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On a class of means of two variables
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Abstract. Let CM(I) denote the class of all continuous and strictly monotonic
real functions defined on the interval I. Let L : I2 → I be a fixed mean on I. A
mean M : I2 → I is called an L-conjugate mean on I if there exists ϕ ∈ CM(I) for
which M(x, y) = L∗ϕ(x, y) := ϕ−1(ϕ(x) + ϕ(y) − ϕ(L(x, y))) holds for all x, y ∈ I. We
solve the following problems for L-conjugate means: equality, comparison, determining
homogeneous and translative means and inequalities involving them. Furthermore, we
examine when such a mean is quasi-arithmetic, if L = A, where A is the arithmetic
mean.

1. Introduction

Let I ⊂ R be an open interval. A function M : I2 → I is called a
mean in I if it satisfies the following properties:

(1.1)

(i) If x, y ∈ I and x 6= y then

min{x, y} < M(x, y) < max{x, y};
(ii) M(x, y) = M(y, x) for all x, y ∈ I;

(iii) M is continuous on I2.
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Let CM(I) denote the class of all continuous and strictly monotonic
real functions defined on the interval I. We remind of the following

Definition 1. A mean M : I2 → I is called quasi-arithmetic in I if
there exists ϕ ∈ CM(I) such that

(1.2) M(x, y) = Aϕ(x, y) := ϕ−1

(
ϕ(x) + ϕ(y)

2

)

for all x, y ∈ I. Then the function ϕ is called the generating function of
the quasi-arithmetic mean Aϕ ([3], [4], [6], [15]).

In the theory of quasi-arithmetic means answers are known for the
following problems: (p1) problem of equality ([6], [9], [12]); (p2) problem
of comparison ([6], [8], [10], [14]); (p3) determining homogenous quasi-
arithmetic means and inequalities involving them ([6], [16], [5], [10]);
(p4) determining translative quasi-arithmetic means and inequalities in-
volving them; (p5) characterization problem ([1], [2], [3], [4], [5], [7], [11],
[13], [16], [19], [20]).

Inspired by the paper [15], we define a new class of means of two
variables, and answer problems (p1), (p2), (p3), and (p4) for this class.
Furthermore, we examine when such a mean is quasi-arithmetic. This new
class of means is defined the following way:

Definition 2. Let L : I2 → I be a fixed mean on I. A mean M : I2 → I
is called L-conjugate mean in I if there exists ϕ ∈ CM(I) for which

(1.3) M(x, y) = L∗ϕ(x, y) := ϕ−1(ϕ(x) + ϕ(y)− ϕ(L(x, y)))

for all x, y ∈ I. Then the function ϕ is called the generating function of
the L-conjugate mean L∗ϕ.

It can easily be seen that for any ϕ ∈ CM(I) M = L∗ϕ : I2 → I is a
mean in I, that is, the properties (1.1) are fulfilled [15].

2. Equality and comparison

Let L : I2 → I be a fixed mean in I. The problem of equality (type p1)
for L-conjugate means is the following: What conditions are necessary and
sufficient for a pair of functions ϕ,ψ ∈ CM(I) in order that

(2.1) L∗ϕ(x, y) = L∗ψ(x, y)
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should hold for all x, y ∈ I ? This problem will also be solved if we examine
the apparently more difficult problem of comparison (type p2): What
conditions are necessary and sufficient for a pair of functions ϕ,ψ ∈ CM(I)
in order that

(2.2) L∗ϕ(x, y) ≤ L∗ψ(x, y)

should hold for all x, y ∈ I ? The latter question is answered by

Theorem 1. Let ϕ, ψ ∈ CM(I). Then the inequality (2.2) holds for

all x, y ∈ I if and only if

(i) ψ ◦ ϕ−1 is convex on the interval ϕ(I) =: J for increasing ψ, or

(ii) ψ ◦ ϕ−1 is concave on the interval ϕ(I) =: J for decreasing ψ.

Proof. We prove (i), the proof of (ii) is similar. So let ψ ∈ CM(I)
be increasing. Then (2.2) implies

ψ ◦ ϕ−1(ϕ(x) + ϕ(y)− ϕ(L(x, y))) ≤ ψ(x) + ψ(y)− ψ(L(x, y))

for all x, y ∈ I. From this, with notations ϕ(x) =: u, ϕ(y) =: v (u, v ∈
ϕ(I) = J) and f := ψ ◦ ϕ−1 (f ∈ CM(J)), we have

(2.3) f(u + v −M(u, v)) + f(M(u, v)) ≤ f(u) + f(v),

where

(2.4) M(u, v) := ϕ(L(ϕ−1(u), ϕ−1(v))) (u, v ∈ J)

is a mean in J . We need the following lemma (see also [15], [17]).

