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On Poincaré stability

By SHIAOSONG YANG (XIAO-SONG YANG) (Chongqing)

Abstract. In this paper, the author presents a mathematical theory for Poincaré
stability, and establishes some criteria for this kind of stability.

1. Introduction

Among many stabilities in dynamical systems the best-known and
most investigated is undoubtedly the Lyapunov stability. But, as pointed
out by E. A. Jackson [1], Lyapunov stability is rather restrictive, for it
implies that two trajectories close to each other must be for the same value
of time. This kind of stability is sometimes referred to as an ischronous
correspondence of the two solutions. In some cases even an anharmonic
oscillator is unstable in this sense.

To relax this restriction and thereby include an important type of sta-
bility which would be physically more practical in may cases, Poincaré in-
troduced the concept of Poincaré stability or orbital stability as follows [1],
[2], [4]:

Poincaré stability. (a) Let Γ be the orbit defined by u(t) for all t,
and Γ′ be any orbit defined by v(t) for all t, Γ is said to be Poincaré
stable or orbitally stable if, for any ε > 0, there exists a δ(ε) > 0 such
that, if |u(0) − v(τ)| < δ(ε) for some τ , then there exists a continuous
monotonically increasing function t′ = t′(t) such that |u(t)− v(t′)| < ε for
all t > 0.
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(b) The orbit Γ is said to be asymptotically Poincaré stable, if Γ is
Poincaré stable and Γ′ tends toward Γ as t →∞, or more precisely, there
exists a strictly increasing function t′(t), such that |u(t)− v(t′(t))| → 0, as
t →∞.

Examples. Consider the following system in polar-coordinates:

(1.1) ṙ = 0, θ̇ = rθ

Take a solution φ(t) to (1.1), which is of the form

r(t) = r0, θ(t) = θ0 exp(r0t)

with the initial condition (r0, θ0) satisfying r0 > 0.
To see its stability, consider another solution φ̄ : r̄ = r̄0, θ̄ = θ̄0 exp(r̄0t)

with initial condition (r̄0, θ̄0) satisfying r̄0 < r0. It is easy to see from the
expression

θ(t)− θ̄(t) = θ0 exp(r0t)− θ̄0 exp(r̄0t)

= exp(r0t)(θ0 − θ̄0 exp[(r̄0 − r0)t])

that there exists a sequence tk → ∞ such that θ(tk) − θ̄(tk) = (2k + 1)π.
Therefore,

‖φ(tk)− φ̄(tk)‖ =
[
(r(tk) cos θ(tk)− r̄(tk) cos θ̄(tk))2

+ (r(tk) sin θ(tk)− r̄(tk) sin θ̄(tk))2
]1/2

= r(tk) + r̄(tk)

= r0 + r̄0.

If follows that φ(t) is not Lyapunov stable.
However, it is easy to see that φ(t) is Poincaré stable. In fact, for

every ε > 0, in case of |r0− r̄0| < ε, |θ0− θ̄0| < ε, we can take the function
t′ = r0t/r̄0 + (ln θ0 − ln θ̄0)/r̄0, such that

|r(t)− r̄(t)| = |r0 − r̄0| < ε, |θ(t)− θ̄(t′)| = 0.

Therefore ‖φ(tk)− φ̄(tk)‖ < ε.
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Similarly, it is easy to prove that in the following system

(1.2) ṙ = r(1− r), θ̇ = rθ,

the orbit r = 1 is asymptotically Poincaré stable but not asymptotically
Lyapunov stable.

Although Poincaré stability has a long history, it has been rarely inves-
tigated mathematically “because it can be very difficult to establish” [1].

In this paper, the author investigates Poincaré stability mathemati-
cally and obtains some meaningful results.

In Section 2, the required preliminaries are given and in Section 3,
several criteria on Poincaré stability are established.

