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On the prime power divisors
of the iterates of the Euler-¢ function

By N. L. BASSILY (Heliopolis), I. KATAI (Budapest)
and M. WIJSMULLER (Philadelphia)

Abstract. In this paper we prove that for each fixed k > 1,

A(pr(n)) := Qer(n) —w(pr(n)) = (1+ 0(1))%(103; log )" (log log log log z)

holds for almost all n, and that

.1 A(p(n)) — s(x) } 1 /z —12/2
lim = dn< <zp=9(z) = — /2dt,
oo 1 {n =7 VlogTog z(log log log log ) ? (2) V27 J oo c

where s(z) = (loglog z)(log logloglog ) + ¢1 loglog x + o(log log ).

1. Introduction

Let pu(n) = @(pr-1(n)) (po(n) = n, @1(n) = @(n)) be the k-fold
iterate of the Euler totient function. Let P be the set of primes, and the
letters p, g, m, @ with and without suffixes denote prime numbers. ® is
the Gaussian distribution function. w(n) counts the number of distinct
prime factors of n, Q(n) is the number of prime divisors of n counted with
multiplicity. Let A(n) = Q(n) —w(n). As usual p” || n means that p" | n
but p" 1 { n.
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For the variable x let 1 = logz, z, =logz,_1 (r =2,3,...).
In our recent paper [1] we proved that for each fixed k

T—00 I bkx§+1/2

(1.1) lim l# {n <z ‘ w(p(n)) — akx§+1 § Z} _a(2)

1 —1)) — apzhtt
(1.2)  lim @# {p <z ‘ w(ep(p bkx?ﬂ/;m < z} — o(2)

1 _ 1
where ap — m, bk = WTT
We are interested in the distribution of A(gg(n)).

Theorem 1. For ech fixed k 2 1, for all but o(z) integers n < z,
(1.3) Apr(n)) = ar-1(1+ o(1))a5 2

holds.

Remark 1. Theorem 1 implies that (1.1) remains valid if we change w
by Q. For an arbitrary additive function f and an interval I C [1,00) let

fa D)= fla"),

7’|In
qel

and let f.(n) = f(n| [0, ).
We shall prove
Theorem 2. Let

Q2(p—1
s(x) == Z M + 7(z2) + Z (1 —e™2/9) — wa,,

p

p<z zp<q<a3

[ exp(=¢)
w—/l & d€.

where

Then

z11_}1][;o %# {n <z ’ A(SO(\T/Z)%;S(JC) < z} = ®(z2).

Remark 2. One can prove that s(x) = zox4 + c122 + 0o(22).
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2. Lemmata

Let
s(z, D, 0) = Z 1/p.

p<x
p={ (mod D)
Lemma 1. Uniformly in 1 < D < x we have

@(D)’

(2.1) s(z,D,1) <

PROOF. From sieve theorems we know that the number of primes
p =1 (mod D) in the interval [aD, 2a D] is less than ¢; % ﬁ. Applying
this for a = 2,22,23, ... one gets that

1 o <& 1 2§D
S($a Da ]-) S Z - + Z - )
S P »(D) = 21D log?2J
p=1 (mod D)
where jg is the largest integer for which 27¢ D < x. The first sum is at most

the second sum is less than Jb) 10;;2 ;0:1 % < ﬁ log jo < ﬁmz.

1
D1
Hence (2.1) is immediate.

Let Ug(x; D) := #{n <=z, D | pr(n)}.

Lemma 2. Foeveryk > 0, r > 0 there exist numerical values c¢(k,r) <
c(k,r + 1) for which
wwSQ(D)

Ui(a; D) < C(k, (D)) ™2
whenever e < x,1 < D < x.

PROOF. The assertion is true for £ = 0. C(0,7) = 1 is a suitable
choice. Assume that it is true for £ — 1 instead of k. Let D = pj*...pf~,
and the prime decomposition of ¢5_1(n) let [ 7%~. Then

or(n) = Hﬂ(éw_l) H(W —1) = EEs.

s aj—bj

. . b
Let p;’ || E1, bj = min(ej, a5), D1 =II;_yp;’, D2 =[I;_, p;
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Assume now that D | pr(n). Then, either Dy = 1, or Dy > 1 and
there is a product partition of Dy as & ...&s, & > 1 (i =1,..., s) for which
& lme—1, 1 | pr—1(n) (0 =1,...,s). It is clear that s < Z;Zl(aj -
b;). For a fixed choice of &;,...,& let T = T, run over those numbers
Ty, s < a for which & | mp—1 (£ =1,...,s). Then

U@ D)< > > > Y Uiz, DiT).