Lemma 1. Let M : J2 → J be a mean on the open interval J ⊂ R.

Then the sequence defined by equations M1(u, v) := M(u, v) and

Mn+1(u, v) := M(Mn(u, v), u + v −Mn(u, v)) (n ∈ N; u, v ∈ J) is conver-

gent and

(2.5) lim
n→∞

Mn(u, v) =
u + v

2
.

Proof. If M : J2 → J is a mean in J , then the function J2 3
(u, v) 7→ u+v−M(u, v) is also a mean, thus the sequence Mn(u, v) (n ∈ N)
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is well-defined. If u = v, the assertion clearly holds, since M(u, u) = u

(u ∈ J).
Let u < v (u, v ∈ J) be fixed. It can easily be seen that for the closed

intervals
Ik := [αk(u, v), ωk(u, v)],

with the notations

αk(u, v) := min{Mk(u, v), u + v −Mk(u, v)},
ωk(u, v) := max{Mk(u, v), u + v −Mk(u, v)}

we have Ik+1 ⊂ Ik (k ∈ N), and, moreover, the symmetry of M implies

(2.6) Mk+1(u, v) = M(αk(u, v), ωk(u, v)),

since 1
2 (αk(u, v), ωk(u, v)) = u+v

2 , u+v
2 ∈

∞⋂
k=1

Ik holds.

Let sup
k∈N

αk(u, v) = lim
k→∞

αk(u, v) = α(u, v) and inf
k∈N

ωk(u, v) =

lim
k→∞

ωk(u, v) = ω(u, v), then

(2.7) αl(u, v) ≤ α(u, v) ≤ ω(u, v) ≤ ωs(u, v)

for all l, s ∈ N. We show that α(u, v) = ω(u, v) = u+v
2 . If there existed

u < v such that α(u, v) < ω(u, v) then by the property of means

α(u, v) < M(α(u, v), ω(u, v)) < ω(u, v)

would hold. On the other hand, the continuity of M and
(αk(u, v), ωk(u, v)) → (α(u, v), ω(u, v)) (k → ∞) imply the existence of
N ∈ N for which

α(u, v) < M(αN (u, v), ωN (u, v)) < ω(u, v),

that is, by (2.6),
MN+1(u, v) ∈ ]α(u, v), ω(u, v)[ .

Now Mn+1(u, v) equals either αN+1(u, v) or ωN+1(u, v), which contradicts

(2.7). Thus α(u, v) = ω(u, v) is the only number that belongs to
∞⋂

k=1

Ik,

that is, α(u, v) = ω(u, v) = u+v
2 . So from (2.6) we have (2.5). ¤
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Now we continue the proof of Theorem 1.
From inequality (2.3), using the notations of Lemma 1,

(2.8) f(u + v −Mn(u, v)) + f(Mn(u, v)) ≤ f(u) + f(v)

follows for all n ∈ N and u, v ∈ J , which can be proved by induction. For
n = 1, (2.8) holds by (2.3). If (2.8) holds for n, then putting Mn(u, v) for
u and u + v −Mn(u, v) for v in (2.8), we have by the assumption

f(u + v −Mn+1(u, v)) + f(Mn+1(u, v))

≤ f(u + v −Mn(u, v)) + f(Mn(u, v)) ≤ f(u) + f(v).

Using the assertion of the lemma, since f ∈ CM(J), with n → ∞, from
(2.8) we obtain

(2.9) 2f

(
u + v

2

)
≤ f(u) + f(v)

for all u, v ∈ J , that is, f is Jensen-convex in J . Since f is continuous, f
is convex in J [14]. This proves the necessity of the condition.

Now suppose that ψ ∈ CM(I) is increasing and f := ψ◦ϕ−1 is convex
on the interval ϕ(I) = J . Let u, v ∈ J be arbitrary. Then there exists
0 < λ < 1 such that for the mean M : J2 → J defined in (2.4)

M(u, v) = λu + (1− λ)v

holds. Thus, by the convexity of f

f(u + v −M(u, v)) + f(M(u, v))
= f(u + v − λu− (1− λ)v) + f(λu + (1− λ)v)
= f((1− λ)u + λv) + f(λu + (1− λ)v)
≤ (1− λ)f(u) + λf(v) + λf(u) + (1− λ)f(v)
= f(u) + f(v).

