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Two minimal clones whose join is gigantic

By GABOR CZEDLI (Szeged)

Dedicated to Professor Ferenc Moricz on his sixtieth birthday

Abstract. Let A be a finite set such that the greatest prime divisor of |A| is at
least 5. Then two minimal clones are constructed on A such that their join contains all
operations.

Given a finite set A with at least two elements, the clones on A form
an atomic algebraic lattice L 4. The atoms of L4 are called minimal clones.
SzABO [5] raised the question that what is the minimal number n = n(|A|)
such that the greatest element 14 of L4 is the join of n atoms. In other
words, how many minimal clones are necessary to generate the clone of all
operations on A? He proved 2 < n(]A]) < 3 and n(p) = 2 for p prime,
cf. [5]. Later in [6] he also showed n(2p) = 2 for primes p > 5. Our goal
is not only to extend these results but also to simplify the proof in [6] for
the 2p case. Many of SzABO’s ideas from [5] and [6] will be used in the
present paper.

Theorem 1. Let A be a finite set, and let p divide the number of
elements of A for some prime p > 5. Then there exist two minimal clones
on A whose join contains all operations on A.

The proof relies on the following lemma.
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Lemma 2. Let |A| = pk for a prime p > 5 and an integer k > 2. Then
there are a lattice structure (A,V, ) and a fixed point free permutation
g : A — A of order p such that, with the notation m for the ternary
majority operation m : A3 — A, (z,y,2) — (x Ay)V (z Az)V (yAz), the
algebra A = (A, m, g) is simple, it has no proper subalgebra and it has no

nontrivial automorphism.

PROOF of Lemma 2. Let A ={0=ao1, 1 = axt1,p, a11,--. ,01,p—1,
21, 02 p—1, U315+ ,G3ps ---5 Ak 1,--. 0k}t Consider the lattice
structure (A4, V,A) on A as depicted in Figure 1. (Notice that this lattice
is a Hall-Dilworth gluing of k£ modular nondistributive lattices of length 2.)

Figure 1
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Let g be the following permutation:

(0(1]6710/]@72 e ak,p_gl)(am N al,p_1a27p_1)
X (a271 e a2’p,2a37pa37p,1)(a3,1 e a37p72a4,pa4,p,1)
X(CL4’1 Ce a47p_2a5,pa5,p_1) e (ak_Ll e ak—l,p—2ak,pak,p—l)-

In Figure 1 the g-orbits are indicated by dotted lines.

Now if © is a congruence of A then z Ay = m(z,y,0) and x Vy =
m(x,y, 1) preserve O, so © is a lattice congruence as well. But our lattice
is simple, whence so is A.

Now let S be a subalgebra of A. Clearly, S is the union of some
g-orbits. From m(a;1,a;2,a;3) = a;i—11 (1 < i < k) we infer that if S
includes the g-orbit of a; ; then it includes the g-orbit of a;_1,1. Since a1
and ap = 0 belong to the same orbit, S includes all orbits. This shows
that A has no proper subalgebra.

An element x € A is called m-irreducible if A\ {z} is closed with
respect to m. Using the monotonicity of m we easily conclude that 1 is
m-irreducible. The doubly (i.e., both meet and join) irreducible elements
are m~irreducible as well. The computational rules

m(ai,ai2,0;3) = Gi—1,0 (1<i<k),
m(ai,1,a1,2,1) = asp_1,

m(aj—11,a5-12,1) = ajp 3<j<k)

imply that the rest of elements are m-reducible. Now 0 is the only m-
reducible element with the property that all other elements in its g-orbit
are m-irreducible. Hence 0 is a fixed point of every automorphism 7 of
A. Since the set of fixed points of 7 is either empty or a subalgebra, all
elements are fixed points and 7 is the identity map of A. Hence A has no
nontrivial automorphism. This proves Lemma 2. O

The transition from Lemma 2 to Theorem 1 is essentially the same as
that in SZABO [6].

PROOF of Theorem 1. Since the case when |A| is a prime is settled
in [5], we can assume that |A| = kp for £ > 2 and p > 5. The clone
[m] generated by m (in case of any lattice) is known to be a minimal
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Figure 2

one, cf. e.g. KALOUZNIN and POSCHEL [3, page 115, 4.4.5.(ii)]. Clearly,
the permutation g also generates a minimal clone. To prove that [m] Vv
[g] = 14 it suffices to show that no relation from the six types in the
famous Rosenberg Theorem [4] is preserved both by m and g. (Note that
Rosenberg Theorem is cited in [2] as Thm. A.) Since m is a majority
operation, it does not preserve linear relations and h-regular relations by
[2, Lemma 6]. It is easy to check that if a central relation is preserved by
m and ¢ then its centrum elements form a subalgebra of A. So the lack of
proper subalgebras excludes central relations. Since the simplicity of A and
the lack of nontrivial automorphisms obviously exclude two further kinds
of Rosenberg’s relations, we are left with the case of a bounded partial
order p C A? preserved by m and g. If u is the smallest element with
respect to p then (u,g(u)) € p gives (g7 (u), g% (u)) = ("' (u),u) € p,
which contradicts gP~!(u) # u. (Alternatively, z Ay = m(x,y,0) and
xVy=m(x,y,1) also preserve p. Since (A, V,A) is a simple lattice, p is
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the original lattice order or its dual by [1, Cor. 1], so p is evidently not
preserved by g.) This proves Theorem 1. O

Concluding remarks. While we do not know if n(|4|) = 2 holds for
all finite sets A with at least two elements, Lemma 2 surely fails when
|A| = 2% k > 1. (Indeed, then {0, g(0)} is a proper subalgebra.) The case
when 3 is the greatest prime divisor of |A| > 3 is less clear. All we know
at present is that Lemma 2 fails for |A| = 6 but holds for |[A| € {9, 12,18}.
For example, the lattice we used for |A| = 18 is given in Figure 2, the
corresponding permutation g is

(0,16,15)(1,4,5)(2,3,9)(6,7,14)(8,10,17)(11, 12, 13),

and the reasoning is considerably longer than in the proof of Lemma 2.
Unfortunately, the particular arguments for 9, 12 and 18 have not given a
clue to more generality.
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