On a class of means of two variables

By ZOLTÁN DARÓCZY (Debrecen)

To Professor Béla Gyires on his 90th birthday

Abstract

Let $C M(I)$ denote the class of all continuous and strictly monotonic real functions defined on the interval I. Let $L: I^{2} \rightarrow I$ be a fixed mean on I. A mean $M: I^{2} \rightarrow I$ is called an L-conjugate mean on I if there exists $\varphi \in C M(I)$ for which $M(x, y)=L_{\varphi}^{*}(x, y):=\varphi^{-1}(\varphi(x)+\varphi(y)-\varphi(L(x, y)))$ holds for all $x, y \in I$. We solve the following problems for L-conjugate means: equality, comparison, determining homogeneous and translative means and inequalities involving them. Furthermore, we examine when such a mean is quasi-arithmetic, if $L=A$, where A is the arithmetic mean.

1. Introduction

Let $I \subset \mathbb{R}$ be an open interval. A function $M: I^{2} \rightarrow I$ is called a mean in I if it satisfies the following properties:
(i) If $x, y \in I$ and $x \neq y$ then
$\min \{x, y\}<M(x, y)<\max \{x, y\} ;$
(ii) $\quad M(x, y)=M(y, x)$ for all $x, y \in I$;
(iii) $\quad M$ is continuous on I^{2}.

[^0]Let $C M(I)$ denote the class of all continuous and strictly monotonic real functions defined on the interval I. We remind of the following

Definition 1. A mean $M: I^{2} \rightarrow I$ is called quasi-arithmetic in I if there exists $\varphi \in C M(I)$ such that

$$
\begin{equation*}
M(x, y)=A_{\varphi}(x, y):=\varphi^{-1}\left(\frac{\varphi(x)+\varphi(y)}{2}\right) \tag{1.2}
\end{equation*}
$$

for all $x, y \in I$. Then the function φ is called the generating function of the quasi-arithmetic mean $A_{\varphi}([3],[4],[6],[15])$.

In the theory of quasi-arithmetic means answers are known for the following problems: (p1) problem of equality ([6], [9], [12]); (p2) problem of comparison ([6], [8], [10], [14]); (p3) determining homogenous quasiarithmetic means and inequalities involving them ([6], [16], [5], [10]); (p4) determining translative quasi-arithmetic means and inequalities involving them; (p5) characterization problem ([1], [2], [3], [4], [5], [7], [11], [13], [16], [19], [20]).

Inspired by the paper [15], we define a new class of means of two variables, and answer problems (p1), (p2), (p3), and (p4) for this class. Furthermore, we examine when such a mean is quasi-arithmetic. This new class of means is defined the following way:

Definition 2. Let $L: I^{2} \rightarrow I$ be a fixed mean on I. A mean $M: I^{2} \rightarrow I$ is called L-conjugate mean in I if there exists $\varphi \in C M(I)$ for which

$$
\begin{equation*}
M(x, y)=L_{\varphi}^{*}(x, y):=\varphi^{-1}(\varphi(x)+\varphi(y)-\varphi(L(x, y))) \tag{1.3}
\end{equation*}
$$

for all $x, y \in I$. Then the function φ is called the generating function of the L-conjugate mean L_{φ}^{*}.

It can easily be seen that for any $\varphi \in C M(I) M=L_{\varphi}^{*}: I^{2} \rightarrow I$ is a mean in I, that is, the properties (1.1) are fulfilled [15].

2. Equality and comparison

Let $L: I^{2} \rightarrow I$ be a fixed mean in I. The problem of equality (type p 1) for L-conjugate means is the following: What conditions are necessary and sufficient for a pair of functions $\varphi, \psi \in C M(I)$ in order that

$$
\begin{equation*}
L_{\varphi}^{*}(x, y)=L_{\psi}^{*}(x, y) \tag{2.1}
\end{equation*}
$$

should hold for all $x, y \in I$? This problem will also be solved if we examine the apparently more difficult problem of comparison (type p2): What conditions are necessary and sufficient for a pair of functions $\varphi, \psi \in C M(I)$ in order that

$$
\begin{equation*}
L_{\varphi}^{*}(x, y) \leq L_{\psi}^{*}(x, y) \tag{2.2}
\end{equation*}
$$

should hold for all $x, y \in I$? The latter question is answered by
Theorem 1. Let $\varphi, \psi \in C M(I)$. Then the inequality (2.2) holds for all $x, y \in I$ if and only if
(i) $\psi \circ \varphi^{-1}$ is convex on the interval $\varphi(I)=: J$ for increasing ψ, or
(ii) $\psi \circ \varphi^{-1}$ is concave on the interval $\varphi(I)=: J$ for decreasing ψ.

Proof. We prove (i), the proof of (ii) is similar. So let $\psi \in C M(I)$ be increasing. Then (2.2) implies

$$
\psi \circ \varphi^{-1}(\varphi(x)+\varphi(y)-\varphi(L(x, y))) \leq \psi(x)+\psi(y)-\psi(L(x, y))
$$

for all $x, y \in I$. From this, with notations $\varphi(x)=: u, \varphi(y)=: v(u, v \in$ $\varphi(I)=J)$ and $f:=\psi \circ \varphi^{-1}(f \in C M(J))$, we have

$$
\begin{equation*}
f(u+v-M(u, v))+f(M(u, v)) \leq f(u)+f(v), \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
M(u, v):=\varphi\left(L\left(\varphi^{-1}(u), \varphi^{-1}(v)\right)\right) \quad(u, v \in J) \tag{2.4}
\end{equation*}
$$

is a mean in J. We need the following lemma (see also [15], [17]).
Lemma 1. Let $M: J^{2} \rightarrow J$ be a mean on the open interval $J \subset \mathbb{R}$. Then the sequence defined by equations $M_{1}(u, v):=M(u, v)$ and $M_{n+1}(u, v):=M\left(M_{n}(u, v), u+v-M_{n}(u, v)\right)(n \in \mathbb{N} ; u, v \in J)$ is convergent and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M_{n}(u, v)=\frac{u+v}{2} \tag{2.5}
\end{equation*}
$$

Proof. If $M: J^{2} \rightarrow J$ is a mean in J, then the function $J^{2} \ni$ $(u, v) \mapsto u+v-M(u, v)$ is also a mean, thus the sequence $M_{n}(u, v)(n \in \mathbb{N})$
is well-defined. If $u=v$, the assertion clearly holds, since $M(u, u)=u$ $(u \in J)$.