From this inequality, with the substitution ϕ(x) = u, ψ(y) = v (x, y ∈ I
are arbitrary) and from (2.4), by M(u, v) = ϕ(L(x, y)) we have

ψ ◦ ϕ−1(ϕ(x) + ϕ(y)− ϕ(L(x, y))) + ψ ◦ ϕ−1(ϕ(L(x, y)))

≤ ψ(x) + ψ(y),

which implies, since ψ−1 is increasing, L∗ϕ(x, y) ≤ L∗ψ(x, y) for all x, y ∈ I.
¤
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Theorem 2. Let ϕ,ψ ∈ CM(I). The equality (2.1) holds for all

x, y ∈ I if and only if there exist real constants α 6= 0 and β such that

(2.10) ψ(x) = αϕ(x) + β

for all x ∈ I.

Proof. It can easily be seen that L∗ψ(x, y) = L∗−ψ(x, y) for all
x, y ∈ I, thus, by Theorem 1, both ψ ◦ ϕ−1 =: f and −ψ ◦ ϕ−1 = −f

are convex in ϕ(I) =: J , that is, for all values of u, v ∈ J and 0 < λ < 1

f(λu + (1− λ)v) = λf(u) + (1− λ)f(v).

This implies f(u) = αu + β (u ∈ J), where α 6= 0 and β are constants.
With the notation u = ϕ(x) (x ∈ I) we obtain (2.10). Conversely, if ψ is
of the form (2.10) one can easily check equality (2.1). ¤

Definition 3. Let ϕ,ψ ∈ CM(I). ψ and ϕ are called equivalent if
there exist real numbers α 6= 0 and β for which (2.10) holds for all x ∈ I.
Notation: ψ ∼ ϕ or ψ(x) ∼ ϕ(x) (x ∈ I).

Theorem 3. If ϕ,ψ ∈ CM(I) and ψ ∼ ϕ then Aϕ = Aψ and

L∗ϕ = L∗ψ, that is, equivalent generating functions define the same quasi-

arithmetic or L-conjugate mean.

Proof. It is known for quasi-arithmetic means [6]. For L-conjugate
means, it follows from Theorem 2. ¤

3. Homogeneous L-conjugate means in the case
of homogeneous L

Definition 4. If R+ denotes the set of positive real numbers and
M : R2

+ → R+ is a mean on R+, then this mean is called homogeneous if

(3.1) M(tx, ty) = tM(x, y)

holds for all x, y, t ∈ R+.
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Theorem 4. Let L : R2
+ → R+ be a fixed homogeneous mean on R+

and let ϕ ∈ CM(R+). Then the L-conjugate mean L∗ϕ : R2
+ → R+ on R+

is homogeneous if and only if

ϕ(x) =
xa − 1

a
(a ∈ R, a 6= 0)(3.2)

or

ϕ(x) = log x(3.3)

for all x ∈ R+, up to equivalence for the generating functions. According

to this, the L-conjugate homogeneous means for homogeneous L are the

family of means of one parameter (a ∈ R)

(3.4) L∗a(x, y) :=

{ (xa + ya − L(x, y)a)
1
a if a 6= 0

xy

L(x, y)
if a = 0.

Notice that

(3.5) lim
a→0

L∗a(x, y) = L∗0(x, y)

for all x, y ∈ R+.

Proof. Let L : R2
+ → R+ be a homogeneous mean and ϕ ∈ CM(R+)

for which

(3.6) L∗ϕ(tx, ty) = tL∗ϕ(x, y)

holds for all t, x, y ∈ R+. For a fixed t ∈ R+, let

(3.7) ψt(x) := ϕ(tx) (x ∈ R+).

Clearly, ψt ∈ CM(R+) and

L∗ψt
(x, y) = ψ−1(ψt(x) + ψt(y)− ψt(L(x, y)))

=
1
t
ϕ−1(ϕ(tx) + ϕ(ty)− ϕ(tL(x, y)))

=
1
t
ϕ−1(ϕ(tx) + ϕ(ty)− ϕ(L(tx, ty)))

=
1
t
L∗ϕ(tx, ty) = L∗ϕ(x, y)
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for all x, y ∈ R+. Thus by Theorem 2 there exist real numbers α(t) 6= 0
and β(t) such that

ψt(x) = α(t)ϕ(x) + β(t)

for all x ∈ R+, which implies

(3.8) ϕ(tx) = α(t)ϕ(x) + β(t)

for all elements x ∈ R+ and t ∈ R+ and α(t) 6= 0. Since ϕ ∈ CM(R), by
a well-known theorem of Lebesgue [18] there exists x0 ∈ R+ at which ϕ is
differentiable. Then the left hand side of (3.8) is differentiable at the point
x = x0, i.e., ϕ′(tx0) exists. Since tx0 = s runs through all the elements of
R+, ϕ′(s) exists for all s ∈ R+. We show that ϕ′(s) 6= 0 for all s ∈ R+.
If there existed s0 ∈ R+ for which ϕ′(s0) = 0, then differentiating (3.8)
with respect to x and putting x = s0 we would obtain ϕ′(ts0) = 0 for all
t ∈ R+, i.e., ϕ would be constant, which contradicts ϕ ∈ CM(R+).

