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On pairwise Baire bitopological spaces

By C. ALEGRE (Valencia), J. FERRER (Burjassot)
and V. GREGORI (Grao de Gandia)

Abstract. We introduce and investigate a notion of pairwise Baire bitopological
space. We obtain the following characterization which is a generalization of the cor-
responding one in General Topology: (X, P, L) is pairwise Baire iff the intersection of
every sequence of P -open (L-open) L-dense (P -dense) sets is P -dense (L-dense), and
we find a variant of Baire’s category theorem for a class of pairwise locally compact
spaces. We use this bitopological concept to characterize a class of real normed lattices
with the property that each sequence of open dense sets which are decreasing has a
dense intersection.

1. Introduction

A bitopological space (X, P, L) is a set X with two topologies P and
L on X. If G is an open set of P we say G is P -open; the same for
close, dense, . . . J. C. Kelly [8] initiated the systematic study of such
spaces and several others authors have contributed to the development of
the theory. In the mentioned paper, Kelly considered the study of the
Baire concept in non symmetric structures and he proved that if (X, d) is
a right K-sequentially complete quasi-pseudometric space then the conju-
gate (X, d−1) is a Baire space. Moreover, this type of completeness, which
has been recently studied in [13] and in [14], constitutes an appropriate tool
to solve the problem of completeness of function spaces and hyperspaces
in the setting of quasi-uniformities [10], [11], [12].
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But the study of the Baire property in a purely bitopological context
was begun by T. Fukutake in [6] who defined the pairwise Baire concept
for a bitopological space and in his Proposition 3.2 he gives the following
characterization:

(X,P, L) is pairwise Baire if and only if the intersection of every se-
quence of P -open (respect. L-open) L-dense (respect. P -dense) sets is P -
dense (respect. L-dense).

Then, such a concept in a pairwise Baire space (X, P,L) has a respec-
tive condition about the P -open L-dense (respect. L-open P -dense) sets:
they have to be P -dense (respect. L-dense).

To overcome this inconvenient we will give another definition of pair-
wise Baire, closely to the given one by Fukutake, and then we will start
a systematic study of a such spaces. First, it is a appropiate to recall
that pairwise spaces like pairwise paracompactness [9] seem intractable.
In Section 2 we will modify the definition of a P -L-Baire set in order to
obtain in Section 3, with other results, the derived characterization:

(X,P, L) is pairwise Baire if and only if the intersection of every se-
quence of P -open (respect. L-open) L-dense (respect. P -dense) sets is L-
dense (P -dense).

In Section 4 we will find a class of bitopological spaces for which
a Baire category theorem is satisfied in the context of pairwise locally
compact spaces [2]. In Section 5 we will be able to characterize a certain
class of real normed lattices by mean of our pairwise Baire concept and so
this bitopological concept is shown to be useful to describe a property of
General Topology.

From now, P - cl(A) and P - int(A) will denote the P -closure and the
P -interior of the subset A of X, respectively.

2. P -L-nowhere dense

The following definitions for a bitopological space (X, P, L) were given
in [6].

Definition 2.1. A subset A of X is said to be P -L-nowhere dense in X

if L- int(P - cl(A)) = ∅.
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Definition 2.2. A subset A of X is said to be of P -L-first category
in X if it is an at most countable union of P -L-nowhere dense sets in X.
If A is not of P -L-first category we say that A is of P -L-second category.

We omit the proofs of the following propositions for a bitopological
space (X, P,L).

Proposition 2.3. Let A and B be two subsets of X. If A is P -L-
nowhere dense in X and B ⊂ A then B is P -L-nowhere dense in X.

Proposition 2.4. The subset A of X is P -L-nowhere dense in X if
and only if P - int(X −A) is L-dense.

Proposition 2.5. Let Y ∈ L. If the subset A of Y is P -L-nowhere
dense in X then A is P -L-nowhere dense in Y .