Di1Dy=D s 51,...755 T
€1,--,8€s=D>

Since Q(D1T) = Q(D1)+s < Q(D1)+Q(D3) = Q(D), from our hypothesis
we obtain that

Un(w; D) < C(k — 1,2(D))aa 0P 50 3 % ZDlT.

Di1D2=D s &i,...6s T

From Lemma 1 we deduce that the sum Y 7 is less than c¢*z5 /¢ (&1)- - - ¢(&).
Furthermore ¢(§;) > 1&;. Since the number of solutions of D = DD,
and that of the number of the product partition of D5 is bounded by a
function of Q(D), and s < (D), we obtain that the assertion is true for k.

The proof is complete. O

As a consequence we have

Lemma 3. Let K, — oo arbitrarily slowly, wg = K, w; = z (j =
1,2,...). Let k > 0 be fixed. Then the number M of that integers n < x
for which there exists at least one prime p > wy such that p* | pi(n) is

o(x).
PROOF. It is enough to observe that

M <> Uiz,p®), > % <1 O

)
p WEI3

Pwg P> Wi
Lemma 4. For e <y < x we have
T
Z(Qy(p —1) —loglogy)? <« o loglog y,
p<z &

and

1
> =19y (p — 1) — loglog y| < x2(loglogy).
p<w
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PROOF. The first, Turan—Kubilius type inequality can be proved by
squaring out, applying the Siegel-Walfisz theorem. The second inequality
is an easy consequence of the first one. O

3. Proof of Theorem 1

Let the prime decomposition of ;_1(n) be [[7°~, y = x3*. From

Lemma 3 we obtain that Ay(pr(n)) = A(pr(n)) for all but o(z) integers
n < x. Furthermore,

Qlppm) = Y G=D+ D> Qr—1).
| ”Sy( ) m|pr—1(n)
T|Pr—1(N

Let n(n) denote the second sum. The first sum is A, (¢r—1(n)). Thus we
have

Ay(pr(n) = Ay(pr-1(n)) +n(n) — wy(pr(n)).

Since

Y wylen(n) = U-a(a;p),

n<z p<y

from Lemma 2 and from the obvious inequality Uy_1(x;p) < = we obtain
that the right hand side is less than

er(zl) + C(k —1,1)zab Z 1/p < zah.
ab<p<y

Consequently

1 k

{n <o |wylpr() 2 abs} 0 (2 - oo).
Let 17(n) = (loglogy)w(pk—1(n)). Then

n(n) =) < Y [2y(r — 1) —loglogyl,

mler-1(n)
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and so by Lemma 2, and Lemma 4

D In(n) =) < Y 18y(r — 1) —loglog y|Up_1 (w; )

n<lx <z
1
< xxh? Z |Qy(m—1) — loglogy|; < zak(loglog y)'/?,
<z

Thus
1 ~
—#{n<a| mm) -] > ke —0 (@ o0).
Consequently,
Alpr(n) = Ay(r-1(n)) + (loglog y)w(p—1(n)) + O (whai/!)

for all but o(x) integers n < x.
Since w(pr_1(n)) = ar_125 + O <x§71/2x5> (see (1.1)) for almost all

n, and by induction on k we may assume that A, (¢r_1(n)) = O (3312“*1954),

therefore
A(pr(n)) = ap_1z52s + O (1:’2“:172/4)

for almost all n. The proof is complete.

4. Further lemmata

Let V= exp(exp(y/Zz)), Y = exp(z1e™V?2), u = logfgly, B=log iggg =

To — 2\/Z2, J1 = [%7962}, Jo = [w2,23], J=J1UJy, L=[V,Y].

Let

Yo(n) = [[e=1), ¢1(n):==[[0—=1), wa(n):= [ (-1,
p<V pln p>Y
pln pEL pln

Y(n) = Po(n)Y1(n)ha(n), T'(n) = lenp%(”)_l where «,(n) is defined
as the exponent for which p®»(™ || n.