Let $u<v(u, v \in J)$ be fixed. It can easily be seen that for the closed intervals

$$
I_{k}:=\left[\alpha_{k}(u, v), \omega_{k}(u, v)\right]
$$

with the notations

$$
\begin{aligned}
& \alpha_{k}(u, v):=\min \left\{M_{k}(u, v), u+v-M_{k}(u, v)\right\} \\
& \omega_{k}(u, v):=\max \left\{M_{k}(u, v), u+v-M_{k}(u, v)\right\}
\end{aligned}
$$

we have $I_{k+1} \subset I_{k}(k \in \mathbb{N})$, and, moreover, the symmetry of M implies

$$
\begin{equation*}
M_{k+1}(u, v)=M\left(\alpha_{k}(u, v), \omega_{k}(u, v)\right) \tag{2.6}
\end{equation*}
$$

since $\frac{1}{2}\left(\alpha_{k}(u, v), \omega_{k}(u, v)\right)=\frac{u+v}{2}, \frac{u+v}{2} \in \bigcap_{k=1}^{\infty} I_{k}$ holds.
Let $\sup _{k \in \mathbb{N}} \alpha_{k}(u, v)=\lim _{k \rightarrow \infty} \alpha_{k}(u, v)=\alpha(u, v)$ and $\inf _{k \in \mathbb{N}} \omega_{k}(u, v)=$ $\lim _{k \rightarrow \infty} \omega_{k}(u, v)=\omega(u, v)$, then

$$
\begin{equation*}
\alpha_{l}(u, v) \leq \alpha(u, v) \leq \omega(u, v) \leq \omega_{s}(u, v) \tag{2.7}
\end{equation*}
$$

for all $l, s \in \mathbb{N}$. We show that $\alpha(u, v)=\omega(u, v)=\frac{u+v}{2}$. If there existed $u<v$ such that $\alpha(u, v)<\omega(u, v)$ then by the property of means

$$
\alpha(u, v)<M(\alpha(u, v), \omega(u, v))<\omega(u, v)
$$

would hold. On the other hand, the continuity of M and $\left(\alpha_{k}(u, v), \omega_{k}(u, v)\right) \rightarrow(\alpha(u, v), \omega(u, v))(k \rightarrow \infty)$ imply the existence of $N \in \mathbb{N}$ for which

$$
\alpha(u, v)<M\left(\alpha_{N}(u, v), \omega_{N}(u, v)\right)<\omega(u, v)
$$

that is, by (2.6),

$$
\left.M_{N+1}(u, v) \in\right] \alpha(u, v), \omega(u, v)[
$$

Now $M_{n+1}(u, v)$ equals either $\alpha_{N+1}(u, v)$ or $\omega_{N+1}(u, v)$, which contradicts (2.7). Thus $\alpha(u, v)=\omega(u, v)$ is the only number that belongs to $\bigcap_{k=1}^{\infty} I_{k}$, that is, $\alpha(u, v)=\omega(u, v)=\frac{u+v}{2}$. So from (2.6) we have (2.5).

Now we continue the proof of Theorem 1.
From inequality (2.3), using the notations of Lemma 1,

$$
\begin{equation*}
f\left(u+v-M_{n}(u, v)\right)+f\left(M_{n}(u, v)\right) \leq f(u)+f(v) \tag{2.8}
\end{equation*}
$$

follows for all $n \in \mathbb{N}$ and $u, v \in J$, which can be proved by induction. For $n=1$, (2.8) holds by (2.3). If (2.8) holds for n, then putting $M_{n}(u, v)$ for u and $u+v-M_{n}(u, v)$ for v in (2.8), we have by the assumption

$$
\begin{aligned}
& f\left(u+v-M_{n+1}(u, v)\right)+f\left(M_{n+1}(u, v)\right) \\
& \quad \leq f\left(u+v-M_{n}(u, v)\right)+f\left(M_{n}(u, v)\right) \leq f(u)+f(v) .
\end{aligned}
$$

Using the assertion of the lemma, since $f \in C M(J)$, with $n \rightarrow \infty$, from (2.8) we obtain

$$
\begin{equation*}
2 f\left(\frac{u+v}{2}\right) \leq f(u)+f(v) \tag{2.9}
\end{equation*}
$$

for all $u, v \in J$, that is, f is Jensen-convex in J. Since f is continuous, f is convex in J [14]. This proves the necessity of the condition.

Now suppose that $\psi \in C M(I)$ is increasing and $f:=\psi \circ \varphi^{-1}$ is convex on the interval $\varphi(I)=J$. Let $u, v \in J$ be arbitrary. Then there exists $0<\lambda<1$ such that for the mean $M: J^{2} \rightarrow J$ defined in (2.4)

$$
M(u, v)=\lambda u+(1-\lambda) v
$$

holds. Thus, by the convexity of f

$$
\begin{aligned}
f(u & +v-M(u, v))+f(M(u, v)) \\
& =f(u+v-\lambda u-(1-\lambda) v)+f(\lambda u+(1-\lambda) v) \\
& =f((1-\lambda) u+\lambda v)+f(\lambda u+(1-\lambda) v) \\
& \leq(1-\lambda) f(u)+\lambda f(v)+\lambda f(u)+(1-\lambda) f(v) \\
& =f(u)+f(v) .
\end{aligned}
$$

From this inequality, with the substitution $\varphi(x)=u, \psi(y)=v(x, y \in I$ are arbitrary) and from (2.4), by $M(u, v)=\varphi(L(x, y))$ we have

$$
\begin{aligned}
\psi \circ \varphi^{-1}(\varphi(x)+\varphi(y) & -\varphi(L(x, y)))+\psi \circ \varphi^{-1}(\varphi(L(x, y))) \\
& \leq \psi(x)+\psi(y)
\end{aligned}
$$

which implies, since ψ^{-1} is increasing, $L_{\varphi}^{*}(x, y) \leq L_{\psi}^{*}(x, y)$ for all $x, y \in I$.

Theorem 2. Let $\varphi, \psi \in C M(I)$. The equality (2.1) holds for all $x, y \in I$ if and only if there exist real constants $\alpha \neq 0$ and β such that

$$
\begin{equation*}
\psi(x)=\alpha \varphi(x)+\beta \tag{2.10}
\end{equation*}
$$

for all $x \in I$.
Proof. It can easily be seen that $L_{\psi}^{*}(x, y)=L_{-\psi}^{*}(x, y)$ for all $x, y \in I$, thus, by Theorem 1 , both $\psi \circ \varphi^{-1}=: f$ and $-\psi \circ \varphi^{-1}=-f$ are convex in $\varphi(I)=: J$, that is, for all values of $u, v \in J$ and $0<\lambda<1$

$$
f(\lambda u+(1-\lambda) v)=\lambda f(u)+(1-\lambda) f(v) .
$$

This implies $f(u)=\alpha u+\beta(u \in J)$, where $\alpha \neq 0$ and β are constants. With the notation $u=\varphi(x)(x \in I)$ we obtain (2.10). Conversely, if ψ is of the form (2.10) one can easily check equality (2.1).