Proposition 2.6. Let Y be an L-dense subset of X. If the subset A
of Y is P -L-nowhere dense in the subspace, then A is P -L-nowhere dense
in X.

The assumption for Y to be dense in X cannot be removed as the
following counterexample shows.

Counterexample 2.7. On the real line < we consider the topologies P
and L which have as proper P -open and L-open sets the intervals ]a,+∞[
and ]−∞, a [, a ∈ <, respectively. Let Y be the interval [0, +∞[ with the
topologies induced by P and L. If A = {0} then A is P -L-nowhere dense
in Y but L- int(P - cl(A)) = ] −∞, 0 [ and so A is not P -L-nowhere dense
in <.

Proposition 2.8.

(i) A is of P -L-first category in X if and only if A ⊂
∞⋃

n=1
Cn with Cn

P -closed and L- int(Cn) = ∅, n ∈ N.

(ii) If A ⊂ B ⊂ X and B is of P -L-first category in X then A is of
P -L-first category in X.

(iii) If Bn, n = 1, 2, . . . are of P -L-first category in X then
∞⋃

n=1
Bn is of

P -L-first category in X.

Proof. (i) Suppose A =
∞⋃

n=1
Fn with L- int(P - cl(Fn)) = ∅, n ∈ N,

then, if we put Cn = P - cl(Fn), n ∈ N, the desired conclusion follows.

Conversely, if A ⊂
∞⋃

n=1
Cn with Cn P -L-nowhere dense in X, n ∈ N,

then A =
∞⋃

n=1
(Cn ∩ A) and from Proposition 2.3, Cn ∩ A is P -L-nowhere

dense in X, n ∈ N.
(ii) and (iii) are consequences of (i).
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3. Pairwise Baire spaces

We begin the section by giving a definition which is a slight modifi-
cation of the one given in [6].

Definition 3.1. We say that X is P -L-Baire if each nonvoid P -open
set is L-P -second category in X.

Definition 3.2. We say that X is pairwise Baire if X is P -L-Baire and
L-P -Baire.

The above definition is generalization of Baire space. The following
examples show that it is a good bitopoligical definition in the following
sense: A pairwise Baire spaces need not be a pair of Baire spaces and
vice-versa and besides we can find a pairwise Baire space (X,P, L) with
P 6= L which is pairwise Hausdorff [8].

Example 3.3. Consider the set of non-negative integers N with the
cofinite topology P and the topology L whose has as proper open sets the
sets {0, 1, . . . , n}, n ∈ N. Then (N, P, L) is pairwise Baire and (N, P ) is
not Baire.

Example 3.4. Let Z be the set of integer numbers. Let P be the dis-
crete topology in Z and L the topology which base is given by the partition
{{−1, 0, 1}, {−n, n}, n ≥ 2}. Then (Z, P ) and (Z, L) are obviously Baire
spaces but (Z, P, L) is not L-P -Baire; in fact, G = {−2, 2} is L-open and
L- int(P - cl({−2})) = L- int(P - cl({2})) = ∅ and G is P -L-first category in
(Z, P, L).

Example 3.5 (Sorgenfrey’s bitopological line). Consider the real line
< with the topologies P and L (called right and left half-open interval
topology respectively, or RHO and LHO topology) in which basic neigh-
bourhoods of x are the stes [x, z[ for z > x and ]z, x] for z < x respectively.
As a consequence of Proposition 4.12 we will see in Example 4.13 that Sor-
genfrey’s bitopological line (<, P, L) is pairwise Baire. Moreover, since P

and L are finer than the usual topology in <, the space (<, P, L) is pairwise
Hausdorff and P 6= L.

The main theorem is the following one:
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Theorem 3.6. The following are equivalent:

(i) X is pairwise Baire.

(ii) The intersection of each sequence of L-open (respect. P -open) P -dense
(respect. L-dense) sets is P -dense (respect. L-dense).