Thus ϕ : R+ → R is differentiable and ϕ′(x) 6= 0 for all x ∈ R+. We
look for solutions ϕ for which ϕ(1) = 0 and ϕ′(1) = 1. This causes no loss
of generality, as for all ϕ the generating function

ϕ∗(t) :=
ϕ(t)
ϕ′(1)

− ϕ(1)
ϕ′(1)

satisfies the required property and ϕ ∼ ϕ∗.
Putting x = 1 in equation (3.8), we obtain β(t) = ϕ(t). Differentiating

equation (3.8) with respect to x we have

ϕ′(tx)t = α(t)ϕ′(x),

which implies, with the substitution x = 1, α(t) = tϕ′(t). Now putting
the results we got back into equation (3.8) and interchanging the variables
t and x we get

ϕ(tx) = tϕ′(t)ϕ(x) + ϕ(t) = xϕ′(x)ϕ(t) + ϕ(x),

from which, with the substitution t = 2, since ϕ(2) 6= 0,

(3.9) xϕ′(x)− 1 =
2ϕ′(2)− 1

ϕ(2)
ϕ(x) = aϕ(x)

follows, where a ∈ R is a constant value. If a 6= 0, then the only solution
of the differential equation (3.9) is (3.2). If a = 0 we obtain solution (3.3).
The remaining statement of the theorem is obvious. ¤



On a class of means of two variables 185

Remark. The functional equation (3.8) and its solutions are known
(see [6], p. 69). Here we gave a different argument by using the mono-
tonicity of ϕ and reducing (3.8) directly to the differential equation (3.9).

The comparison theorem implies

Theorem 5. If L : R2
+ → R+ is a homogeneous mean on R+ and

a, b ∈ R+ then

(3.10) L∗a(x, y) ≤ L∗b(x, y)

holds for all x, y ∈ R+ if and only if

(3.11) a ≤ b.

Proof. With the notation

(3.12) χa(u) :=

{ ua − 1
a

if a 6= 0

log u if a = 0
(u ∈ R+),

(3.10) holds if and only if

(3.13) L∗χa
(x, y) ≤ L∗χb

(x, y)

holds for all x, y ∈ R+, where χa, χb ∈ CM(R+). One can easily check that
χa : R+ → R is differentiable and χ′a(u) > 0 for all u ∈ R+. Therefore, by
the comparison theorem, (3.13) holds if and only if f := χb ◦χ−1

a is convex
on the interval J := χa(R+). Since the function f is differentiable, this
holds if and only if

f(x)− f(y) ≥ (x− y)f ′(y)

for all x, y ∈ J , that is,

χb ◦ χ−1
a (x)− χb ◦ χ−1

a (y) ≥ (x− y)χ′b ◦ χ−1
a (y)

1
χ′a ◦ χ−1

a (y)
,

from which, with the notations u := χ−1
a (x), v := χ−1

a (y) (u, v ∈ R+)

(3.14)
χb(u)− χb(v)

χ′b(v)
≥ χa(u)− χa(v)

χ′a(v)
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follows for all u, v ∈ R+. Putting the function (3.12) into the inequality
(3.14) we obtain

vχa

(u

v

)
≤ vχb

(u

v

)
,

which implies, with the notation
u

v
=: s ∈ R+,

(3.15) χa(s) ≤ χb(s)

for all s ∈ R+. Therefore it is enough to show that (3.15) holds for all
s ∈ R+ if and only if a ≤ b. This means that R 3 a 7→ χa(s) is increasing
for any fixed s ∈ R+ and there exists s0 ∈ R+ for which R 3 a 7→ χa(s0)
is strictly increasing. This follows from

∂

∂a
χa(s) =





sa log sa − sa + 1
a2

if a 6= 0

(log s)2

2
if a = 0

(s ∈ R+)

and since z log z − z + 1 ≥ 0 (z ∈ R+),

∂

∂a
χa(s) ≥ 0 (s ∈ R+),

that is, a 7→ χa(s) is increasing in a with s fixed. If s 6= 0 then a 7→ χa(s)
is strictly increasing. This completes the proof of the theorem. ¤

As a special case of the theorem we obtain the inequality L∗−1 ≤ L∗0 ≤
L∗1: If L : R2

+ → R+ is a homogeneous mean then
(

1
x

+
1
y
− 1

L(x, y)

)−1

≤ xy

L(x, y)
≤ x + y − L(x, y)

for all values x, y ∈ R+. Of course, this inequality can be proved in an
elementary way.