Definition 3. Let $\varphi, \psi \in C M(I)$. ψ and φ are called equivalent if there exist real numbers $\alpha \neq 0$ and β for which (2.10) holds for all $x \in I$. Notation: $\psi \sim \varphi$ or $\psi(x) \sim \varphi(x)(x \in I)$.

Theorem 3. If $\varphi, \psi \in C M(I)$ and $\psi \sim \varphi$ then $A_{\varphi}=A_{\psi}$ and $L_{\varphi}^{*}=L_{\psi}^{*}$, that is, equivalent generating functions define the same quasiarithmetic or L-conjugate mean.

Proof. It is known for quasi-arithmetic means [6]. For L-conjugate means, it follows from Theorem 2.

3. Homogeneous L-conjugate means in the case

of homogeneous L

Definition 4. If \mathbb{R}_{+}denotes the set of positive real numbers and $M: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$is a mean on \mathbb{R}_{+}, then this mean is called homogeneous if

$$
\begin{equation*}
M(t x, t y)=t M(x, y) \tag{3.1}
\end{equation*}
$$

holds for all $x, y, t \in \mathbb{R}_{+}$.

Theorem 4. Let $L: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$be a fixed homogeneous mean on \mathbb{R}_{+} and let $\varphi \in C M\left(\mathbb{R}_{+}\right)$. Then the L-conjugate mean $L_{\varphi}^{*}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$on \mathbb{R}_{+} is homogeneous if and only if

$$
\begin{equation*}
\varphi(x)=\frac{x^{a}-1}{a} \quad(a \in \mathbb{R}, a \neq 0) \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\varphi(x)=\log x \tag{3.3}
\end{equation*}
$$

for all $x \in \mathbb{R}_{+}$, up to equivalence for the generating functions. According to this, the L-conjugate homogeneous means for homogeneous L are the family of means of one parameter ($a \in \mathbb{R}$)

$$
L_{a}^{*}(x, y):= \begin{cases}\left(x^{a}+y^{a}-L(x, y)^{a}\right)^{\frac{1}{a}} & \text { if } a \neq 0 \tag{3.4}\\ \frac{x y}{L(x, y)} & \text { if } a=0 .\end{cases}
$$

Notice that

$$
\begin{equation*}
\lim _{a \rightarrow 0} L_{a}^{*}(x, y)=L_{0}^{*}(x, y) \tag{3.5}
\end{equation*}
$$

for all $x, y \in \mathbb{R}_{+}$.
Proof. Let $L: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$be a homogeneous mean and $\varphi \in C M\left(\mathbb{R}_{+}\right)$ for which

$$
\begin{equation*}
L_{\varphi}^{*}(t x, t y)=t L_{\varphi}^{*}(x, y) \tag{3.6}
\end{equation*}
$$

holds for all $t, x, y \in \mathbb{R}_{+}$. For a fixed $t \in \mathbb{R}_{+}$, let

$$
\begin{equation*}
\psi_{t}(x):=\varphi(t x) \quad\left(x \in \mathbb{R}_{+}\right) \tag{3.7}
\end{equation*}
$$

Clearly, $\psi_{t} \in C M\left(\mathbb{R}_{+}\right)$and

$$
\begin{aligned}
L_{\psi_{t}}^{*}(x, y) & =\psi^{-1}\left(\psi_{t}(x)+\psi_{t}(y)-\psi_{t}(L(x, y))\right) \\
& =\frac{1}{t} \varphi^{-1}(\varphi(t x)+\varphi(t y)-\varphi(t L(x, y))) \\
& =\frac{1}{t} \varphi^{-1}(\varphi(t x)+\varphi(t y)-\varphi(L(t x, t y))) \\
& =\frac{1}{t} L_{\varphi}^{*}(t x, t y)=L_{\varphi}^{*}(x, y)
\end{aligned}
$$

for all $x, y \in \mathbb{R}_{+}$. Thus by Theorem 2 there exist real numbers $\alpha(t) \neq 0$ and $\beta(t)$ such that

$$
\psi_{t}(x)=\alpha(t) \varphi(x)+\beta(t)
$$

for all $x \in \mathbb{R}_{+}$, which implies

$$
\begin{equation*}
\varphi(t x)=\alpha(t) \varphi(x)+\beta(t) \tag{3.8}
\end{equation*}
$$

for all elements $x \in \mathbb{R}_{+}$and $t \in \mathbb{R}_{+}$and $\alpha(t) \neq 0$. Since $\varphi \in C M(\mathbb{R})$, by a well-known theorem of Lebesgue [18] there exists $x_{0} \in \mathbb{R}_{+}$at which φ is differentiable. Then the left hand side of (3.8) is differentiable at the point $x=x_{0}$, i.e., $\varphi^{\prime}\left(t x_{0}\right)$ exists. Since $t x_{0}=s$ runs through all the elements of $\mathbb{R}_{+}, \varphi^{\prime}(s)$ exists for all $s \in \mathbb{R}_{+}$. We show that $\varphi^{\prime}(s) \neq 0$ for all $s \in \mathbb{R}_{+}$. If there existed $s_{0} \in \mathbb{R}_{+}$for which $\varphi^{\prime}\left(s_{0}\right)=0$, then differentiating (3.8) with respect to x and putting $x=s_{0}$ we would obtain $\varphi^{\prime}\left(t s_{0}\right)=0$ for all $t \in \mathbb{R}_{+}$, i.e., φ would be constant, which contradicts $\varphi \in C M\left(\mathbb{R}_{+}\right)$.

Thus $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is differentiable and $\varphi^{\prime}(x) \neq 0$ for all $x \in \mathbb{R}_{+}$. We look for solutions φ for which $\varphi(1)=0$ and $\varphi^{\prime}(1)=1$. This causes no loss of generality, as for all φ the generating function

$$
\varphi^{*}(t):=\frac{\varphi(t)}{\varphi^{\prime}(1)}-\frac{\varphi(1)}{\varphi^{\prime}(1)}
$$

satisfies the required property and $\varphi \sim \varphi^{*}$.
Putting $x=1$ in equation (3.8), we obtain $\beta(t)=\varphi(t)$. Differentiating equation (3.8) with respect to x we have

$$
\varphi^{\prime}(t x) t=\alpha(t) \varphi^{\prime}(x),
$$

which implies, with the substitution $x=1, \alpha(t)=t \varphi^{\prime}(t)$. Now putting the results we got back into equation (3.8) and interchanging the variables t and x we get

$$
\varphi(t x)=t \varphi^{\prime}(t) \varphi(x)+\varphi(t)=x \varphi^{\prime}(x) \varphi(t)+\varphi(x),
$$

from which, with the substitution $t=2$, since $\varphi(2) \neq 0$,

$$
\begin{equation*}
x \varphi^{\prime}(x)-1=\frac{2 \varphi^{\prime}(2)-1}{\varphi(2)} \varphi(x)=a \varphi(x) \tag{3.9}
\end{equation*}
$$

follows, where $a \in \mathbb{R}$ is a constant value. If $a \neq 0$, then the only solution of the differential equation (3.9) is (3.2). If $a=0$ we obtain solution (3.3). The remaining statement of the theorem is obvious.