(iii) For every countable family {Fn : n ∈ N} formed by L-closed (respect.
P -closed) sets with P - Int(Fn) = ∅ (respect. L- int(Fn) = ∅) we have

that P - int
( ∞⋃

n=1
Fn

)
= ∅ (respect. L- int

( ∞⋃
n=1

Fn

)
= ∅).

(iv) If M is L-P -first category (respect. of P -L-first category) in X then
X −M is P -dense (respect. L-dense).

Proof. We will suppose in (i) that X is P -L-Baire and we will omit
the dual proofs corresponding to the cases enclosed by brackets.
(i)→(ii)
Suppose X is P -L-Baire. Let {Dn : n ∈ N} be a countable family of

L-open P -dense sets of X. Suppose X 6= P - cl
( ∞⋂

n=1
Dn

)
, then G = X −

P - cl
( ∞⋂

n=1
Dn

)
is a proper P -open set and it satisfies G ⊂ X−

( ∞⋂
n=1

Dn

)
=

∞⋃
n=1

(X −Dn).

Since P - int(L- cl(X −Dn)) = P - int(X −Dn) = X − P - cl(Dn) = ∅,
for each n ∈ N, by Proposition 2.8 (i), G is of L-P -first category in X,
which is absurd.
(ii)→(iii).
Let {Fn : n∈N} be a countable family of L-closed sets with P - Int(Fn)=∅,
n ∈ N. Then {X − Fn : n ∈ N} is a family of L-open sets which are
P -dense since

P - cl(X − Fn) = X − P - int(Fn) = X, n ∈ N.

Now

X = P - cl
( ∞⋂

n=1

(X − Fn)
)

= P - cl
(

X −
∞⋃

n=1

Fn

)
= X − P - int

( ∞⋃
n=1

Fn

)

and thus

P - int
( ∞⋃

n=1

Fn

)
= ∅.
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(iii)→(iv)
Let Mn be an L-P -nowhere dense set for each n ∈ N and suppose M =
∞⋃

n=1
Mn. Consider the family {Cn : n ∈ N} where Cn = L- cl(Mn), for each

n ∈ N; by the hypothesis we have

P - int
( ∞⋃

n=1

Cn

)
= ∅,

hence

X = X − P - int
( ∞⋃

n=1

Cn

)
= P - cl

(
X −

∞⋃
n=1

Cn

)
⊂ P - cl(X −M).

(iv)→(i)
Let G be a nonvoid P -open set. If G is L-P -first category in X then X−G

will be L-dense and thus

X = P - cl(X −G) = X − P - int(G) = X −G

and therefore G = ∅ which is a contradiction. ¤
Proposition 3.7. Let (X,P, L) be P -L-Baire. If Y is a P -open P -

dense subset of X then Y is P -L-Baire.

Proof. Let G be a P -open set in Y . Then G is of L-P -second cat-
egory in X and by Proposition 2.6, G is of L-P -second category in Y .

¤
Proposition 3.8. If be bitopological space (X, P, L) contains a P -

open, P -dense, P -L-Baire subset Y , then X is P -L-Baire.

Proof. Suppose G is of P -open and of L-P -first category in X. Then
G∩Y is a non-void P -open set of X and by (ii) of Proposition 2.8, G∩Y is
of L-P -first category in X. Since Y is P -L-Baire, G ∩ Y is of L-P -second
category in Y and of by Proposition 2.5, G ∩ Y is of L-P -second category
in X which is a contradiction. ¤

Proposition 3.9. Let X be P -L-Baire. If the subset A of X is of

L-P -first category in X then X −A is P -L-Baire.

Proof. Suppose A is of L-P -first category in X. By (iv) of Theo-
rem 3.6, X −A is P -dense. Now, let B be an L-P -first category subset of
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X−A. By Proposition 2.6 B is of L-P -first category in X and then A∪B
is of L-P -first category in X. By (iv) of Theorem 3.6, X − (A ∪ B) =
(X − A) − B is P -dense in X and therefore (X − A) − B is P -dense in
X −A; the conclusion follows from (iv) of Theorem 3.6. ¤

We omit the proof of the following proposition which characterizes
the L-P -first category subsets of a P -L-Baire space.