4. Translative L-conjugate means
in the case of translative L

Definition 5. A mean M : R2 → R on R is called translative if

(4.1) M(t + x, t + y) = t + M(x, y)

holds for all t, x, y ∈ R.
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Theorem 6. Let L : R2 → R be a translative mean in R and ϕ ∈
CM(R). Then the L-conjugate mean L∗ϕ : R2 → R on R is translative if
and only if

ϕ(x) =
eax − 1

a
(a ∈ R, a 6= 0)(4.2)

or

ϕ(x) = x(4.3)

for all x ∈ R up to equivalence for the generating functions.

According to this, the L-conjugate translative means for translative
L are the family of means of one parameter (a ∈ R)

(4.4) L∗[a](x, y) :=





1
a

log
(
eax + eay − eaL(x,y)

)
if a 6= 0

x + y − L(x, y) if a = 0

for which

(4.5) lim
a→0

L∗[a](x, y) = L∗[0](x, y)

for all x, y ∈ R.

Proof. Let L : R2 → R be a translative mean on R and ϕ ∈ CM(R).
Then

(4.6) H(u, v) := exp L(log u, log v) (u, v ∈ R+)

is a homogeneous mean on R+ and with the notation ψ(u) := ϕ(log u)
(u ∈ R+) ψ ∈ CM(R+), furthermore, for all s, u, v ∈ R+

(4.7)

H∗
ψ(su, sv) = ψ−1(ψ(su) + ψ(sv)− ψ(H(su, sv)))

= expϕ−1(ϕ(log su) + ϕ(log sv)− ϕ(L(log su, log sv)))

= expL∗ϕ(log s + log u, log s + log v)))

= exp(log s) exp L∗ϕ(log u, log v)

= sH∗
ψ(u, v),

that is, H∗
ψ : R2

+ → R+ is a homogeneous mean. Thus from Theorem 4

either ψ(u) =
ua − 1

a
(a 6= 0) or ψ(u) = log u (u ∈ R+) follows, which

implies (4.2) and (4.3) for ϕ. The remaining statement of the theorem is
obvious. ¤
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Theorem 7. If L : R2 → R is a translative mean on R and a, b ∈ R,

then

(4.8) L∗[a](x, y) ≤ L∗[b](x, y)

holds for all x, y ∈ R if and only if

(4.9) a ≤ b.

Proof. The statement easily follows from the relation between ho-
mogeneous and translative means and Theorem 5. ¤

5. A-conjugate means which are quasi-arithmetic means

The best-known mean is the arithmetic mean A : I2 → I defined by

(5.1) A(x, y) :=
x + y

2
(x, y ∈ I)

and can be defined on any open interval I ⊂ R. The following problem
seems to be natural: For which ϕ ∈ CM(I) will the A-conjugate mean
A∗ϕ : I2 → I be also quasi-arithmetic on the interval I? This means that
if ϕ is the required generating function, then there exists ψ ∈ CM(I) such
that

(5.2) A∗ϕ(x, y) = Aψ(x, y)

holds for all x, y ∈ I. In more detail, for the unknown functions ϕ, ψ ∈
CM(I) the functional equation

(5.3) ϕ−1

(
ϕ(x) + ϕ(y)− ϕ

(
x + y

2

))
= ψ−1

(
ψ(x) + ψ(y)

2

)

holds for all x, y ∈ I.
The problem has not been solved yet in its most general form. If we

require that the generating function ϕ in (5.2) (or (5.3)) satisfy further
conditions then the generating functions ϕ and ψ can be determined, and
therefore we can derive means from them that are A-conjugate and quasi-
arithmetic at the same time. Our aim, which will be realized in Section 6,
is to prove the following:
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Theorem 8. Suppose that ϕ ∈ CM(I) is twice differentiable in I.