Remark. The functional equation (3.8) and its solutions are known (see [6], p. 69). Here we gave a different argument by using the monotonicity of φ and reducing (3.8) directly to the differential equation (3.9).

The comparison theorem implies
Theorem 5. If $L: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$is a homogeneous mean on \mathbb{R}_{+}and $a, b \in \mathbb{R}_{+}$then

$$
\begin{equation*}
L_{a}^{*}(x, y) \leq L_{b}^{*}(x, y) \tag{3.10}
\end{equation*}
$$

holds for all $x, y \in \mathbb{R}_{+}$if and only if

$$
\begin{equation*}
a \leq b \tag{3.11}
\end{equation*}
$$

Proof. With the notation

$$
\chi_{a}(u):=\left\{\begin{array}{ll}
\frac{u^{a}-1}{a} & \text { if } a \neq 0 \tag{3.12}\\
\log u & \text { if } a=0
\end{array} \quad\left(u \in \mathbb{R}_{+}\right)\right.
$$

(3.10) holds if and only if

$$
\begin{equation*}
L_{\chi_{a}}^{*}(x, y) \leq L_{\chi_{b}}^{*}(x, y) \tag{3.13}
\end{equation*}
$$

holds for all $x, y \in \mathbb{R}_{+}$, where $\chi_{a}, \chi_{b} \in C M\left(\mathbb{R}_{+}\right)$. One can easily check that $\chi_{a}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is differentiable and $\chi_{a}^{\prime}(u)>0$ for all $u \in \mathbb{R}_{+}$. Therefore, by the comparison theorem, (3.13) holds if and only if $f:=\chi_{b} \circ \chi_{a}^{-1}$ is convex on the interval $J:=\chi_{a}\left(\mathbb{R}_{+}\right)$. Since the function f is differentiable, this holds if and only if

$$
f(x)-f(y) \geq(x-y) f^{\prime}(y)
$$

for all $x, y \in J$, that is,

$$
\chi_{b} \circ \chi_{a}^{-1}(x)-\chi_{b} \circ \chi_{a}^{-1}(y) \geq(x-y) \chi_{b}^{\prime} \circ \chi_{a}^{-1}(y) \frac{1}{\chi_{a}^{\prime} \circ \chi_{a}^{-1}(y)},
$$

from which, with the notations $u:=\chi_{a}^{-1}(x), v:=\chi_{a}^{-1}(y)\left(u, v \in \mathbb{R}_{+}\right)$

$$
\begin{equation*}
\frac{\chi_{b}(u)-\chi_{b}(v)}{\chi_{b}^{\prime}(v)} \geq \frac{\chi_{a}(u)-\chi_{a}(v)}{\chi_{a}^{\prime}(v)} \tag{3.14}
\end{equation*}
$$

follows for all $u, v \in \mathbb{R}_{+}$. Putting the function (3.12) into the inequality (3.14) we obtain

$$
v \chi_{a}\left(\frac{u}{v}\right) \leq v \chi_{b}\left(\frac{u}{v}\right),
$$

which implies, with the notation $\frac{u}{v}=: s \in \mathbb{R}_{+}$,

$$
\begin{equation*}
\chi_{a}(s) \leq \chi_{b}(s) \tag{3.15}
\end{equation*}
$$

for all $s \in \mathbb{R}_{+}$. Therefore it is enough to show that (3.15) holds for all $s \in \mathbb{R}_{+}$if and only if $a \leq b$. This means that $\mathbb{R} \ni a \mapsto \chi_{a}(s)$ is increasing for any fixed $s \in \mathbb{R}_{+}$and there exists $s_{0} \in \mathbb{R}_{+}$for which $\mathbb{R} \ni a \mapsto \chi_{a}\left(s_{0}\right)$ is strictly increasing. This follows from

$$
\frac{\partial}{\partial a} \chi_{a}(s)=\left\{\begin{array}{ll}
\frac{s^{a} \log s^{a}-s^{a}+1}{a^{2}} & \text { if } a \neq 0 \\
\frac{(\log s)^{2}}{2} & \text { if } a=0
\end{array} \quad\left(s \in \mathbb{R}_{+}\right)\right.
$$

and since $z \log z-z+1 \geq 0\left(z \in \mathbb{R}_{+}\right)$,

$$
\frac{\partial}{\partial a} \chi_{a}(s) \geq 0 \quad\left(s \in \mathbb{R}_{+}\right)
$$

that is, $a \mapsto \chi_{a}(s)$ is increasing in a with s fixed. If $s \neq 0$ then $a \mapsto \chi_{a}(s)$ is strictly increasing. This completes the proof of the theorem.

As a special case of the theorem we obtain the inequality $L_{-1}^{*} \leq L_{0}^{*} \leq$ $L_{1}^{*}:$ If $L: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$is a homogeneous mean then

$$
\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{L(x, y)}\right)^{-1} \leq \frac{x y}{L(x, y)} \leq x+y-L(x, y)
$$

for all values $x, y \in \mathbb{R}_{+}$. Of course, this inequality can be proved in an elementary way.

4. Translative L-conjugate means in the case of translative L

Definition 5. A mean $M: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on \mathbb{R} is called translative if

$$
\begin{equation*}
M(t+x, t+y)=t+M(x, y) \tag{4.1}
\end{equation*}
$$

holds for all $t, x, y \in \mathbb{R}$.

