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Moufang loops of order 2m

By ANDREW RAJAH (Penang) and ENA JAMAL (Penang)

Abstract. Let L be a Moufang loop of order 2m, (2, m) = 1. Then F. Leong
and P. E. Teh have proven in [3] that there exists a normal subloop M of order m in
L. Furthermore, they have shown that if |M | = p2, then L is a group. We extend this
result with M which is an abelian group of order p2

1 · · · p2
n where p1, . . . , pn are distinct

primes and also M = Cp × Cpn .

1. Definitions

1. A loop 〈L, ·〉 is a Moufang loop if (wx · w)y = w(x · wy) ∀w, x, y ∈ L.

2. (x, y, z) = (x ·yz)−1(xy ·z) for x, y, z ∈ L. La is the subloop generated
by all (x, y, z) in L. Clearly, L is a group if and only if La = {1}.

3. Define

gR(x, y) = (gx · y)(xy)−1

gL(x, y) = (yx)−1(y · xg)

gT (x) = x−1 · gx

I(L) = 〈R(x, y), L(x, y), T (x) | x, y ∈ L〉 is called the inner mapping
group of L.

4. Let K be a subloop of L and π a set of primes

(i) K is a normal subloop of L, if Kθ = K for all θ ∈ I(L) where
Kθ = {kiθ | ki ∈ K}.
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(ii) K is a π-loop if the order of every element of K is a π-number.
(A positive integer n is a π-number if every prime divisor of n

lies in π.)

(iii) K is a Hall π-subloop of the finite loop L if |K| is the largest
π-number that divides |L|.

(iv) K is a Sylow p-subloop of L if K is a Hall π-subloop of L and
π = {p} (p is a prime).

2. Known results with Moufang loops

Let L be a Moufang loop.

R1 L is diassociative, that is 〈x, y〉 is a group for any x, y in L. [1, p. 115,
Lemma 3.1].

R2 If (x, y, z) = 1 for some x, y, z ∈ L, then 〈x, y, z〉 is a group. [1, p. 117,
Moufang’s Theorem].

R3 If x ∈ L and θ ∈ I(L), then (xn)θ = (xθ)n for any integer n. [1,
p. 120, (4.1)].

R4 If H is a subloop of L, u is an element of L and d is the smallest
positive integer such that ud ∈ H, then |〈H,u〉| ≥ d|H|. [2, p. 5,
Lemma 0].

R5 Suppose |L| = 2m, (2,m) = 1. Then there exists a normal subloop M

of order m such that L = C2 oM , i.e., L = C2M and C2 ∩M = {1}.
[3, p. 411, Lemma 1].

R6 Suppose |L| = 2p2, (2, p) = 1. Then L is a group. [3, p. 411,
Lemma 2].

R7 Let M be a normal subloop of the finite loop L. If H is a Hall subloop
of M such that H is normal in M , then H is normal in L. [4, p. 879,
Lemma 1].

3. Moufang loops of order 2m

Theorem 1. Let L be a Moufang loop of order 2m, (2,m) = 1 and

m = p2
1 · · · p2

n where p1, . . . , pn are distinct primes. Suppose there exists
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a normal subloop M of order m which is an abelian group. Then L is a

group.

Proof. By R5, we can write L = C2 oM for some cyclic group C2.
We proceed by induction on n. If n = 1, then by R6, L is a group. So we
can assume that the result holds for 1 ≤ n ≤ k. Now let n = k + 1 and
suppose Pi is a Sylow pi-subloop of M for i = 1, 2. Then Pi C M as M

is abelian. Since P1 is a Hall subloop of M and P1 C M , P1 C L by R7.
Similarly, P2 C L.

Now L/Pi is a group by induction. So La ⊂ Pi for both i = 1 and 2.
Then La ⊂ P1 ∩ P2 = {1}. Thus L is a group.

Remark. In [3], it was proven that all Moufang loops of order 2m are
groups provided the three conditions below are satisfied

(i) m = pα1
1 · · · pαr

r , αi ≤ 2, pi are distinct odd primes,

(ii) pi 6= 1 mod pj for all i and j,

(iii) p2
i 6= 1 mod pj if αi = 2, for all i and j.