Then the A-conjugate mean A∗ϕ : I2 → I is quasi-arithmetic in I if and

only if ϕ is one of the functions below (disregarding the equivalence of

generating functions):

(i) ϕ(x) = x if x ∈ I,

(ii) There exists λ ∈ P+ := {λ ∈ R | I + λ ⊂ R+} such that

ϕ(x) = log(x + λ) if x ∈ I,

(iii) There exists µ ∈ P− := {µ ∈ R | −I + µ ⊂ R+} such that

ϕ(x) = log(−x + µ) if x ∈ I.

Remarks.
(1) If I = ]a, b[ (a, b ∈ R, a < b) is bounded then

P+ = {λ ∈ R | λ > −a} and P− = {µ ∈ R | µ > b}.

(2) If I is not bounded then I = R and cases (ii) and (iii) do not occur; or
I = ]−∞, b[ (b ∈ R) and case (ii) does not occur; or I = ]a,∞[ (a ∈ R)
and case (iii) does not occur.

6. The proof of Theorem 8

To make the proof of Theorem 8 easier to read we first prove the
following two lemmas:

Lemma 2. Let ϕ ∈ CM(I) be (once) continuously differentiable in I

and ϕ′(x) 6= 0 if x ∈ I. If there exists ψ ∈ CM(I) for which

(6.1) A∗ϕ(x, y) = Aψ(x, y)

holds for all x, y ∈ I then ψ is (once) differentiable in I and ψ′(x) 6= 0 if

x ∈ I.

Proof. By (6.1), for all x, y ∈ I

(6.2) ψ(x) = 2ψ(A∗ϕ(x, y))− ψ(y).

Now let x0 ∈ I be arbitrarily fixed. Then from (6.2)

ψ(x0) = 2ψ(A∗ϕ(x0, y))− ψ(y)
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follows for all y ∈ I. Since the function y 7→ A∗ϕ(x0, y) (y ∈ I) is contin-
uous, A∗ϕ(x0, I) is a nonvoid open interval. Then by the monotonity of ψ

and Lebesgue’s theorem ψ is almost everywhere differentiable, thus there
exists y0 ∈ I such that ψ is differentiable at A∗ϕ(x0, y0). Since ϕ is differ-
entiable and ϕ′(x) 6= 0 (x ∈ I), its inverse is also differentiable, therefore
the function x 7→ A∗ϕ(x, y0) (x ∈ I) is differentiable at x0, and by

ψ(x) = 2ψ(A∗ϕ(x, y0))− ψ(y0) (x ∈ I)

ψ is differentiable at x0 by the differentiation rule of composite functions.
Thus differentiating (6.2) with respect to x we have

(6.3) ψ′(x) = 2ψ′(A∗ϕ(x, y))
ϕ′(x)− ϕ′

(
x+y

2

)
1
2

ϕ′(A∗ϕ(x, y))

for all x, y ∈ I.
Now let x0 ∈ I be arbitrarily fixed. Then the function y 7→ ϕ′(x0)−

ϕ′
(

x+y
2

)
1
2 (y ∈ I) takes the value ϕ′(x0) 1

2 6= 0 at y = x0, thus, by the
continuity of ϕ, there exists δ > 0 such that for any y ∈ ]x0− δ, x0 + δ[⊂ I,
ϕ′(x0) − ϕ′

(
x+y

2

)
1
2 6= 0. On the other hand, as ψ is strictly monotonic,

there exists y0 ∈ ]x0−δ, x0 +δ[ for which ψ′(A∗ϕ(x0, y0)) 6= 0. This implies,
by (6.3),

ψ′(x0) 6= 0,

which completes the proof of the Lemma. ¤

Lemma 3. Let J ⊂ R be an open interval and F : J → R such that

(6.4) (F (x)− F (y))
(

F

(
x + y

2

)
− F (x) + F (y)

2

)
= 0

holds for all x, y ∈ J . If F is continuous on J then there exist constants

α, β ∈ R for which

(6.5) F (x) = αx + β if x ∈ I.

Proof. If F is constant in J then (6.4) holds and α = 0 in (6.4).
If F is not constant in J then there exist a, b ∈ J with a < b such that
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F (a) 6= F (b). Then (6.4) implies

F

(
a + b

2

)
=

F (a) + F (b)
2

.

It can be seen by induction that

F

(
ka + lb

2n

)
=

kF (a) + lF (b)
2n

,

where k ≥ 0, l ≥ 0 are integers and k + l = 2n (n = 0, 1, 2, . . . ). From this,

by the continuity of F and the density of
ka + lb

2n
in [a, b], we obtain

(6.6) F (x) = αx + β if x ∈ [a, b],

where

α =
F (b)− F (a)

b− a
6= 0 and β =

bF (a)− aF (b)
b− a

.

