Publ. Math. Debrecen 55 / 1-2 (1999), 177–197

On a class of means of two variables

By ZOLTÁN DARÓCZY (Debrecen)

To Professor Béla Gyires on his 90th birthday

Abstract. Let CM(I) denote the class of all continuous and strictly monotonic real functions defined on the interval I. Let $L : I^2 \to I$ be a fixed mean on I. A mean $M : I^2 \to I$ is called an L-conjugate mean on I if there exists $\varphi \in CM(I)$ for which $M(x,y) = L_{\varphi}^*(x,y) := \varphi^{-1}(\varphi(x) + \varphi(y) - \varphi(L(x,y)))$ holds for all $x, y \in I$. We solve the following problems for L-conjugate means: equality, comparison, determining homogeneous and translative means and inequalities involving them. Furthermore, we examine when such a mean is quasi-arithmetic, if L = A, where A is the arithmetic mean.

1. Introduction

Let $I \subset \mathbb{R}$ be an open interval. A function $M : I^2 \to I$ is called a *mean* in I if it satisfies the following properties:

(i) If $x, y \in I$ and $x \neq y$ then $\min\{x, y\} < M(x, y) < \max\{x, y\};$

(1.1)

(iii) M is continuous on I^2 .

⁽ii) M(x,y) = M(y,x) for all $x, y \in I$;

Mathematics Subject Classification: 39B22, 26A51.

Key words and phrases: mean values, inequalities, functional equations and inequalities, convexity.

This work was supported by the grant of the National Foundation for Scientific Research OTKA (No. T-030082).

Let CM(I) denote the class of all *continuous* and *strictly monotonic* real functions defined on the interval I. We remind of the following

Definition 1. A mean $M: I^2 \to I$ is called *quasi-arithmetic* in I if there exists $\varphi \in CM(I)$ such that

(1.2)
$$M(x,y) = A_{\varphi}(x,y) := \varphi^{-1}\left(\frac{\varphi(x) + \varphi(y)}{2}\right)$$

for all $x, y \in I$. Then the function φ is called the *generating function* of the quasi-arithmetic mean A_{φ} ([3], [4], [6], [15]).

In the theory of quasi-arithmetic means answers are known for the following problems: (p1) problem of equality ([6], [9], [12]); (p2) problem of comparison ([6], [8], [10], [14]); (p3) determining homogenous quasiarithmetic means and inequalities involving them ([6], [16], [5], [10]); (p4) determining translative quasi-arithmetic means and inequalities involving them; (p5) characterization problem ([1], [2], [3], [4], [5], [7], [11], [13], [16], [19], [20]).

Inspired by the paper [15], we define a new class of means of two variables, and answer problems (p1), (p2), (p3), and (p4) for this class. Furthermore, we examine when such a mean is quasi-arithmetic. This new class of means is defined the following way:

Definition 2. Let $L: I^2 \to I$ be a fixed mean on I. A mean $M: I^2 \to I$ is called L-conjugate mean in I if there exists $\varphi \in CM(I)$ for which

(1.3)
$$M(x,y) = L_{\varphi}^*(x,y) := \varphi^{-1}(\varphi(x) + \varphi(y) - \varphi(L(x,y)))$$

for all $x, y \in I$. Then the function φ is called the generating function of the *L*-conjugate mean L^*_{φ} .

It can easily be seen that for any $\varphi \in CM(I)$ $M = L_{\varphi}^* : I^2 \to I$ is a mean in I, that is, the properties (1.1) are fulfilled [15].

2. Equality and comparison

Let $L: I^2 \to I$ be a fixed mean in I. The problem of equality (type p1) for L-conjugate means is the following: What conditions are necessary and sufficient for a pair of functions $\varphi, \psi \in CM(I)$ in order that

(2.1)
$$L^*_{\varphi}(x,y) = L^*_{\psi}(x,y)$$

should hold for all $x, y \in I$? This problem will also be solved if we examine the apparently more difficult problem of comparison (type p2): What conditions are necessary and sufficient for a pair of functions $\varphi, \psi \in CM(I)$ in order that

(2.2)
$$L^*_{\varphi}(x,y) \le L^*_{\psi}(x,y)$$

should hold for all $x, y \in I$? The latter question is answered by

Theorem 1. Let $\varphi, \psi \in CM(I)$. Then the inequality (2.2) holds for all $x, y \in I$ if and only if

- (i) $\psi \circ \varphi^{-1}$ is convex on the interval $\varphi(I) =: J$ for increasing ψ , or
- (ii) $\psi \circ \varphi^{-1}$ is concave on the interval $\varphi(I) =: J$ for decreasing ψ .