Let
k)= J[ @a-1/m).

el
=1 (mod k)
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From the prime number theorem for arithmetical progressions one can
get easily that

(4.1) 0 = exp(-3/50) (140 17 ) )

uniformly as k € [\/@ , ac%], say.
Assume from now on that ¢,q1,q92 € J.
Let

7(q1)7(g2)

7(q192
2
Since 7(q1q2) =1+ O (ﬁ) =1+0 (%)7 therefore

o(qi,q2) =

(4.2) o1, 42) = 7(a1)7(g2) (1 o <;;>> ’
Let
(4.3) Alg) := Z: L
1(n)£0 (mod q)
(4.4) B(qi, q2) = ; L

1 (n)=0 (mod q¢1)
P1(n)Z0 (mod g2)

(4.5) Clq1, q2) := Z L.

n<x
¥1(n)Z0 (mod gj)
7j=1,2
As an immediate consequence of Theorem 2.5 in HALBERSTAM—
RICHERT [7], we obtain that
(4.6) Alq) = 27(q)(1 + O(e™™)),
x
(4.7) Clq1, q2) = 27(q1)7(q2) <1 +0 <2>>
q1492
Since B(q1,q2) + C(q1,92) = A(gz2), therefore

(4.8) Blar,a2) = o7(@2) (1 — 7(a)) + O (qq) |
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Lemma 5. Let

(4.9) Ky:i= ) [t (n)]]s) — 4],
where =

(4.10) Ay =) (1=7(q))
Then -

(4.11) K < xxs.

PROOF. Let S(m):zznsww(wl(n)ug); F(m)::ZnSIwQ(wl(n)\Jg).
Then

S(z) =Y (z—Alg) + O (23) =24, + O (xe“ > T(q)>

q€J2 qeJ2

=zA, + O(x),

since 7(¢) <1 and Y 7(q) < e™.
Furthermore, F'(z) = S(x) + Y, where

(4.12) Y= Y S

Q17#g2. P1(n)=0 (mod g )
q1,92€ J2 j=1,2

The inner sum of the right hand side of (4.12) equals to

[x] — B(q1,92) — B(g2, 1) — C(q1, q2).

Thus
> =[] Z -z Z T(q2)(1 = 7(g2)) + 7(q1)(1 — 7(q2))
Q1#q2 q#q2
-z Z T(@1)7(q2) + O(zw2)=2 Z (1=7(q1))(1=7(q2))+O(xx2)
Q742 Q17#G2

= :L'A?c + O(zx3) — x Z (1-— T(q))Q.
q€J2
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Since
K, = F(z) —2A4,5(x) + Ai[x],

we have
Ky = 2A% + O(xxs) + 2A, + O(z) — 24, (zA, + O(x))

+O0(edy) =z Y (1-7(9)* < 24,
gEJ2

and finally, from

A, < Bla <,

we obtain that
K| < xxs.

This completes the proof of Lemma 5.
Let

(4.13) B.= Y 7(q).

qeJ1
From (4.1) we obtain that

)

qeJ1
— —B/q ﬁ 1 >>
q;le <1+O<q2> +O<Q(10gV)° '

To estimate the main term

T:= Zeiﬁ/q,

q€J1
we shall use the prime number theorem in the form
A(z) = m(2) — liz < ze~ V% for z € Jj.
Thus

d
T:/ eﬁ/nn+/ 676/"dA(77):T1+T2.
7 logn — J,,

25
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By partial intergation we have

7, = 0 (e ) + [ 1G] (/7Y i
The integral on the right hand side is bounded by

< e_c“/ﬁ/n (e_ﬁ/">/d77 =0 (xze_clVE) +e VT A e_ﬂ/"dn.

logn T3 T3

T = L <1 +0 <M>> / e~ P,
T3 T3 Jy

Introducing the new variable £ = 3/n we have

Since = = L 4+ O <$—4> in n € Jp, therefore

Bxs /w2 _
(4.14) / e~PIndn = 3 (L) g
Jl ﬂ/l’g g

Let

= exp(—¢

1
The integral on the right hand side of (4.14) equals to

Bzs
+0< L >+0 o (5) +o( L )
w — — | =w — ),
consequently
Tl = ﬁw + O(\/'E)a

and

5 =0 (xge_ml\/ﬁ) .

One can prove similarly that

5 0(2) 0 ter)) o0

q€J1
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Consequently
(4.16) By =wpf 4+ O(y/12) = wra + O(\/x2).

Let h(n) be the number of those primes ¢ in J; for which ¢ { ¢1(n).

Lemma 6. Let

(4.17) Ky := Y (h(n) - B,)%,
Then i

PrOOF. From (4.6), (4.7) we infer that

(4.19) U(z) =Y h(n)=Y_ Alg) =x(1+0(e™))B,.

n<x qeJy

(4.20) V(z):=> B*(n)=U(z)+,,

n<x
where

o= hn)(h(n)=1)= > Claa)

n<z q1,92€J1, q17q2

(421)  =z(1+0(™) Y olae)

q1#492,91,92€J1

=z(1+0(e™) > T(ql)T(q2)<1+O<ﬂ>>.