If t ∈ J and t /∈ [a, b] and t ∈ ]a− δ, a[ or t ∈ ]b, b + δ[ (where 0 < δ < b−a
2 )

then there exists x ∈ ]a, b[ such that F (x) 6= F (t) and x+t
2 ∈ ]a, b[, from

which, by (6.4)

α
x + t

2
+ β = F

(
x + t

2

)
=

F (x) + F (t)
2

=
αx + β + F (t)

2

follows, that is, F (t) = αt+β. Thus the solution (6.6) can be extended to
J , with this the proof of the Lemma is complete. ¤

Proof of Theorem 8. Let

N := {x | x ∈ I, ϕ′(x) = 0}.

Then, by the continuity of ϕ′, N is a closed set, whose interior, intN = ∅.
Thus I ∩ (R \N) is open, that is, it can be obtained as a union of at most
countably infinite disjoint open intervals. Let J = ]a, b[ ⊂ I ∩ (R \ N) be
an interval of maximal length for which a, b /∈ I ∩ (R \N). According to
the definition, if a ∈ I then ϕ′(a) = 0 and the same holds for b. If a = −∞
and b = ∞ then according to the definition J = ] −∞,∞[ = I = R (and
N = ∅). If this is not the case then by the maximality either J = I (and
then N = ∅) or at least one of the endpoints of J belongs to I.
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These conditions guarantee the existence of a function ψ ∈ CM(I)
for which the functional equation

(6.7) ϕ−1

(
ϕ(x) + ϕ(y)− ϕ

(
x + y

2

))
= ψ−1

(
ψ(x) + ψ(y)

2

)

holds for all x, y ∈ I. Then (6.7) also holds for all x, y ∈ J , where obviously
ϕ′(x) 6= 0 if x ∈ J and ϕ,ψ ∈ CM(J). Thus, by Lemma 2, ψ′ exists and
ψ′(x) 6= 0 if x ∈ J . Consequently, equation (6.7) can be differentiated in J

with respect to x, that is,

ϕ′(x)− ϕ′
(

x+y
2

)
1
2

ϕ′
(
A∗ϕ(x, y)

) =
ψ′(x)

2ψ′ (Aψ(x, y))

follows for all x, y ∈ J . From this, by the symmetry of A∗ϕ and Aψ, we
have

(6.8)
ϕ′(x)− ϕ′

(
x+y

2

)
1
2

ψ′(x)
=

ϕ′(y)− ϕ′
(

x+y
2

)
1
2

ψ′(y)

for all x, y ∈ J . We introduce the following notation:

εχ :=
{

1 if χ is increasing

−1 if χ is decreasing

for all χ ∈ CM(I), and let

(6.9) F (x) :=
εϕ

ϕ′(x)
, G(x) :=

εψϕ′(x)
ψ′(x)εϕ

if x ∈ J.

Then from (6.8) we have that the functional equation

(6.10) 2F

(
x + y

2

)
(G(x)−G(y)) = F (x)G(x)− F (y)G(y)

holds for all x, y ∈ J , where F is (continuous and) differentiable in J

because ϕ is twice differentiable. (6.10) implies

G(y)
(

2F

(
x + y

2

)
− F (y)

)
= G(x)

(
2F

(
x + y

2

)
− F (x)

)
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for all x, y ∈ I, from which, by the continuity of F , the existence of

lim
y→x

G(y) = lim
y→x

G(x)
2F

(
x+y

2

)− F (x)
2F

(
x+y

2

)− F (y)
= G(x)

follows, as there exists δ > 0 for which 2F
(

x+y
2

) − F (y) 6= 0 if y ∈
]x− δ, x + δ[ ⊂ J . Thus G is continuous in J . From (6.10) we have

(
2F

(
x + y

2

)
− F (x)

)
G(x)−G(y)

x− y
= G(y)

F (x)− F (y)
x− y

for all x, y ∈ J with x 6= y, from which the reader can easily see (using the
continuity of G) that G is differentiable in J and if y → x

F (x)G′(x) = G(x)F ′(x) if x ∈ J.

This implies (log G(x)− log F (x))′ = 0 (x ∈ J), that is, there exists c > 0
such that log G(x)− log F (x) = log c (x ∈ J), from which we have

(6.11) G(x) = cF (x) if x ∈ J.

Thus, by (6.11), (6.10) implies (6.4) for all x, y ∈ J , where F : J → R+

is a continuous function. By Lemma 3, there exist constants α, β ∈ R for
which

(6.12) F (x) = αx + β > 0 if x ∈ J.

