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A Class of Diophantine Equations

By N.P. Smart∗ (Canterbury)

Abstract. A method is given to solve all equations of the type F (2a3b) = ±2c3d,
where F is a polynomial with integral coefficients and at least two distinct roots.

A method is developed to solve the Diophantine equation

(1) F (2a3b) = ±2c3d

where F is a polynomial with at least two distinct roots. Let S be a set of
integers divisible only by primes from a given, finite set of prime numbers.
Let F ∈ Z[X] have at least two distinct roots. In [4] [chapter 10] it is
proved that if n ∈ Z and F (n) ∈ S then |n| ≤ C(S, F ) where C(S, F ) is an
effectively computable constant. This result is proved by Baker’s method
and its p–adic analogue.

Equation (1) arises when one wishes to calculate reducible polynomi-
als of discriminant only divisible by two and there. Effective bounds for
algebraic integers with discriminants with given prime divisors was first
given in [1]. In a later paper we shall consider over 1000 equations of the
above type in one step so our method must not depend on the factoriza-
tion of F in some number field but only on the sizes of the coefficients of
F . The equations (1) arise when one wishes to consider the discriminant
of a polynomial some of whose roots are rational. One decomposes the
polynomial into irreducible factors. One can then factor the discriminant
of the polynomial. One of the factors will then give an equation of the
type considered here.

The method used in this paper relies on the application of Bakers
method. This provides quite large bounds which are then reduced with
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the aid of the reduction techniques of De Weger, [6]. I must thank
B.M.M. De Weger for initially giving me the idea for this method. We
first bound all the variables in the equation. In what follows c1, c2, . . .
and K1, . . . will be explicitly given constants depending on the degree and
coefficients of F .

Theorem 1. Let S = {2a3b : a, b ∈ N} and let

(2) F = fnXn + fn−1X
n−1 + · · ·+ f1X + f0

be a polynomial with integer coefficients, of degree n and having at least
two distinct roots. Assume (for simplicity) that fn ∈ S, (for other fn

a small change in the following will suffice). Set δ = (n − 1)/n. Let
X = 2N3M ∈ S be such that ±F (x) ∈ S. Then either x ≤ c9 or x is
determined by the solution of a system of the following form:

(3) Λ = A ln 2 + B ln 3

where A and B are integer variables dependent on N and M respectively
and if H = max(|A|, |B|) then

(4) |Λ| < c62−(1−δ)H , H < K1

Proof. Denote e = ord2(f0), f = ord3(f0). We need to introduce
the following constants:

c1 = (|fn−1|+ n− 1), c2

(
1 +

∑n−1
i=0 |fi|

) /
fn,

c3 =
(

max
i=0,...,n−2

(|fi|1/(n−1−i)

)
, c4 = 2e3f ,

c5 = c2 + |f0|/fn, c6 = c1(c1 + 1)1−δ,

c7 = 1.237 · 1015, c8 = 1.095,

c9 = max(c2, c3, c4, c5).

The constants c7 and c8 arise from the application of Waldschmidt’s the-
orem. In the case F (x) = −y we have that x is less than the maximum
root of F = 0. (As fn > 0 and x > 0.) Therefore by elementary estimates
we have x ≤ c2.

In the case F (x) = y we let x = 2N3M , y = 2p3q, f = 2r3t. We
obviously have

min(N, p) ≤ ord2(f0), min(M, q) ≤ ord3(f0).
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Assume x > c3 then |fi|xi < xn−1 for i ≤ n− 2. We now obtain,

|fnxn − y| = |fn−1x
n−1 + · · ·+ f0| ≤ |fn−1|xn−1 + · · ·+ |f0| ≤ c1x

n−1

Let X = xn and χ = fnX = 2nN+r3nM+t = 2σ3τ . We then get

|χ− y| ≤ c1χ
δ

We now have four cases to consider.
Case 1: min(N, p) = N, min(M, q) = M.

We then obtain x ≤ c4.
Case 2: min(N, p) = p, min(M, q) = q.

We have y ≤ |f0| so x ≤ c5.
Case 3: min(N, p) = N, min(M, q) = q.

We have 0 ≤ |3τ−q − 2p−σ| ≤ c13(τ−q)δ.

Case 4: min(N, p) = p, min(M, q) = M.

We have 0 ≤ |2σ−p − 2q−τ | ≤ c12(σ−p)δ.
In our two remaining cases, 3 and 4, we have a situation given by the

following in which a and b are variables in N.

0 < |pa
1 − pb

2| < c1p
δa
1 , a, b ∈ N, {p1, p2} = {2, 3}

Let H = max(a, b) and note that max(pa
1 , p

b
2) ≥ 2H . We now have two

cases to consider.
i) pa

1 > pb
2.