Theorem 6. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a translative mean in \mathbb{R} and $\varphi \in$ $C M(\mathbb{R})$. Then the L-conjugate mean $L_{\varphi}^{*}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on \mathbb{R} is translative if and only if

$$
\begin{equation*}
\varphi(x)=\frac{e^{a x}-1}{a} \quad(a \in \mathbb{R}, a \neq 0) \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\varphi(x)=x \tag{4.3}
\end{equation*}
$$

for all $x \in \mathbb{R}$ up to equivalence for the generating functions.
According to this, the L-conjugate translative means for translative L are the family of means of one parameter $(a \in \mathbb{R})$

$$
L_{[a]}^{*}(x, y):= \begin{cases}\frac{1}{a} \log \left(e^{a x}+e^{a y}-e^{a L(x, y)}\right) & \text { if } a \neq 0 \tag{4.4}\\ x+y-L(x, y) & \text { if } a=0\end{cases}
$$

for which

$$
\begin{equation*}
\lim _{a \rightarrow 0} L_{[a]}^{*}(x, y)=L_{[0]}^{*}(x, y) \tag{4.5}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$.
Proof. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a translative mean on \mathbb{R} and $\varphi \in C M(\mathbb{R})$.
Then

$$
\begin{equation*}
H(u, v):=\exp L(\log u, \log v) \quad\left(u, v \in \mathbb{R}_{+}\right) \tag{4.6}
\end{equation*}
$$

is a homogeneous mean on \mathbb{R}_{+}and with the notation $\psi(u):=\varphi(\log u)$ $\left(u \in \mathbb{R}_{+}\right) \psi \in C M\left(\mathbb{R}_{+}\right)$, furthermore, for all $s, u, v \in \mathbb{R}_{+}$

$$
\begin{align*}
H_{\psi}^{*}(s u, s v) & =\psi^{-1}(\psi(s u)+\psi(s v)-\psi(H(s u, s v))) \\
& =\exp \varphi^{-1}(\varphi(\log s u)+\varphi(\log s v)-\varphi(L(\log s u, \log s v))) \\
& \left.\left.=\exp L_{\varphi}^{*}(\log s+\log u, \log s+\log v)\right)\right) \tag{4.7}\\
& =\exp (\log s) \exp L_{\varphi}^{*}(\log u, \log v) \\
& =s H_{\psi}^{*}(u, v)
\end{align*}
$$

that is, $H_{\psi}^{*}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$is a homogeneous mean. Thus from Theorem 4 either $\psi(u)=\frac{u^{a}-1}{a}(a \neq 0)$ or $\psi(u)=\log u\left(u \in \mathbb{R}_{+}\right)$follows, which implies (4.2) and (4.3) for φ. The remaining statement of the theorem is obvious.

Theorem 7. If $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a translative mean on \mathbb{R} and $a, b \in \mathbb{R}$, then

$$
\begin{equation*}
L_{[a]}^{*}(x, y) \leq L_{[b]}^{*}(x, y) \tag{4.8}
\end{equation*}
$$

holds for all $x, y \in \mathbb{R}$ if and only if

$$
\begin{equation*}
a \leq b \tag{4.9}
\end{equation*}
$$

Proof. The statement easily follows from the relation between homogeneous and translative means and Theorem 5.

5. A-conjugate means which are quasi-arithmetic means

The best-known mean is the arithmetic mean $A: I^{2} \rightarrow I$ defined by

$$
\begin{equation*}
A(x, y):=\frac{x+y}{2} \quad(x, y \in I) \tag{5.1}
\end{equation*}
$$

and can be defined on any open interval $I \subset \mathbb{R}$. The following problem seems to be natural: For which $\varphi \in C M(I)$ will the A-conjugate mean $A_{\varphi}^{*}: I^{2} \rightarrow I$ be also quasi-arithmetic on the interval I ? This means that if φ is the required generating function, then there exists $\psi \in C M(I)$ such that

$$
\begin{equation*}
A_{\varphi}^{*}(x, y)=A_{\psi}(x, y) \tag{5.2}
\end{equation*}
$$

holds for all $x, y \in I$. In more detail, for the unknown functions $\varphi, \psi \in$ $C M(I)$ the functional equation

$$
\begin{equation*}
\varphi^{-1}\left(\varphi(x)+\varphi(y)-\varphi\left(\frac{x+y}{2}\right)\right)=\psi^{-1}\left(\frac{\psi(x)+\psi(y)}{2}\right) \tag{5.3}
\end{equation*}
$$

holds for all $x, y \in I$.
The problem has not been solved yet in its most general form. If we require that the generating function φ in (5.2) (or (5.3)) satisfy further conditions then the generating functions φ and ψ can be determined, and therefore we can derive means from them that are A-conjugate and quasiarithmetic at the same time. Our aim, which will be realized in Section 6, is to prove the following:

Theorem 8. Suppose that $\varphi \in C M(I)$ is twice differentiable in I. Then the A-conjugate mean $A_{\varphi}^{*}: I^{2} \rightarrow I$ is quasi-arithmetic in I if and only if φ is one of the functions below (disregarding the equivalence of generating functions):
(i) $\varphi(x)=x$ if $x \in I$,
(ii) There exists $\lambda \in P_{+}:=\left\{\lambda \in \mathbb{R} \mid I+\lambda \subset \mathbb{R}_{+}\right\}$such that

$$
\varphi(x)=\log (x+\lambda) \text { if } x \in I,
$$

(iii) There exists $\mu \in P_{-}:=\left\{\mu \in \mathbb{R} \mid-I+\mu \subset \mathbb{R}_{+}\right\}$such that $\varphi(x)=\log (-x+\mu)$ if $x \in I$.

Remarks.
(1) If $I=] a, b[(a, b \in \mathbb{R}, a<b)$ is bounded then

$$
P_{+}=\{\lambda \in \mathbb{R} \mid \lambda>-a\} \quad \text { and } \quad P_{-}=\{\mu \in \mathbb{R} \mid \mu>b\} .
$$

(2) If I is not bounded then $I=\mathbb{R}$ and cases (ii) and (iii) do not occur; or $I=]-\infty, b[(b \in \mathbb{R})$ and case (ii) does not occur; or $I=] a, \infty[(a \in \mathbb{R})$ and case (iii) does not occur.

6. The proof of Theorem 8

To make the proof of Theorem 8 easier to read we first prove the following two lemmas:

Lemma 2. Let $\varphi \in C M(I)$ be (once) continuously differentiable in I and $\varphi^{\prime}(x) \neq 0$ if $x \in I$. If there exists $\psi \in C M(I)$ for which

$$
\begin{equation*}
A_{\varphi}^{*}(x, y)=A_{\psi}(x, y) \tag{6.1}
\end{equation*}
$$

holds for all $x, y \in I$ then ψ is (once) differentiable in I and $\psi^{\prime}(x) \neq 0$ if $x \in I$.