Proposition 3.10. Let Y be a subset of the P -L-Baire space X. Y is
of L-P -first category in X if and only if X −Y contains a P -dense L−Gδ

subset.

Corollary 3.11. If X is P -L-Baire and A is an L−Gδ P -dense subset
of X, then A is P -L-Baire.

Proof. By the last proposition X − A is of L-P -first category and
from Proposition 3.9, X − (X −A) = A is P -L-Baire. ¤

The following theorem shows a local property which is a generalization
of the corresponding one in Baire spaces.

Theorem 3.12. If each point of the bitopological space (X,P, L) has
a P -L-Baire (respect. L-P -Baire) P -open P -neighbourhood (respect. L-
open L-neighbourhood) then X is pairwise Baire.

Proof. Let {Dn : n ∈ N} be a family of L-open P -dense sets of X.
Let x ∈ X and suppose x has a P -neighbourhood U which is P -L-Baire.
Consider the family {Dn ∩ U : n ⊂ N} where Dn ∩ U is a nonvoid L-open
subset in the space U , for each n ∈ N. Also Dn ∩ U is P -dense in U for
each n ∈ N, and since U is P -L-Baire

U ⊂ P - cl
( ∞⋂

n=1

(Dn ∩ U)
)

and therefore

x ∈ U ⊂ P - cl
( ∞⋂

n=1

(Dn ∩ U)
)
⊂ P - cl

( ∞⋂
n=1

Dn

)

i.e.,

P - cl
( ∞⋂

n=1

Dn

)
= X.

Thus, X is P -L-Baire. With a similar argument X is L-P -Baire. ¤
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4. A Baire category theorem for bitopological spaces

We are going to find a Baire category theorem in terms of bitopological
spaces. To begin with, we need some definitions and results.

Definition 4.1. A topological space is said to be quasi-regular [7] if
each nonvoid open set contains the closure of a nonvoid open set.

If X is a regular space then it is quasi-regular. What follows is a
generalization for a bitopological space (X,P, L) given here for the first
time.

Definition 4.2. X is P -L-quasi-regular if each nonvoid P -open set
contains the L-closure of a nonvoid P -open set.

Definition 4.3. X is pairwise quasi-regular if it is P -L-quasi-regular
and L-P -quasi-regular.

The proof of the following proposition is trivial.

Proposition 4.4. If X is P -L-reguar [8] then it is P -L-quasi-regular.

The converse is not true as we see in the following.

Example 4.5. Consider the bitopological space (N, P, L) of Exam-
ple 3.3. It is easy to observe that P and L are not quasi-regular, (N, P, L)
is pairwise quasi-regular and N is not P -L-regular.

The following definitions are given in a bitopological space (X,P, L).

Definition 4.6 [2]. A cover U of X is called pairwise open if U ⊂ P ∪L

and both U ∩ P and P ∩ L contain a nonvoid set.

Definition 4.7 [4]. X is called pairwise compact if every pairwise open
cover of X has a finite subcover.

Deinition 4.8 [2]. X is called pairwise locally compact if for each
x ∈ X there is a P -open (respect. L-open) neighbourhood V of x such
that L- cl(V ) (respect. P - cl(V )) is pairwise compact.

If X is pairwise compact it is pairwise locally compact.
It is well-known [7] that if X is locally compact and quasi-regular then

X is Baire. In the corresponding terms of bitopological spaces this is not
true as the following counterexample shows.
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Counterexample 4.9. In the set N of the nonnegative integers we con-
sider the cofinite topology P and the discrete topology L. We see that
(N, P, L) is pairwise compact:

Let U = {Ui : i ∈ I} be a pairwise open cover of X; then there is
k ∈ I such that Uk ∈ P and then X −Uk is a finite subset of N; therefore,
it’s obvious that N is covered by a finite subcover of U which contains Uk.