Set Λ1 = ln(pa
1/pb

2) > 0. We obtain

0 ≤ Λ1 < (pa
1/pb

2)− 1 < c1p
aδ
1 /pb

2 < c12−(1−δ)H .

ii) pb
2 > pa

1 .

Set Λ2 = ln(pb
2/pa

1) > 0. Now if pa
1 < pb

2/(c1 + 1) then pa
1 < pδa

1 which is
impossible, since 0 < δ < 1. Therefore we obtain

0 ≤ Λ2 < c1p
a(δ−1)
1 ≤ c1p

−b(1−δ)
2 (c1 + 1)1−δ < c62−(1−δ)H .

Hence in both of these cases we obtain for

Λ = ±Λ1 = ∓Λ2 = A ln 2 + B ln 3,

where A = ±a and B = ∓b, the inequality;

0 ≤ |Λ| < c62−(1−δ)H .

In Case 3 we have N ≤ e and nM +t ≤ |B| ≤ H, whereas in Case 4 we
have M ≤ f and nN + r ≤ |A| ≤ H. Thus N and M are bounded by H.
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We now apply Waldschmidt’s Theorem to the linear form Λ, see [5] or [6]
[Lemma 2.1]. We obtain |Λ| > exp(−c7(ln H + c8)). We note in passing
that one could use better estimates as we have only two logarithms, see
[3], but the method does not depend critically on these constants. In fact,
the constant c6 is the one which it is most important to keep small.

This leads us to deduce that H < K1, (see [6] [Lemma 2.3]) where K1

is given by:

(5) K1 = 2
(lnc6 + c7c8 + c7 ln(c7/((1− δ) ln 2)))

(1− δ) ln 2 Q.E.D.
In practice, the number K1 will be too large to allow enumeration of

the solutions so we will need a method to reduce the bound. As Λ is a
linear form in two variables the continued fraction algorithm could be used
to solve this problem in diophantine approximation. However, we shall use
the L3 algorithm, introduced in [2].

For any C > 0 let Γ denote the lattice in Z2 generated by the columns
of the matrix:

Ω =
(

1 0
[C ln 2] [C ln 3]

)
,

where [x] denotes the nearest integer to x. We can apply the L3 algorithm
and obtain a reduced basis {b1, b2} in the sence of [2].

Theorem 2. Let A and B be integers such that if Λ = A ln 2 + B ln 3
and H = max(|A|, |B|) then

|Λ| < K32−K2H , H < K1

Choose C > K2
1 and set

K4 = max
(‖b1‖2
‖b∗1‖2

,
‖b1‖2
‖b∗2‖2

)

If ‖b1‖2 > 5K4K
2
1 then

H <
1

K2 ln 2

(
ln CK3 − ln

(√
‖b1‖2/K4 −K2

1 − 2K1

))

Proof. Set x = Ω
(

A
B

)
=

(
A
λ

) ∈ Γ where λ = A[C ln 2] + B[C ln 3].
We then obtain

|λ− CΛ| ≤ 2K1

|λ| < CK32−K2H + 2K1.

Note also A2 + λ2 ≥ ‖b1‖2/K4 as {b1, b2} is an L3 basis. Hence |λ| >√
‖b1‖2/K4 −K2

1 . Note the root is real by assumption. Combining the two
inequalities for |λ| gives the bound for H which is real by our assumption.
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Q.E.D.

Example. Let F (x) = 4x4 − 3x3 + 7x2 − 3x + 8. We apply Theorem
1 to obtain

δ = 0.75, c6 = 9.76, c9 = 8, K1 = 5.37 · 1017.

We reduce this bound for H by repeated application of Theorem 2.
i) With C = 1040 we get ‖b1‖ = 0.11 · 1021 and hence we find H < 279.
ii) With C = 106 we get ‖b1‖ = 1132 and hence we find H < 58.
iii) With C = 105 we get ‖b1‖ = 192 and hence we find H < 55.
iv) Finally again with C = 105 we find H < 54.

With this reduced bound we have that either x ≤ c9 = 8 or we are
in Cases 3 and 4 of Theorem 1. In the latter cases a study of the proof
reveals that; Either N ≤ 3 and 4M + 2 ≤ 54 i.e. M ≤ 13, or M = 0 and
4N +0 ≤ 54 i.e. N ≤ 13 where x = 2N3M . Now with these bounds it is an
easy matter to show that there are no solutions to the equation F (x) = ±y
with x, y ∈ S.

As can be seen, the computation for reducing the bounds is quite
straightforward, requiring about 30 seconds CPU time for bounds on H of
the size 1040. However, the most computer time is spent searching for a
solution below the final bound. As was remarked earlier it is the constant
c6 which is the most critical: the smaller that this is then the smaller will
be the bounds and the easier the equation will be to solve.
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