Proof. By (6.1), for all $x, y \in I$

$$
\begin{equation*}
\psi(x)=2 \psi\left(A_{\varphi}^{*}(x, y)\right)-\psi(y) \tag{6.2}
\end{equation*}
$$

Now let $x_{0} \in I$ be arbitrarily fixed. Then from (6.2)

$$
\psi\left(x_{0}\right)=2 \psi\left(A_{\varphi}^{*}\left(x_{0}, y\right)\right)-\psi(y)
$$

follows for all $y \in I$. Since the function $y \mapsto A_{\varphi}^{*}\left(x_{0}, y\right)(y \in I)$ is continuous, $A_{\varphi}^{*}\left(x_{0}, I\right)$ is a nonvoid open interval. Then by the monotonity of ψ and Lebesgue's theorem ψ is almost everywhere differentiable, thus there exists $y_{0} \in I$ such that ψ is differentiable at $A_{\varphi}^{*}\left(x_{0}, y_{0}\right)$. Since φ is differentiable and $\varphi^{\prime}(x) \neq 0(x \in I)$, its inverse is also differentiable, therefore the function $x \mapsto A_{\varphi}^{*}\left(x, y_{0}\right)(x \in I)$ is differentiable at x_{0}, and by

$$
\psi(x)=2 \psi\left(A_{\varphi}^{*}\left(x, y_{0}\right)\right)-\psi\left(y_{0}\right) \quad(x \in I)
$$

ψ is differentiable at x_{0} by the differentiation rule of composite functions. Thus differentiating (6.2) with respect to x we have

$$
\begin{equation*}
\psi^{\prime}(x)=2 \psi^{\prime}\left(A_{\varphi}^{*}(x, y)\right) \frac{\varphi^{\prime}(x)-\varphi^{\prime}\left(\frac{x+y}{2}\right) \frac{1}{2}}{\varphi^{\prime}\left(A_{\varphi}^{*}(x, y)\right)} \tag{6.3}
\end{equation*}
$$

for all $x, y \in I$.
Now let $x_{0} \in I$ be arbitrarily fixed. Then the function $y \mapsto \varphi^{\prime}\left(x_{0}\right)-$ $\varphi^{\prime}\left(\frac{x+y}{2}\right) \frac{1}{2}(y \in I)$ takes the value $\varphi^{\prime}\left(x_{0}\right) \frac{1}{2} \neq 0$ at $y=x_{0}$, thus, by the continuity of φ, there exists $\delta>0$ such that for any $y \in] x_{0}-\delta, x_{0}+\delta[\subset I$, $\varphi^{\prime}\left(x_{0}\right)-\varphi^{\prime}\left(\frac{x+y}{2}\right) \frac{1}{2} \neq 0$. On the other hand, as ψ is strictly monotonic, there exists $\left.y_{0} \in\right] x_{0}-\delta, x_{0}+\delta\left[\right.$ for which $\psi^{\prime}\left(A_{\varphi}^{*}\left(x_{0}, y_{0}\right)\right) \neq 0$. This implies, by (6.3),

$$
\psi^{\prime}\left(x_{0}\right) \neq 0,
$$

which completes the proof of the Lemma.
Lemma 3. Let $J \subset \mathbb{R}$ be an open interval and $F: J \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
(F(x)-F(y))\left(F\left(\frac{x+y}{2}\right)-\frac{F(x)+F(y)}{2}\right)=0 \tag{6.4}
\end{equation*}
$$

holds for all $x, y \in J$. If F is continuous on J then there exist constants $\alpha, \beta \in \mathbb{R}$ for which

$$
\begin{equation*}
F(x)=\alpha x+\beta \quad \text { if } x \in I \tag{6.5}
\end{equation*}
$$

Proof. If F is constant in J then (6.4) holds and $\alpha=0$ in (6.4). If F is not constant in J then there exist $a, b \in J$ with $a<b$ such that
$F(a) \neq F(b)$. Then (6.4) implies

$$
F\left(\frac{a+b}{2}\right)=\frac{F(a)+F(b)}{2} .
$$

It can be seen by induction that

$$
F\left(\frac{k a+l b}{2^{n}}\right)=\frac{k F(a)+l F(b)}{2^{n}},
$$

where $k \geq 0, l \geq 0$ are integers and $k+l=2^{n}(n=0,1,2, \ldots)$. From this, by the continuity of F and the density of $\frac{k a+l b}{2^{n}}$ in $[a, b]$, we obtain

$$
\begin{equation*}
F(x)=\alpha x+\beta \quad \text { if } x \in[a, b], \tag{6.6}
\end{equation*}
$$

where

$$
\alpha=\frac{F(b)-F(a)}{b-a} \neq 0 \quad \text { and } \quad \beta=\frac{b F(a)-a F(b)}{b-a} .
$$

If $t \in J$ and $t \notin[a, b]$ and $t \in] a-\delta, a[$ or $t \in] b, b+\delta\left[\right.$ (where $0<\delta<\frac{b-a}{2}$) then there exists $x \in] a, b\left[\right.$ such that $F(x) \neq F(t)$ and $\left.\frac{x+t}{2} \in\right] a, b[$, from which, by (6.4)

$$
\alpha \frac{x+t}{2}+\beta=F\left(\frac{x+t}{2}\right)=\frac{F(x)+F(t)}{2}=\frac{\alpha x+\beta+F(t)}{2}
$$

follows, that is, $F(t)=\alpha t+\beta$. Thus the solution (6.6) can be extended to J, with this the proof of the Lemma is complete.

Proof of Theorem 8. Let

$$
N:=\left\{x \mid x \in I, \varphi^{\prime}(x)=0\right\} .
$$

Then, by the continuity of φ^{\prime}, N is a closed set, whose interior, int $N=\emptyset$. Thus $I \cap(\mathbb{R} \backslash N)$ is open, that is, it can be obtained as a union of at most countably infinite disjoint open intervals. Let $J=] a, b[\subset I \cap(\mathbb{R} \backslash N)$ be an interval of maximal length for which $a, b \notin I \cap(\mathbb{R} \backslash N)$. According to the definition, if $a \in I$ then $\varphi^{\prime}(a)=0$ and the same holds for b. If $a=-\infty$ and $b=\infty$ then according to the definition $J=]-\infty, \infty[=I=\mathbb{R}$ (and $N=\emptyset$). If this is not the case then by the maximality either $J=I$ (and then $N=\emptyset$) or at least one of the endpoints of J belongs to I.

