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Two minimal clones whose join is gigantic

By GÁBOR CZÉDLI (Szeged)

Dedicated to Professor Ferenc Móricz on his sixtieth birthday

Abstract. Let A be a finite set such that the greatest prime divisor of |A| is at
least 5. Then two minimal clones are constructed on A such that their join contains all
operations.

Given a finite set A with at least two elements, the clones on A form
an atomic algebraic lattice LA. The atoms of LA are called minimal clones.
Szabó [5] raised the question that what is the minimal number n = n(|A|)
such that the greatest element 1A of LA is the join of n atoms. In other
words, how many minimal clones are necessary to generate the clone of all
operations on A? He proved 2 ≤ n(|A|) ≤ 3 and n(p) = 2 for p prime,
cf. [5]. Later in [6] he also showed n(2p) = 2 for primes p ≥ 5. Our goal
is not only to extend these results but also to simplify the proof in [6] for
the 2p case. Many of Szabó’s ideas from [5] and [6] will be used in the
present paper.

Theorem 1. Let A be a finite set, and let p divide the number of

elements of A for some prime p ≥ 5. Then there exist two minimal clones

on A whose join contains all operations on A.

The proof relies on the following lemma.
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Lemma 2. Let |A| = pk for a prime p ≥ 5 and an integer k ≥ 2. Then

there are a lattice structure (A,∨,∧) and a fixed point free permutation

g : A → A of order p such that, with the notation m for the ternary

majority operation m : A3 → A, (x, y, z) 7→ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), the

algebra A = (A, m, g) is simple, it has no proper subalgebra and it has no

nontrivial automorphism.

Proof of Lemma 2. Let A = {0 = a0,1, 1 = ak+1,p, a1,1, . . . , a1,p−1,
a2,1, . . . , a2,p−1, a3,1, . . . , a3,p, . . . , ak,1, . . . , ak,p}. Consider the lattice
structure (A,∨,∧) on A as depicted in Figure 1. (Notice that this lattice
is a Hall–Dilworth gluing of k modular nondistributive lattices of length 2.)

Figure 1
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Let g be the following permutation:

(0ak,1ak,2 . . . ak,p−21)(a1,1 . . . a1,p−1a2,p−1)

×(a2,1 . . . a2,p−2a3,pa3,p−1)(a3,1 . . . a3,p−2a4,pa4,p−1)

×(a4,1 . . . a4,p−2a5,pa5,p−1) . . . (ak−1,1 . . . ak−1,p−2ak,pak,p−1).

In Figure 1 the g-orbits are indicated by dotted lines.
Now if Θ is a congruence of A then x ∧ y = m(x, y, 0) and x ∨ y =

m(x, y, 1) preserve Θ, so Θ is a lattice congruence as well. But our lattice
is simple, whence so is A.

Now let S be a subalgebra of A. Clearly, S is the union of some
g-orbits. From m(ai,1, ai,2, ai,3) = ai−1,1 (1 ≤ i ≤ k) we infer that if S

includes the g-orbit of ai,1 then it includes the g-orbit of ai−1,1. Since ak,1

and a0,1 = 0 belong to the same orbit, S includes all orbits. This shows
that A has no proper subalgebra.

An element x ∈ A is called m-irreducible if A \ {x} is closed with
respect to m. Using the monotonicity of m we easily conclude that 1 is
m-irreducible. The doubly (i.e., both meet and join) irreducible elements
are m-irreducible as well. The computational rules

m(ai,1, ai,2, ai,3) = ai−1,0 (1 ≤ i ≤ k),

m(a1,1, a1,2, 1) = a2,p−1,

m(aj−1,1, aj−1,2, 1) = aj,p (3 ≤ j ≤ k)

imply that the rest of elements are m-reducible. Now 0 is the only m-
reducible element with the property that all other elements in its g-orbit
are m-irreducible. Hence 0 is a fixed point of every automorphism τ of
A. Since the set of fixed points of τ is either empty or a subalgebra, all
elements are fixed points and τ is the identity map of A. Hence A has no
nontrivial automorphism. This proves Lemma 2. ¤

The transition from Lemma 2 to Theorem 1 is essentially the same as
that in Szabó [6].

Proof of Theorem 1. Since the case when |A| is a prime is settled
in [5], we can assume that |A| = kp for k ≥ 2 and p ≥ 5. The clone
[m] generated by m (in case of any lattice) is known to be a minimal
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Figure 2

one, cf. e.g. Kalouznin and Pöschel [3, page 115, 4.4.5.(ii)]. Clearly,
the permutation g also generates a minimal clone. To prove that [m] ∨
[g] = 1A it suffices to show that no relation from the six types in the
famous Rosenberg Theorem [4] is preserved both by m and g. (Note that
Rosenberg Theorem is cited in [2] as Thm. A.) Since m is a majority
operation, it does not preserve linear relations and h-regular relations by
[2, Lemma 6]. It is easy to check that if a central relation is preserved by
m and g then its centrum elements form a subalgebra of A. So the lack of
proper subalgebras excludes central relations. Since the simplicity ofA and
the lack of nontrivial automorphisms obviously exclude two further kinds
of Rosenberg’s relations, we are left with the case of a bounded partial
order ρ ⊆ A2 preserved by m and g. If u is the smallest element with
respect to ρ then (u, g(u)) ∈ ρ gives (gp−1(u), gp(u)) = (gp−1(u), u) ∈ ρ,
which contradicts gp−1(u) 6= u. (Alternatively, x ∧ y = m(x, y, 0) and
x ∨ y = m(x, y, 1) also preserve ρ. Since (A,∨,∧) is a simple lattice, ρ is
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the original lattice order or its dual by [1, Cor. 1], so ρ is evidently not
preserved by g.) This proves Theorem 1. ¤

Concluding remarks. While we do not know if n(|A|) = 2 holds for
all finite sets A with at least two elements, Lemma 2 surely fails when
|A| = 2k, k > 1. (Indeed, then {0, g(0)} is a proper subalgebra.) The case
when 3 is the greatest prime divisor of |A| > 3 is less clear. All we know
at present is that Lemma 2 fails for |A| = 6 but holds for |A| ∈ {9, 12, 18}.
For example, the lattice we used for |A| = 18 is given in Figure 2, the
corresponding permutation g is

(0, 16, 15)(1, 4, 5)(2, 3, 9)(6, 7, 14)(8, 10, 17)(11, 12, 13),

and the reasoning is considerably longer than in the proof of Lemma 2.
Unfortunately, the particular arguments for 9, 12 and 18 have not given a
clue to more generality.
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