it suffices to show that µ and ν satisfy conditions (2.3). Using
Lemma 3.4, we obtain

|ζµ| = |2M −Mρ− ρ2| = |(2M + ρ)(M − ρ)|

=
|2M + ρ|

|M2 + Mρ + ρ2| =
1
|M | < 1,

|ζν | = |bXρ + Y ωc − (Xρ + Y ω)| < 1,

|ξµ| = |Mρ + ρ2| = |M |2,

|ξν | = |Xρ + Y ω| = |ρ|
|H| |HX + Y ρ| = |M |

|H| |MY + 1 + Y ρ|

=
|M |
|H| |MY | < |M |2 = |ξµ|,

|ηµ| = |Mρ− ρ2| = |ρ||M − ρ| = 1
|M | < 1,

|ην | = |Xρ− Y ω| = |ρ|
|H| |HX − Y ρ|

=
|M |
|H| |Y (M − ρ) + 1| > |Y (M − ρ) + 1| = 1,

where the last equality follows from |Y (M − ρ)| = |Y |/|M2 + Mρ + ρ2| <
|H|/|ρ|2 = |ω|−1 < 1. So µ and ν satisfy (2.3) and hence l = 1. ¤

Lemma 3.4 and the previous two theorems establish the following:

Corollary 3.7.

l = 1 and |G| > |H| if and only if D = M3 − a for some M ∈ k[t] and

a ∈ k∗.
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l = 1 and |G| < |H| if and only if D = M3 − a for some M ∈ k[t] and

a ∈ k∗.

In the case where l = 1 and |G| = |H|, there is no simple description
of D analogous to that given in the above corollary. We will see below that
if both G and H are linear, then l = 1 always. On the other hand, there
are instances where G and H are of the same degree and not linear, and
l = 1 for any field of constants k. G = t2 + 1 and H = t2 − 1 yields one
such example. We also point out that the possibility |G| = |H| can never
occur in a purely cubic number field K = Q( 3

√
D) as in this case D = ±G3

would be a cube in Z.

4. Small periods and regulators

In general, the regulator R of a purely cubic complex function field of
characteristic 6= 3 can be very large; up to exponentially large in the genus
g = deg(GH)− 2 of K.

Proposition. R ≤ (
√

q + 1)2g, so

R ≤ qg + O(qg−1/2) =
|GH|
q2

+ O

( |GH|
q5/2

)
.

Proof. We have R ≤ L(1) where L(u) =
∏2g

i=1(1 − λiu) is the L-
polynomial of K. Here, the λi are algebraic numbers such that |λi| = √

q

for 1 ≤ i ≤ 2g by the Hasse–Weil Theorem (see [6, Theorem V.1.15, p. 166,
and Theorem V.2.1, p. 169]).

Henceforth, we assume once again that char(k) ≥ 5. Then the period
l and the regulator R of K are closely related and are in fact proportional,
so large regulators will result in large period lengths and vice versa.

Proposition 4.2.
2R

deg(GH)
≤ l ≤ 2R.

Proof. We have 2R = deg(ε) = deg(θl+1) =
∑l

i=1 deg(µi). Since
each µi is the minimum adjacent to 1 in some reduced fractional ideal, we
have |µi| > 1 for all i ∈ N. On the other hand |µi| ≤ |GH| for all i ∈ N by
Theorem 7.6 of [4]. It follows that l ≤ deg(θl+1) ≤ l deg(GH), so l ≤ 2R

and l ≥ 2R/deg(GH). ¤
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We should point out that in almost all the computations performed
in [4], the values of l and R were very close together and often differed
only by 1. We anayze the relationship between regulator and period more
closely when these values are very small.

Proposition 4.3. If l = 1, then R ≤ 1
3 max{deg(D), deg(D)}. If

deg(D) 6= deg(D), or equivalently, |G| 6= |H|, then equality holds.

Proof. Suppose l = 1. If |G| > |H|, then by Corollary 3.7 D =
M3− a with a ∈ k∗ and M ∈ k[t]. By Lemma 3.5, ε = M2 + Mρ + ρ2 and
R = deg(M) = deg(D)/3 > deg(D)/3. If |G| < |H|, then by Corollary 3.7
D = M3 − a with a ∈ k∗ and M ∈ k[t]. Here, we can apply Lemma 3.5
with the roles of ρ and ω exchanged, so we obtain ε = M2 + Mω + ω2

and R = deg(M) = deg(D)/3 > deg(D)/3. Finally, if |G| = |H|, then by
Proposition 4.2 R ≤ deg(GH)/2 = deg(G) = deg(D)/3 = deg(D)/3. ¤

Proposition 4.4. R = 1 if and only if l = 1 and deg(D) = 3 or

deg(D) = 3.