These conditions guarantee the existence of a function $\psi \in C M(I)$ for which the functional equation

$$
\begin{equation*}
\varphi^{-1}\left(\varphi(x)+\varphi(y)-\varphi\left(\frac{x+y}{2}\right)\right)=\psi^{-1}\left(\frac{\psi(x)+\psi(y)}{2}\right) \tag{6.7}
\end{equation*}
$$

holds for all $x, y \in I$. Then (6.7) also holds for all $x, y \in J$, where obviously $\varphi^{\prime}(x) \neq 0$ if $x \in J$ and $\varphi, \psi \in C M(J)$. Thus, by Lemma $2, \psi^{\prime}$ exists and $\psi^{\prime}(x) \neq 0$ if $x \in J$. Consequently, equation (6.7) can be differentiated in J with respect to x, that is,

$$
\frac{\varphi^{\prime}(x)-\varphi^{\prime}\left(\frac{x+y}{2}\right) \frac{1}{2}}{\varphi^{\prime}\left(A_{\varphi}^{*}(x, y)\right)}=\frac{\psi^{\prime}(x)}{2 \psi^{\prime}\left(A_{\psi}(x, y)\right)}
$$

follows for all $x, y \in J$. From this, by the symmetry of A_{φ}^{*} and A_{ψ}, we have

$$
\begin{equation*}
\frac{\varphi^{\prime}(x)-\varphi^{\prime}\left(\frac{x+y}{2}\right) \frac{1}{2}}{\psi^{\prime}(x)}=\frac{\varphi^{\prime}(y)-\varphi^{\prime}\left(\frac{x+y}{2}\right) \frac{1}{2}}{\psi^{\prime}(y)} \tag{6.8}
\end{equation*}
$$

for all $x, y \in J$. We introduce the following notation:

$$
\varepsilon_{\chi}:= \begin{cases}1 & \text { if } \chi \text { is increasing } \\ -1 & \text { if } \chi \text { is decreasing }\end{cases}
$$

for all $\chi \in C M(I)$, and let

$$
\begin{equation*}
F(x):=\frac{\varepsilon_{\varphi}}{\varphi^{\prime}(x)}, \quad G(x):=\frac{\varepsilon_{\psi} \varphi^{\prime}(x)}{\psi^{\prime}(x) \varepsilon_{\varphi}} \quad \text { if } x \in J \tag{6.9}
\end{equation*}
$$

Then from (6.8) we have that the functional equation

$$
\begin{equation*}
2 F\left(\frac{x+y}{2}\right)(G(x)-G(y))=F(x) G(x)-F(y) G(y) \tag{6.10}
\end{equation*}
$$

holds for all $x, y \in J$, where F is (continuous and) differentiable in J because φ is twice differentiable. (6.10) implies

$$
G(y)\left(2 F\left(\frac{x+y}{2}\right)-F(y)\right)=G(x)\left(2 F\left(\frac{x+y}{2}\right)-F(x)\right)
$$

for all $x, y \in I$, from which, by the continuity of F, the existence of

$$
\lim _{y \rightarrow x} G(y)=\lim _{y \rightarrow x} G(x) \frac{2 F\left(\frac{x+y}{2}\right)-F(x)}{2 F\left(\frac{x+y}{2}\right)-F(y)}=G(x)
$$

follows, as there exists $\delta>0$ for which $2 F\left(\frac{x+y}{2}\right)-F(y) \neq 0$ if $y \in$ $] x-\delta, x+\delta[\subset J$. Thus G is continuous in J. From (6.10) we have

$$
\left(2 F\left(\frac{x+y}{2}\right)-F(x)\right) \frac{G(x)-G(y)}{x-y}=G(y) \frac{F(x)-F(y)}{x-y}
$$

for all $x, y \in J$ with $x \neq y$, from which the reader can easily see (using the continuity of G) that G is differentiable in J and if $y \rightarrow x$

$$
F(x) G^{\prime}(x)=G(x) F^{\prime}(x) \quad \text { if } x \in J
$$

This implies $(\log G(x)-\log F(x))^{\prime}=0(x \in J)$, that is, there exists $c>0$ such that $\log G(x)-\log F(x)=\log c(x \in J)$, from which we have

$$
\begin{equation*}
G(x)=c F(x) \quad \text { if } x \in J . \tag{6.11}
\end{equation*}
$$

Thus, by (6.11), (6.10) implies (6.4) for all $x, y \in J$, where $F: J \rightarrow \mathbb{R}_{+}$ is a continuous function. By Lemma 3 , there exist constants $\alpha, \beta \in \mathbb{R}$ for which

$$
\begin{equation*}
F(x)=\alpha x+\beta>0 \quad \text { if } x \in J . \tag{6.12}
\end{equation*}
$$

This implies, by (6.9)

$$
\begin{equation*}
\varphi^{\prime}(x)=\frac{\varepsilon_{\varphi}}{\alpha x+\beta} \quad(\alpha x+\beta>0) \quad \text { if } x \in J . \tag{6.13}
\end{equation*}
$$

According to the definition, the following cases are possible: either $J=I$ or one of the endpoints of J belongs to I; let us denote it by $c \in I(c=a$ or b if $J=] a, b[)$. Then $\varphi^{\prime}(c)=0$, but this contradicts (6.13) by the continuity of φ^{\prime} in I. Therefore in any case $N=\emptyset$ and $J=I$. Thus the solution (6.13) is a function defined on the whole of I. Up to equivalence for the generating functions, there are the following possible cases:
(i) $\alpha=0$ then $\beta>0$ thus (6.13) implies

$$
\varphi(x)=\varepsilon_{\varphi} \frac{1}{\beta} x+\delta \sim x \quad \text { if } x \in I
$$

(ii) $\alpha>0$ then (6.13) implies

$$
\begin{aligned}
\varphi(x) & =\varepsilon_{\varphi} \frac{1}{\alpha} \log (\alpha x+\beta)+\delta \\
& =\varepsilon_{\varphi} \frac{1}{\alpha} \log \left(x+\frac{\beta}{\alpha}\right)+\varepsilon_{\varphi} \frac{1}{\alpha} \log \alpha+\delta \sim \log (x+\lambda)
\end{aligned}
$$

if $x \in I$,
where $\lambda=\frac{\beta}{\alpha} \in P_{+}$;
(iii) $\alpha<0$ then

$$
\begin{aligned}
\varphi(x) & =\varepsilon_{\varphi} \frac{1}{\alpha} \log (\alpha x+\beta)+\delta \\
& =\varepsilon_{\varphi} \frac{1}{\alpha} \log \left(-x+\frac{\beta}{-\alpha}\right)+\varepsilon_{\varphi} \frac{1}{\alpha} \log (-\alpha)+\delta \sim \log (-x+\mu)
\end{aligned}
$$

if $x \in I$,
where $\mu=\frac{\beta}{-\alpha} \in P_{-}$.
With this we obtain the solutions stated in Theorem 8. It can easily be seen that the A-conjugate means formed with these generating functions are quasi-arithmetic means as well.