2. Preliminaries

Firstly, let M [3] be a Riemannian manifold with a C∞ Riemannian
metric 〈·, ·〉 for its tangent bundle TM , which gives positive definite inner
product 〈·, ·〉x on each tangent vector space TMx, x ∈ M and ρ : M×M →
R is the distance function on M induced by 〈·, ·〉. Secondly, let V (x) be a
vector field on M , φ(t, p) : R ×M → M a flow of V (x) with initial point
p ∈ M . For φ(t, p), t ≥ 0, we define its neighborhood as follows:

Let f : R+ × Dn−1 → M (R+ = {t | t ≥ 0}, Dn−1 an n − 1 di-
mensional unit disc) be an immersion such that f(t,Dn−1) is locally and
n− 1 dimensional geodesic disc of radius r perpendicular to V (φ(t, p)) at
φ(t, p), with r small enough. Then we define the image f(R+, Dn−1) as
the neighborhood of φ(t, p) (t ≥ 0). By the tubular manifold theorem,
such a neighborhood does exist.

Remarks. Generally speaking f is not an embedding, but this is no
disadvantage to the following discussions.

In the case that M = Rn, the neighborhood of φ(t, p) is just written
as φ(t, p) × Dn−1

r , where t ≥ 0, Dn−1
r is an n − 1 dimensional disc with

radius r such that at φ(t, p), φ(t, p)×Dn−1
r is the n− 1 dimensional disc

perpendicular to V (φ(t, p)) with center φ(t, p) and radius r.
Finally, let N be the orthogonal complement bundle of the tangent

bundle TM :
N =

⋃

x∈M

Nx,
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where
Nx = {(x, v) ∈ TMx | 〈v, V (x)〉 = 0},

and θ be the projection of TM onto N , i.e.:

θ(x, v) = (x, πx(v)),

where

πx(v) =





0 V (x) = 0,

v − 〈v, V (x)〉V (x)
〈V (x), V (x)〉 otherwise.

For the flow φ(t, p) generated by V (x), the Jacobi matrix of the one pa-
rameter diffeomorphism φ(t, p) at p ∈ M is denoted by Dφ(t, p), clearly
Dφ(t, p) is a one-parameter linear map from TM to TM .

3. Main results

In what follows we assume that the trajectory considered does not
tend to a rest point, i.e., its ω-limit set contains no rest point. For conve-
nience, we denote the neighborhood of φ(t, p) by φ(t, p)×Dn−1

r instead of
f(φ(t, p)×Dn−1

r ).

Theorem 3.1. Let φ(t, p) be a flow contained in a compact set of M ,

and suppose that there exists a T > 0 such that

‖π(Dφ(T + t, p), w)‖ < 1(3.1)

∀t ≥ 0, w ∈ Nφ(t,p)‖w‖ = 1

then φ(t, p) is asymptotically Poincaré stable.

Proof. For the neighborhood φ(t, p) × Dn−1
r of φ(t, p), let us first

consider the following maps:

(3.2) Tk : φ(KT, p)×Dn−1
r → φ((K + 1)T, p)×Dn−1

r

which is induced by the one-parameter diffeomorphism φ(t, p) : R+

×M → M , in the same fashion as a Poincaré map, and Tk+1 = T1 ◦ Tk

clearly holds.
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Clearly,

DTk = π(Dφ(T, φ(KT, p))) at φ(KT, p).

Because φ(t, p) is contained in a compact set, we have two statements: on
the one hand, there exists 0 ≤ c < 1 such that (see (3.1)):

‖DTk‖ = ‖π(Dφ(T, φ(KT, p)))‖ ≤ c < 1, K = 1, 2, . . .

and on the other hand, there exists a sufficiently small η > 0 and a con-
stant c̄ with c ≤ c̄ < 1, such that on the neighborhood

φ(t, p)×Dn−1
η ⊂ φ(t, p)×Dn−1

r

t ≥ 0, Dn−1
η = {x | x ∈ Dn−1

r , ρ(x, 0) ≤ η}

of φ(t, p), the map (3.2) satisfies

(3.3) ρ(Tk(φ(KT, p), b), φ((K + 1)T, p)) < c̄ρ(b, 0), b ∈ Dn−1
η

uniformly for K ∈ Z+, due to the fact that φ(t, p) is contained in a compact
set. It follows that any trajectory ψ(t) with initial point b in φ(0, p)×Dn−1

η

satisfies (tK defined as below)

ρ(ψ(tK+1), b), φ((K + 1)T, p) < c̄ρ(ψ(tK), φ(KT, p))

at the points where ψ(t) passes through the sections

φ(KT, p)×Dn−1
η , K = 0, 1, 2, . . .