Also, it is easy to see that (N, P, L) is pairwise regular. Finally, we
prove that N is not P -L-Baire: Consider the family {Gi : i ∈ N} with
Gi = {i, i + 1, i + 2, . . . }. Each Gi is P -dense L-open but

⋂
i∈N

Gi is not
dense since it is empty.

So, we are looking for a class of pairwise locally compact quasi-regular
spaces for which we will prove they are pairwise Baire, but we have also
in mind Theorem 3.5 of T. Fukutake:

Theorem 4.10 [6]. Let (X, P, L) be a bitopological space and P ≤ L.
If L is metarizable and complete, then X is a P -L-Baire space.

In order to extend a similar result and to obtain as conclusion that
X is pairwise Baire, we need a weaker condition than P ≤ L, since this
condition with its dual condition L ≤ P gives the conclusion P = L and so
the theorem would not be a bitopological result, but a known topological
one. Therefore, we give the following definition which is new:

Definition 4.11. The bitopological space (X, P,L) is pairwise fine if
each nonvoid P -open (respect. L-open) set has a nonvoid L-open (respect.
P -open) subset.

Now, in a pairwise fine space (X, P, L) we notice that D is P -dense
if and only if it is L-dense and then, for such spaces, it is true that X is
pairwise Baire in Fukutake’s sense if and only if X is pairwise Baire in our
sense. So, the following proposition is a generalization of Theorem 3.5 [6]
for pairwise Baire spaces.

Proposition 4.12. Let (X,P, L) be pairwise fine. X is pairwise Baire
if and only if (X, P ) and (X,L) are Baire.

Proof. It is straightforward. ¤
Example 4.13. Since each interval [a, b[ (a < b) of the real line <

contains an interval ]c, d ] (c < d) and vice-versa, it is obvious that the
Sorgenfrey bitopological line (Example 3.5) is pairwise fine and in conse-
quence it is paire Baire since < with the RHO or LHO topology is Baire.
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Lemma 4.14. Let (X,P, L) be pairwise fine.

(i) is pairwise quasi-regular if and only if (X, P ) and (X, L) are quasi-

regular.

(ii) If X pairwise locally compact then (X, P ) and (X, L) are locally

compact.

Proof. (i) Suppose X is pairwise quasi-regular. We only will see
(X,P ) is quasi-regular.

Let G be a nonvoid P -open set. Since X is pairwise fine there is a
nonvoid L-open set H such that H ⊂ G; by the pairwise quasi-regularity
there is a nonvoid L-open M with M ⊂ P - cl(M) ⊂ H. Also, there is
a nonvoid P -open set N with N ⊂ M that satisfies N ⊂ P - cl(N) ⊂
P - cl(M) ⊂ G.

Conversely, we will only see X is P -L-quasi-regular. Suppose G 6= ∅
is P -open. Since X is pairwise fine there is a nonvoid L-open set H such
that H ⊂ G and since (X, L) is quasi-regular there is a nonvoid L-open
set M with L- cl(M) ⊂ H. Now, there is a nonvoid P -open set N such
that N ⊂ M that satisfies N ⊂ L- cl(N) ⊂ L- cl(M) ⊂ G.

(ii) Suppose X pairwise locally compact. We will show (X, P ) is
locally compact.

Let x ∈ X. Since X is pairwise locally compact there is a P -open
neighbourhood G of x such that M = L- cl(G) is pairwise compact. We
will prove that M is P -compact.

Let U be a P -open cover of M . If V ∈ U (V 6= ∅), then since X is
pairwise fine there is a nonvoid L-open set H such that H ⊂ V . Then
U ∪ {H} is a pairwise open cover of M and it admits a finite subcover
U ′ ⊂ U ∪ {H}. If H /∈ U ′ then U ∪ {H} is a finite P -open subcover of U ;
in the other case U ′ ∪ {V } is a finite P -open subcover of U . So, M is
P -compact. ¤

Theorem 4.15. Let (X, P,L) be pairwise fine. If X is pairwise quasi-

regular and pairwise locally compact then X is pairwise Baire.