This implies, by (6.9)

(6.13) ϕ′(x) =
εϕ

αx + β
(αx + β > 0) if x ∈ J.

According to the definition, the following cases are possible: either J = I

or one of the endpoints of J belongs to I; let us denote it by c ∈ I (c = a

or b if J = ]a, b[ ). Then ϕ′(c) = 0, but this contradicts (6.13) by the
continuity of ϕ′ in I. Therefore in any case N = ∅ and J = I. Thus the
solution (6.13) is a function defined on the whole of I. Up to equivalence
for the generating functions, there are the following possible cases:

(i) α = 0 then β > 0 thus (6.13) implies

ϕ(x) = εϕ
1
β

x + δ ∼ x if x ∈ I;
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(ii) α > 0 then (6.13) implies

ϕ(x) = εϕ
1
α

log(αx + β) + δ

= εϕ
1
α

log
(

x +
β

α

)
+ εϕ

1
α

log α + δ ∼ log(x + λ)

if x ∈ I,

where λ = β
α ∈ P+;

(iii) α < 0 then

ϕ(x) = εϕ
1
α

log(αx + β) + δ

= εϕ
1
α

log
(
−x +

β

−α

)
+ εϕ

1
α

log(−α) + δ ∼ log(−x + µ)

if x ∈ I,

where µ = β
−α ∈ P−.

With this we obtain the solutions stated in Theorem 8. It can easily be
seen that the A-conjugate means formed with these generating functions
are quasi-arithmetic means as well. ¤

7. Inequalities

If x, y ∈ R+ then let

(7.1) H(x, y) :=
2xy

x + y

be the well-known harmonic mean. If I ⊂ R is an open interval and λ ∈ P+

then let

(7.2) H+
λ (x, y) := H(x + λ, y + λ)− λ (x, y ∈ I),

and for µ ∈ P− let

(7.3) H−
µ (x, y) := −H(−x + µ,−y + µ) + µ (x, y ∈ I).

It can easily be seen that H+
λ : I2 → I (λ ∈ P+) and H−

µ : I2 → I
(µ ∈ P−) are means. These means can be formed according to the rules
in the following scheme.
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If I = ]a, b[ (a < b, a, b ∈ R) is a bounded open interval then P+ =
{λ | λ > −a}. Then the mean H+

λ : I2 → I can be obtained as follows:

x < y (x, y ∈ I)
λ∈P+−−−−→ 0 < x + λ < y + λ

y
x < H+

λ (x, y) < y ←−−−− x + λ < H(x + λ, y + λ) < y + λ.

Similarly we get that P− = {µ | µ > b} and for µ ∈ P− the mean
H−

µ : I2 → I can be obtained as follows:

x < y (x, y ∈ I)
µ∈P−−−−−→ −x + µ > −y + µ > 0

y
−x + µ > H(−x + µ, y + µ) > −y + µ

y
x

x < H−
µ (x, y) < y ←−−−− x− µ < −H(−x + µ,−y + µ) < y − µ.

The cases I = ]−∞, b[ (b ∈ R) and I = ]a,∞[ (a ∈ R) can be handled
in a similar way.

Theorem 9. An A-conjugate mean generated by a twice differentiable
function is quasi-arithmetic if and only if it is one of the following:

(i) A(x, y) (x, y ∈ I), or

(ii) H+
λ (x, y) (x, y ∈ I) for some λ ∈ P+, or

(iii) H−
µ (x, y) (x, y ∈ I) for some µ ∈ P− .

Proof. The statement trivially follows from the form of the gener-
ating functions given in Theorem 8. ¤

Theorem 10. Let x, y ∈ I and x 6= y. Then the function λ 7→
H+

λ (x, y) is strictly increasing on P+, the function µ 7→ H−
µ (x, y) is strictly

decreasing on P−, and the inequality

(7.4) H+
λ (x, y) < A(x, y) < H−

µ (x, y) (λ ∈ P+, µ ∈ P−)

holds for all x, y ∈ I, x 6= y. Furthermore,

(7.5) lim
λ→∞

H+
λ (x, y) = lim

µ→∞
H−

µ (x, y) = A(x, y).
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Proof. Supposing P+ 6= ∅ and P− 6= ∅ we easily obtain

∂H+
λ (x, y)
∂λ

=
(x− y)2

(x + y + 2λ)2
> 0 and

∂H−
µ (x, y)
∂µ

=
−(x− y)2

(−x +−y + 2µ)2
< 0,

from which the statements concerning monotony follow. (7.5) can be cal-
culated directly, and it easily implies (7.4). ¤
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