142
q1,92€J1, q17q2 na

Consequently

(4.22) Y, = x<B§, = )+ 0(e B2 + 0(@( > T(q)f))

qeJ1 q€J1

Since
Ky =U(x)+ Y, — 2B,U(z) + [x]B2,

27
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therefore, by (4.19), (4.20), (4.22) we get that

2
Ky = O(xB,) + Oe “aB2) + O < 2(q) + ( T(Q)>>.
2 (zBz) (e™"zB;) <a; ZT(Q) JJQZQ
q€1 q€Jy
From (4.16), B, < x2, furthermore
YR <2 YT oy o,
L3 q q
qeJ1 q€J1 qeJ1

thus Ky < zxs.
The proof of the lemma is finished.

Let H be the number of primes in J;. Then, by Lemma 6

D (@@ ()| h) = (H = B,))? < was,

n<zx

consequently
1 1
(4.23) E#{n <z, lwih ()| ) — (H — By)| > x5«ﬁx2} < 5.
5
Similarly, from Lemma 5,

(4.24) é#{n <, Wl ()) — As] > 25 /F5 ) < ;5

5. The distribution of Q,3(¢)(n))

Let
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is a strongly additive function depending on the parameter x. To prove
that

.1
(52)  lim g#{n <z, Q2 ((n) — Al) < ZB(;,;)} — (),
we can apply Theorem 12.15 in ELLIOTT [8], and the Berry—Esseen theo-
rem (see Lemma 1.48 in [8]). The conditions of these theorems are satisfied.
Indeed, by using the prime number theorem for arithmetical progressions
and Lemma 1, we can deduce easily that

(5.3) A(x) = zaxg + O(x2), B*(z) = (14 o(1))xa27,
and that
Qi? (p—1)
(5.4) Z — L o7
p<z p

(5.3), (5.4) imply that

1
SRR
¢ <p<z p
|f(p)I>AB(x)

for arbitrary positive constants € and A, thus the condition of Theo-
rem 12.15 holds. Since the left hand side of (5.4) is o(B3(x)), therefore the
remainder term in the Berry—Esseen theorem is o(1), thus (5.2) holds.

6. Proof of Theorem 2
It is clear that for £ =1, 2:

w(thr(n)|Je) < w(¥(n)|Je)
S w@r(n)|Je) +w(®o(n))|Je) +w(T(n)]Je).
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First we estimate ) ;. We have

i
>, <<Zq—2<<x.

qeJ

Similarly,
S SR SRS SR SR
qeJ n<z q€J p=1 (mod q)
P2(n)=0 (mod q) Y <p<z
log
< xlog gy Z 1/q < z\/x3.
q€J
Finally

Yoy Y 1<zy. Y 1/p
qeJ

n<z q€J q|p—1
Po(n)=0 (mod q) p<V
1
L x\/22 Z p = O(zy/x2).
qed

We deduced that
Zo + 21 + ZQ = O(z\/72).

Consequently

62  #{n<a| @) - 0@l > 75y - 0.
We can observe that

Leln <o | 1AGp(n) - A@m)] > K.} 0,

if K, is an arbitrary function which tends to infinity. Let K, = zs.
Therefore it is enough to prove the theorem for ¢(n) instead of ¢(n). From
Lemma 3 we obtain that the asymptotic density of the integers n < x for
which p? | ¥(n) for some p > 3 is zero. Thus A(¢(n)) = Agz(1(n)) for
all but o(z) integers up to x. By sieve theorems one can deduce that the
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number of the integers n < z for which there is a prime ¢ < x5/x3 such
that g 1 (n) is less than

e X T (- )se ¥ oew(-7) o

g<z2/x3 m™=1 (mod q) g<za/x3
<z

Thus, removing no more than o(z) integers n < x, for the others
(6.3) Way fas (P (1)) = T(22/23).
Hence, and from (5.2) we obtain that
wyz (Y (n)) = m(w2/w3) + w(¥r(n)|J) + Ows/z2)
for all but o(z2) integers n < x. By using (4.23) and (4.24) we get that
(6.4) wez(¥(n)) = 7(22) + Az — By + O(w5/22)

for all but o(x) integers n < x.
By (5.2) we have that

A(p(n))—A(z)—7(22)—As + Bs
NN

From (4.1), (4.10) we can deduce easily that

A=Y <1 — exp (-?)) +O(/73).

z2<q<w3

1
E# {nﬁx ‘ < z} —®(z) as z—o0.

Then, by (4.16) our theorem follows.

Acknowledgement. The authors wish to thank the referee for his valu-
able remarks.
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