Denote by tK a value such that ψ(tK) is in the section φ(KT, p)×Dn−1
η ,

then it follows from the above argument that

ρ(ψ(tK), b), φ(KT, p) < c̄Kρ(ψ(t0), φ(0, p)),

therefore

(3.4) lim
K→∞

ρ(ψ(tK), b), φ(KT, p) = 0.

Secondly let us consider the map

T x
K : φ(KT, x)×Dn−1

η → φ((K + 1)T, x)×Dn−1
η



88 Shiaosong Yang (Xiao-Song Yang)

where
x ∈ σ = {φ(t, p) | 0 ≤ t ≤ T}.

In the same manner, it is not difficult to see that T x
K satisfies the in-

equality (3.3). Since [0, T ] is compact, σ is also compact, and therefore T x
K

satisfies (3.3) uniformly.
Now for any t > 0, there exist x ∈ σ and K ≥ 0, such that

φ(t, p) = φ(KT, x).

If follows from (3.3) that in the section φ(KT, x)×Dn−1
η , we have

ρ
(
ψ(t(t)), φ(KT, x)

)
< c̄KM

where

M = max
t∈[0,T ]

‖ψ(t, b)− φ(t, p)‖, b ∈ φ(0, p)×Dn−1
η .

It can be seen from the fact that K → ∞ as t → ∞ that lim
t→∞

ρ(ψ(t̄(t)),
φ(t, p)) = 0, and this completes the proof. ¤

Now we mainly discuss dynamical systems in Euclidean Space.

Theorem 3.2. Let φ(t, p) be a solution of the system

(3.5) ẋ = F (x), x ∈ Rn, F ∈ Ch(Rn · Rn), h ≥ 1

and let φ(KT, p) × Dn−1
r , defined as in Section 2, be a neighborhood of

φ(t, p). Suppose that

(3.6) (y − φ(t, p)) · F (y) ≤ 0

where the dot denotes the inner product and

y ∈ φ(t, p)×Dn−1
r , t ≥ 0,

then φ(t, p) is stable in Poincaré sense.

Proof. Contradiction argument. For any ε > 0, let us take a neigh-
borhood φ(t, p)×Dn−1

η of φ(t, p) satisfying

(1) φ(t, p)×Dn−1
η ⊂ φ(t, p)×Dn−1

r , t ≥ 0,

(2) η < ε,
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where
Dn−1

η = {x ∣∣ x ∈ Dn−1
r , |x| ≤ η < min(r, ε)}.

Consider any trajectory ψ(t, q) with initial value in φ(0, p)×Dn−1
η . If

there exists a t′(t) > 0, such that

ψ(t′, q) ∈ φ(t, p)×Dn−1
η ,

and
‖ψ(t′, q)− φ(t, p)‖ > η,

then it follows from the fact that ‖ψ(0, q) − φ(0, p)‖ ≤ η that there must
exist 0 ≤ t̄ < t such that

d

ds
‖ψ(s, ψ(t′(t̄), q))− φ(s, φ(t̄, p))‖

∣∣∣
s=0

> 0,

which is equivalent to

d

ds
[ψ(s, ψ(t′(t̄), q))− φ(s, φ(t̄, p))]2

∣∣∣
s=0

> 0,

but

d

ds
[ψ(s, ψ(t′(t̄), q))− φ(s, φ(t̄, p))]2

∣∣∣
s=0

= 2 [ψ(t′(t̄), q)− φ(t̄, p)] · [F (ψ(t′(t̄), q))− F (φ(t̄, p))]

= 2 [ψ(t′(t̄), q)− φ(t̄, p)] · F (ψ(t′(t̄), q)) ≤ 0,

(note that ψ(t′(t̄), q)− φ(t̄, p) is perpendicular to F (ψ(t′(t), q)) leading to
a contradiction).

It is easy to obtain the following results:

Corollary 3.3. Let φ(t, p) be a trajectory as in Theorem 3.2, and N

be a neighborhood of φ(t, p). If for every point x ∈ N , the following hold

(x− φ(t, p)) · F (φ(t, p)) = 0(3.7)

(x− φ(t, p)) · F (x) ≤ 0(3.8)

then φ(t, p) is stable in Poincaré sense.