Proof. By [3], R = 1 if and only if D = M3 − a or D = (M3 − a)2

or D = GH2 with a ∈ k∗, M ∈ k[t], and deg(M) = deg(G) = deg(H) = 1.
If D = M3−a with deg(M) = 1, then deg(D) = 3, and D is squarefree

as any square polynomial divisor of D would have to divide both M3−a and
M2. Hence by Corollary 3.7 l = 1. If D = (M3−a)2, then D is a square, so
G = 1, H = M3 − a = D, deg(D) = 3, and l = 1 by Corollary 3.7. If D =
GH2 with linear G and H, then deg(D) = 3, and one iteration of Voronoi’s
Algorithm shows that l = 1 and ε = (b2 + GH) + (G − b)ρ + (H + b)ω
where b = (G−H)/3 ∈ k∗.

Conversely, suppose l = 1 and deg(D)=3 or deg(D) = 3. If deg(D)=3,
then either deg(G) = deg(H) = 1 or deg(G) = 3 and deg(H) = 0. In the
former case, R = 1 by the remark at the beginning of the proof. In the
latter case, D = M3− a with a ∈ k∗ and M ∈ k[t] by Corollary 3.7. Then
M must be linear, so R = 1, again by the remark at the beginning of the
proof. If deg(D) = 3, then either deg(G) = deg(H) = 1 or deg(G) = 0
and deg(H) = 3. In the former case, once again R = 1. In the latter case,
D = M3 − a with a ∈ k∗ and M ∈ k[t] by Corollary 3.7. Again, M is
linear. Then D = (M3 − a)2, so by the above remark, R = 1. ¤
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We conclude this paper with some more instances of small periods.
This investigation was inspired by [8], where several classes of purely cubic
number fields with small periods were analyzed; namely fields of the type
K = Q( 3

√
D) where D ∈ Z is squarefree and is of the form D = m3 + a or

D = m3 +am with m ∈ Z and a = ±1 or ±3. As in the number field case,
the task of finding the period length of a purely cubic complex function field
K = k(t, 3

√
D) where D is not squarefree is much more difficult than the

corresponding problem for squarefree radicands. We were able to establish
the periods of two infinite families of fields with squarefree D analogous to
those analyzed by Williams [8]. Our results were obtained by applying
Voronoi’s algorithm to these fields.

Proposition 4.5. Let D = M3 − aM where M ∈ k[t], a ∈ k∗, and D

is squarefree. Then l = 2. The fundamental unit of K is

ε = (9M4 − 9M2 + 1) + 3M(3M2 − 2)ρ + 3(3M2 − 1)ρ2

and the regulator of K is R = 2 deg(M). The reduced bases computed in

each step of Algorithm 2.1 are given as follows:

µ1 = M(3M2 − 2a) + (3M2 − a)ρ + 3Mρ2,

ν1 =
(
M2 − a

2

)
+ Mρ + ρ2,

µ2 =
M2 + Mρ + ρ2

M
,

ν2 =
Mρ− ρ2

M
.

Proposition 4.6. Let D = M3−F where M, F ∈ k[t], 1 < |F | < |M |,
F divides M , and D is squarefree. Then l = 3. The fundamental unit of

K is

ε =

(
9

(
M3

F

)2

− 9
M3

F
+ 1

)
+3

M2

F

(
3
M3

F
− 2

)
ρ+3

M

F

(
3
M3

F
− 1

)
ρ2
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and the regulator of K is R = deg(M3/F ) = deg(D) − deg(F ). The

reduced bases computed in each step of Algorithm 2.1 are given as follows:

µ1 = M2 + Mρ + ρ2, ν1 = M/2 + ρ,

µ2 =
M2 + Mρ + ρ2

F
, ν2 =

M/2 + ρ

F
,

µ3 =
M2 + Mρ + ρ2

F
= µ2, ν3 =

M/2 + ρ

F
= ν2.
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