Proof. By the previous lemma (X, P ) and (X, L) are quasi-regular
and locally compact and then they are Baire spaces. The conclusion follows
from Proposition 4.12. ¤
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5. Pairwise Baire spaces and normed lattices

If T and ≤ are a topology and an order, respectively, on X then
(X,T,≤) is said to be a topological ordered space provided the graph G
of the order ≤ is closed. The quasi-uniformity U in X is said to deter-
mine (X, T,≤) whenever T = T (U∗) and G =

⋂
V ∈U

V −1 where U∗ is the

uniformity in X which has U ∪ U−1 as a subbase (U−1 is the conjugate
quasi-uniformity of U). These concepts are found in Fletcher and Lind-

gren’s book [5].
We say that a non-negative real valued function q defined on a real

linear space E is a quasi-norm if it satisfies for x, y ∈ E and t ≥ 0:

q(x) = q(−x) = 0 → x = 0,

q(tx) = tq(x),

q(x + y) ≤ q(x) + q(y).

Given a “quasi-normed space” (E, q) the function d(x, y) = q(y − x)
is a quasi-pseudometric on E which induces a quasi-uniform structure Uq

on X. In Corollary 3.2 of [3] we showed the following result:
Every real linear normed lattice (E, ‖ ‖,≤) is determined in L. Nach-

bin’s sense by the quasi-uniformity Uq deduced from the quasi-norm q(x) =
‖x+‖ where x+ = sup{x, 0}.

We have the following:

Lemma 5.1. A non-empty set is q-open if and only if it is open in the

norm and decreasing.

As a consequence, the quasi-normed space (E, q) deduced from the
real linear normed lattice (E, ‖ ‖),≤) is never Baire. We gave in [3] the
following definition.

Definition 5.2. The real linear normed lattice (E, ‖ ‖,≤) is quasi-
Baire if each sequence of open and decreasing sets (i.e., of q-open sets)
which are dense (in norm) has a dense intersection.

Before the main theorem we need the following lemma from [1] that
we reproduce:
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Lemma 5.3. If G is q-dense (q−1-dense) and increasing (decreasing)

then G is dense.

Proof. Let x ∈ E and ε > 0. Since G is q-dense there exists y ∈
Vε(x) ∩G. We have

−y = −x− (y − x) ≥ −x− (y − x)+

hence

y ≤ x+(y − x)+.

If we call z = x + (y − x)+ then, since G is increasing, z ∈ G.
Finally

‖z − x‖ = ‖(y − x)+‖ = q(y − x) < ε

and G is dense.
The proof when G is q−1-dense and decreasing is similar. ¤
Theorem 5.4. The normed lattice E is quasi-Baire if and only if

(E, q, q−1) is pairwise Baire.

Proof. Suppose E is quasi-Baire and let {Gn} be a sequence of q-
open and q−1-dense sets. By Lemma 5.1 Gn is decreasing (n ∈ N) and

then
∞⋂

n=1
Gn is dense and since the topology deduced from the norm is

finer than the one deduced from q−1,
∞⋂

n=1
Gn is q−1-dense.

Analogously if {Gn} is a sequence of q−1-open and q-dense sets then
∞⋂

n=1
Gn is q-dense.

For the converse, suppose (E, q, q−1) is pairwise Baire and let {Gn}
be a sequence of decreasing open dense sets. Then Gn is q−1-dense (n ∈ N)

and by Lemma 5.1 and the hypothesis,
∞⋂

n=1
Gn is q−1-dense. Now, since

∞⋂
n=1

Gn is a decreasing set, by the previous lemma
∞⋂

n=1
Gn is dense. ¤
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FACULTAD DE MATEMÁTICAS
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UNIVERSIDAD POLITECNICA DE VALENCIA
CARRETERA NAZARET OLIVA
46730 GRAO DE GANDIA
SPAIN

(Received September 23, 1996; revised April 24, 1997)