90 Shiaosong Yang (Xiao-Song Yang)

Corollary 3.4. Denote by DF (x) the Jacobi matrix of F (x), if

(V − φ(t, p)) ·DF (φ(t, p))V < 0, V ∈ Rn

where V satisfies

(V − φ(t, p)) · F (φ(t, p)) = 0,

then φ(t, p) is stable in Poincaré sense.

For the asymptotic Poincaré stability we need the following lemma:

Lemma 3.5. Let φ(t, p) be a trajectory of the system (3.5) in Theo-

rem 3.2. Suppose that there exists a compact neighborhood N = φ(t, p)×
Dn−1

r of φ(t, p), such that every trajectory ψ(t, q) with initial point ψ(t0, q)
∈ φ(t0, p)×Dn−1

r is contained in N . Then the function defined by t̄(t) =
the value of time at which ψ(t̄(t), q) ∈ φ(t, p)×Dn−1

r , is differentiable and

satisfies (d/dt)t̄(t) ≥ δ, where δ is a positive constant.

Proof. Given a time value t and an increment ∆t, the length of the
trajectory φ(t, p) between φ(t, p) and φ(t + ∆t, p) is

∆s = ‖F (φ(t, p))‖∆t,

and the length of the trajectory ψ(t̄, q) between ψ(t̄(t), q) and ψ(t̄+∆t̄, q) =
ψ(t̄(t + ∆t), q) is

∆s̄ = ‖F (ψ(t̄(t), p))‖∆t̄.

Now, on the compact tubular region φ(t′, p) ×Dn−1
r , t′ ∈ [t, t + ∆t],

we see in the light of the tubular manifold theorem that there exists a
diffeomorphism f : [0, 1]×Dn−1 → φ(t′, p)×Dn−1

r such that

DfU = F (x),

where U is the vector field defined on [0, 1] × Dn−1 which has the form
U = (1, 0, . . . , 0).

It follows that t̄(t) is differentiable and there exist positive constants δ′

and δ′′ such that

∆s̄

∆s
≥ δ′,

‖F (φ(t, p))‖
‖F (ψ(t̄(t), q))‖ ≥ δ′′
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hold uniformly on φ(t′, p)×Dn−1
r because of compactness.

Therefore
dt̄

dt
=

ds̄

ds
· ‖F (φ(t, p))‖
‖F (ψ(t̄, q))‖ ≥ δ′δ′′.

Due to the compactness of N , we can find a constant δ, such that
on N , dt̄/dt ≥ δ.

Theorem 3.6. Let φ(t, p) be a trajectory of the system (3.5). If there

exists a compact neighborhood N = φ(t, p) × Dn−1
r of φ(t, p), such that

for every y ∈ N ,

(y − φ(t, p)) · F (y) ≤ c(y − φ(t, p))2, c < 0,

then φ(t, p) is asymptotically stable in Poincaré sense.

Proof. Let ψ(t, q) be a trajectory with initial value ψ(t0, q) ∈ φ(t0, p)
×Dn−1

r .
From Theorem 3.2 and the inequality (3.8) we see that ψ(t, q) ∈ N .

By Lemma 3.5 there exists a function t̄(t) with dt̄/dt ≥ δ (δ > 0), such
that ψ(t̄(t), q) ∈ φ(t, p)×Dn−1

r .
Now the function V (t) = ‖ψ(t̄(t), q)− φ(t, p)‖2 satisfies

dV (t)
dt

= (ψ(t̄(t), q)− φ(t, p)) · (ψ̇(t̄(t), q)t̄′(t)− φ(t, p))

= (ψ(t̄(t), q)− φ(t, p)) · (F (ψ(t̄(t), q))t̄′(t)− F (φ(t, p)))

= (ψ(t̄(t), q)− φ(t, p)) · F (ψ(t̄(t), q))t̄′(t)− 0

≤ cδ(ψ(t̄(t), q)− φ(t, p))2

= cδV (t),

which implies that V (t) ≤ c0 exp(cδt).
Hence lim

t→∞
V (t) = 0, or equivalently, φ(t, p) is asymptotically stable

in Poincaré sense.
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