PROOF. We prove (i), the proof of (ii) is similar. So let $\psi \in CM(I)$ be *increasing*. Then (2.2) implies

$$\psi \circ \varphi^{-1}(\varphi(x) + \varphi(y) - \varphi(L(x,y))) \le \psi(x) + \psi(y) - \psi(L(x,y))$$

for all $x, y \in I$. From this, with notations $\varphi(x) =: u, \varphi(y) =: v \ (u, v \in \varphi(I) = J)$ and $f := \psi \circ \varphi^{-1} \ (f \in CM(J))$, we have

(2.3)
$$f(u+v-M(u,v)) + f(M(u,v)) \le f(u) + f(v),$$

where

(2.4)
$$M(u,v) := \varphi(L(\varphi^{-1}(u),\varphi^{-1}(v))) \quad (u,v \in J)$$

is a mean in J. We need the following lemma (see also [15], [17]).

Lemma 1. Let $M : J^2 \to J$ be a mean on the open interval $J \subset \mathbb{R}$. Then the sequence defined by equations $M_1(u, v) := M(u, v)$ and $M_{n+1}(u, v) := M(M_n(u, v), u + v - M_n(u, v)) \ (n \in \mathbb{N}; u, v \in J)$ is convergent and

(2.5)
$$\lim_{n \to \infty} M_n(u, v) = \frac{u+v}{2}.$$

PROOF. If $M : J^2 \to J$ is a mean in J, then the function $J^2 \ni (u, v) \mapsto u + v - M(u, v)$ is also a mean, thus the sequence $M_n(u, v)$ $(n \in \mathbb{N})$

is well-defined. If u = v, the assertion clearly holds, since M(u, u) = u $(u \in J).$

Let $u < v \ (u, v \in J)$ be fixed. It can easily be seen that for the closed intervals

$$I_k := [\alpha_k(u, v), \omega_k(u, v)],$$

with the notations

$$\alpha_k(u, v) := \min\{M_k(u, v), \ u + v - M_k(u, v)\},\$$
$$\omega_k(u, v) := \max\{M_k(u, v), \ u + v - M_k(u, v)\}$$

we have $I_{k+1} \subset I_k$ $(k \in \mathbb{N})$, and, moreover, the symmetry of M implies

(2.6)
$$M_{k+1}(u,v) = M(\alpha_k(u,v), \omega_k(u,v)),$$

since $\frac{1}{2}(\alpha_k(u,v),\omega_k(u,v)) = \frac{u+v}{2}, \frac{u+v}{2} \in \bigcap_{k=1}^{\infty} I_k$ holds. Let $\sup_{k \in \mathbb{N}} \alpha_k(u,v) = \lim_{k \to \infty} \alpha_k(u,v) = \alpha(u,v)$ and $\inf_{k \in \mathbb{N}} \omega_k(u,v) = \lim_{k \to \infty} \omega_k(u,v) = \omega(u,v)$, then

(2.7)
$$\alpha_l(u,v) \le \alpha(u,v) \le \omega(u,v) \le \omega_s(u,v)$$

for all $l, s \in \mathbb{N}$. We show that $\alpha(u, v) = \omega(u, v) = \frac{u+v}{2}$. If there existed u < v such that $\alpha(u, v) < \omega(u, v)$ then by the property of means

$$\alpha(u,v) < M(\alpha(u,v), \omega(u,v)) < \omega(u,v)$$

would hold. On the other hand, the continuity of M and $(\alpha_k(u,v),\omega_k(u,v)) \to (\alpha(u,v),\omega(u,v)) \ (k\to\infty)$ imply the existence of $N \in \mathbb{N}$ for which

$$\alpha(u, v) < M(\alpha_N(u, v), \omega_N(u, v)) < \omega(u, v),$$

that is, by (2.6),

$$M_{N+1}(u,v) \in]\alpha(u,v), \omega(u,v)[$$

Now $M_{n+1}(u, v)$ equals either $\alpha_{N+1}(u, v)$ or $\omega_{N+1}(u, v)$, which contradicts (2.7). Thus $\alpha(u, v) = \omega(u, v)$ is the only number that belongs to $\bigcap_{k=1}^{\infty} I_k$, that is, $\alpha(u, v) = \omega(u, v) = \frac{u+v}{2}$. So from (2.6) we have (2.5).

Now we continue the proof of Theorem 1.