7. Inequalities

If $x, y \in \mathbb{R}_{+}$then let

$$
\begin{equation*}
H(x, y):=\frac{2 x y}{x+y} \tag{7.1}
\end{equation*}
$$

be the well-known harmonic mean. If $I \subset \mathbb{R}$ is an open interval and $\lambda \in P_{+}$ then let

$$
\begin{equation*}
H_{\lambda}^{+}(x, y):=H(x+\lambda, y+\lambda)-\lambda \quad(x, y \in I), \tag{7.2}
\end{equation*}
$$

and for $\mu \in P_{-}$let

$$
\begin{equation*}
H_{\mu}^{-}(x, y):=-H(-x+\mu,-y+\mu)+\mu \quad(x, y \in I) . \tag{7.3}
\end{equation*}
$$

It can easily be seen that $H_{\lambda}^{+}: I^{2} \rightarrow I\left(\lambda \in P_{+}\right)$and $H_{\mu}^{-}: I^{2} \rightarrow I$ ($\mu \in P_{-}$) are means. These means can be formed according to the rules in the following scheme.

If $I=] a, b\left[(a<b, a, b \in \mathbb{R})\right.$ is a bounded open interval then $P_{+}=$ $\{\lambda \mid \lambda>-a\}$. Then the mean $H_{\lambda}^{+}: I^{2} \rightarrow I$ can be obtained as follows:

$$
\begin{gathered}
x<y(x, y \in I) \xrightarrow{\lambda \in P_{+}} \quad 0<x+\lambda<y+\lambda \\
x<H_{\lambda}^{+}(x, y)<y \stackrel{\downarrow}{\longleftrightarrow} x+\lambda<H(x+\lambda, y+\lambda)<y+\lambda
\end{gathered}
$$

Similarly we get that $P_{-}=\{\mu \mid \mu>b\}$ and for $\mu \in P_{-}$the mean $H_{\mu}^{-}: I^{2} \rightarrow I$ can be obtained as follows:

$$
\begin{aligned}
x<y(x, y \in I) \xrightarrow{\mu \in P_{-}} \quad & -x+\mu>-y+\mu>0 \\
& \downarrow \\
& \downarrow
\end{aligned}
$$

$$
x<H_{\mu}^{-}(x, y)<y \longleftarrow x-\mu<-H(-x+\mu,-y+\mu)<y-\mu
$$

The cases $I=]-\infty, b[(b \in \mathbb{R})$ and $I=] a, \infty[(a \in \mathbb{R})$ can be handled in a similar way.

Theorem 9. An A-conjugate mean generated by a twice differentiable function is quasi-arithmetic if and only if it is one of the following:
(i) $A(x, y)(x, y \in I)$, or
(ii) $H_{\lambda}^{+}(x, y)(x, y \in I)$ for some $\lambda \in P_{+}$, or
(iii) $H_{\mu}^{-}(x, y)(x, y \in I)$ for some $\mu \in P_{-}$.

Proof. The statement trivially follows from the form of the generating functions given in Theorem 8.

Theorem 10. Let $x, y \in I$ and $x \neq y$. Then the function $\lambda \mapsto$ $H_{\lambda}^{+}(x, y)$ is strictly increasing on P_{+}, the function $\mu \mapsto H_{\mu}^{-}(x, y)$ is strictly decreasing on P_{-}, and the inequality

$$
\begin{equation*}
H_{\lambda}^{+}(x, y)<A(x, y)<H_{\mu}^{-}(x, y) \quad\left(\lambda \in P_{+}, \mu \in P_{-}\right) \tag{7.4}
\end{equation*}
$$

holds for all $x, y \in I, x \neq y$. Furthermore,

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} H_{\lambda}^{+}(x, y)=\lim _{\mu \rightarrow \infty} H_{\mu}^{-}(x, y)=A(x, y) \tag{7.5}
\end{equation*}
$$

Proof. Supposing $P_{+} \neq \emptyset$ and $P_{-} \neq \emptyset$ we easily obtain

$$
\begin{aligned}
& \frac{\partial H_{\lambda}^{+}(x, y)}{\partial \lambda}=\frac{(x-y)^{2}}{(x+y+2 \lambda)^{2}}>0 \quad \text { and } \\
& \frac{\partial H_{\mu}^{-}(x, y)}{\partial \mu}=\frac{-(x-y)^{2}}{(-x+-y+2 \mu)^{2}}<0,
\end{aligned}
$$

from which the statements concerning monotony follow. (7.5) can be calculated directly, and it easily implies (7.4).

References

[1] J. AczÉL, Un problème de M.L. Fejér sur la construction de Leibniz, Bull. Sci. Math. 72 (1948), 35-45.
[2] J. Aczél, I. Fenyő and J. Horváth, Sur certaines classes de fonctionelles, Portugaliae Math. 8 (1949), 1-11.
[3] J. AczÉl, Lectures on functional equations and their applications, Academic Press, New York, London, 1966.
[4] J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge, 1989.
[5] B. De Finetti, Sul concetto die media, Giornale dell' Instituto Italiano degli Attuari 2 (1931), 369-396.
[6] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge, 1934.
[7] J. Horváth, Note sur un problème de L. Fejér, Bull. École Polyt. Jassy 3 (1948), 164-168.
[8] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), 175-193.
[9] B. Jessen, Bemaekinger om konvekse Funktioner og Uligheder immellem Middelvaerdier (II), Mat. Tidsskrift B (1931), Nos. 3-4.
[10] B. Jessen, Über die Verallgemeinerungen de arithmetischen Mittels, Acta. Litt. ac Scient. Univ. Hung. 5 (1931), 108-116.
[11] B. Knaster, Sur une équivalence pour les fonctions, Colloquium Math. 2 (1949), 1-4.
[12] B. Knopp, Neuere Sätze über Reihen mit positiven Gliedern, Math. Zeitschr. 30 (1929), 387-413.
[13] A. Kolmogorov, Sur la notion de la moyenne, Rend. Accad. dei Lincei (6) 12 (1930), 388-391.
[14] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Uniw. Stgski - P.W.N., Warszawa-Kraków-Katowice, 1985.
[15] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107.
[16] M. Nagumo, Über eine Klasse der Mittelwerte, Jap. Jour. of Math. 7 (1930), 71-79.
[17] Zs. PÁles, On two variable functional inequality, C.R. Math. Rep. Acad. Sci. Canada 10 (1988), 25-27.
[18] F. Sz. Riesz and B. Nagy, Functional analysis, New York, 1955.
[19] C. Ryll-Nardzewski, Sur les moyennes, Studis Math. 11 (1949), 31-37.
[20] H. P. Thielman, On Generalized Means, Proc. Iowa Acad. Sci. 56 (1949), 241-247.

ZOLTÁN DARÓCZY
INSTITUTE OF MATHEMATICS AND INFORMATICS
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN, P.O.B. 12
HUNGARY
E-mail: daroczy@math.klte.hu
(Received February 8, 1999)

[^0]: Mathematics Subject Classification: 39B22, 26A51.
 Key words and phrases: mean values, inequalities, functional equations and inequalities, convexity.
 This work was supported by the grant of the National Foundation for Scientific Research OTKA (No. T-030082).