Essentially our proof in Theorem 1 is identical to the proof of the
above theorem. The authors similarly prove that the Moufang loop could
be written as C2 o M where |M | = m. Although in our situation, we
assume that M is an abelian group, the authors here prove that M is an
abelian group (when the three conditions are satisfied).

Lemma. Let L be a Moufang loop of order 2pn+1, (2, p) = 1 such

that L = C2 oM where M = Cp × Cpn . Write C2 = 〈w〉, Cp = 〈x〉 and

Cpn = 〈y〉. Suppose L is not a group. Then

(i) u ∈ L and |u| = pn ⇒ |〈w, u〉| = 2pn and wuw = u−1.

(ii) wxw = x−1.

Proof. (i) Write H = 〈w, u〉. Then by R1, H is a group. Clearly,
2pn

∣∣∣ |H|. Suppose |H| > 2pn. If M ⊂ H, then |M | = pn+1
∣∣∣ |H| and

|H| = 2pn+1 = |L|. Hence L would be a group. This is a contradiction. So
M 6⊂ H and there exists v ∈ M −H. So |v| = pα for some α ≥ 1. Let d be
the smallest positive integer such that vd ∈ H. If d < p, then (d, pα) = 1,
and there exist integers k and h such that kd+hpα = 1. Since vd, vpα ∈ H,
v = vkd+hpα

= (vd)(vpα

)
h ∈ H. This contradicts v ∈ M −H. So d ≥ p.

Thus by R4, |〈H, y〉| ≥ |H| > 2pn+1 = |L|. This is a contradiction.
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Thus |H| = 2pn. Then wuw = u or u−1. Suppose wuw = u. Then
|wu| = 2pn. Thus L = 〈wu, x〉 is a group by R1. This is a contradiction.
Therefore wuw = u−1.

(ii) Suppose wxwx 6= 1. Since M C L, wxw ∈ M . Thus (wxw)x =
x(wxw) as M is abelian. Also [(wxw)x]p = (wxw)pxp = wxpw = 1.
Thus |wxwx| = p. If wxwx ∈ 〈y〉, then wxwx = ycpn−1

, 1 ≤ c ≤ p − 1.
Now w(wxwx)w = w(ycpn−1

)w. So xwxw = (wyw)cpn−1
. Then ycpn−1

=
(y−1)cpn−1

by (i). Thus y2cpn−1
= 1.

So pn | 2cpn−1, i.e., p | 2c. This is a contradiction. Therefore
wxwx /∈ 〈y〉 and 〈w(wxwx)〉 ∩ 〈y〉 = {1}. Clearly w[wxwx] = [wxwx]w.
So 〈w,wxwx〉 = 〈xwx〉 = C2p. We know that |〈xwx, y〉| ≥ |〈xwx〉| |〈y〉| =
2p · pn = |L|. So L = 〈xwx, y〉 is a group by R1. This is a contradiction.
Therefore wxwx = 1, i.e., wxw = x−1.

Theorem 2. Let L be a Moufang loop of order 2pn+1 where p is an
odd prime. Suppose the normal subloop of order pn+1, M = Cp × Cpn .
Then L is a group.

Proof. Assume L is not a group. Write C2 = 〈w〉, Cp = 〈x〉 and
Cpn = 〈y〉. Now

w(x · wy) = (wx · w)y by the Moufang identity

= x−1y by R1 and Lemma (ii).

x(wy) = w(x−1y) as w−1 = w.Thus

〈x−1, y〉 = Cp × Cpn , |x−1y| = pn.Since

x(y−1w) = (x−1y)−1w by Lemma (i)Then

= (y−1x)w

= (xy−1)w as M is abelian.

(x, y−1, w) = 1.So

〈x, y−1, w〉 = 〈x, y, w〉 = L is a group.By R2,
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Open question

Let L be a Moufang loop such that L = C2oM where M is an abelian
group. Then is L also a group?
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