From inequality (2.3), using the notations of Lemma 1,

(2.8)
$$f(u+v-M_n(u,v)) + f(M_n(u,v)) \le f(u) + f(v)$$

follows for all $n \in \mathbb{N}$ and $u, v \in J$, which can be proved by induction. For n = 1, (2.8) holds by (2.3). If (2.8) holds for n, then putting $M_n(u, v)$ for u and $u + v - M_n(u, v)$ for v in (2.8), we have by the assumption

$$f(u+v-M_{n+1}(u,v)) + f(M_{n+1}(u,v))$$

$$\leq f(u+v-M_n(u,v)) + f(M_n(u,v)) \leq f(u) + f(v).$$

Using the assertion of the lemma, since $f \in CM(J)$, with $n \to \infty$, from (2.8) we obtain

(2.9)
$$2f\left(\frac{u+v}{2}\right) \le f(u) + f(v)$$

for all $u, v \in J$, that is, f is Jensen-convex in J. Since f is continuous, f is convex in J [14]. This proves the necessity of the condition.

Now suppose that $\psi \in CM(I)$ is increasing and $f := \psi \circ \varphi^{-1}$ is convex on the interval $\varphi(I) = J$. Let $u, v \in J$ be arbitrary. Then there exists $0 < \lambda < 1$ such that for the mean $M : J^2 \to J$ defined in (2.4)

$$M(u, v) = \lambda u + (1 - \lambda)v$$

holds. Thus, by the convexity of f

$$\begin{aligned} f(u+v-M(u,v)) + f(M(u,v)) \\ &= f(u+v-\lambda u - (1-\lambda)v) + f(\lambda u + (1-\lambda)v) \\ &= f((1-\lambda)u + \lambda v) + f(\lambda u + (1-\lambda)v) \\ &\leq (1-\lambda)f(u) + \lambda f(v) + \lambda f(u) + (1-\lambda)f(v) \\ &= f(u) + f(v). \end{aligned}$$

From this inequality, with the substitution $\varphi(x) = u$, $\psi(y) = v$ $(x, y \in I$ are arbitrary) and from (2.4), by $M(u, v) = \varphi(L(x, y))$ we have

$$\psi \circ \varphi^{-1}(\varphi(x) + \varphi(y) - \varphi(L(x,y))) + \psi \circ \varphi^{-1}(\varphi(L(x,y)))$$
$$\leq \psi(x) + \psi(y),$$

which implies, since ψ^{-1} is increasing, $L^*_{\varphi}(x, y) \leq L^*_{\psi}(x, y)$ for all $x, y \in I$.

Theorem 2. Let $\varphi, \psi \in CM(I)$. The equality (2.1) holds for all $x, y \in I$ if and only if there exist real constants $\alpha \neq 0$ and β such that

(2.10)
$$\psi(x) = \alpha \varphi(x) + \beta$$

for all $x \in I$.

PROOF. It can easily be seen that $L_{\psi}^*(x,y) = L_{-\psi}^*(x,y)$ for all $x, y \in I$, thus, by Theorem 1, both $\psi \circ \varphi^{-1} =: f$ and $-\psi \circ \varphi^{-1} = -f$ are convex in $\varphi(I) =: J$, that is, for all values of $u, v \in J$ and $0 < \lambda < 1$

$$f(\lambda u + (1 - \lambda)v) = \lambda f(u) + (1 - \lambda)f(v).$$

This implies $f(u) = \alpha u + \beta$ ($u \in J$), where $\alpha \neq 0$ and β are constants. With the notation $u = \varphi(x)$ ($x \in I$) we obtain (2.10). Conversely, if ψ is of the form (2.10) one can easily check equality (2.1).

Definition 3. Let $\varphi, \psi \in CM(I)$. ψ and φ are called *equivalent* if there exist real numbers $\alpha \neq 0$ and β for which (2.10) holds for all $x \in I$. Notation: $\psi \sim \varphi$ or $\psi(x) \sim \varphi(x)$ ($x \in I$).

Theorem 3. If $\varphi, \psi \in CM(I)$ and $\psi \sim \varphi$ then $A_{\varphi} = A_{\psi}$ and $L_{\varphi}^* = L_{\psi}^*$, that is, equivalent generating functions define the same quasi-arithmetic or L-conjugate mean.

PROOF. It is known for quasi-arithmetic means [6]. For L-conjugate means, it follows from Theorem 2. $\hfill \Box$

3. Homogeneous L-conjugate means in the case of homogeneous L

Definition 4. If \mathbb{R}_+ denotes the set of positive real numbers and $M: \mathbb{R}^2_+ \to \mathbb{R}_+$ is a mean on \mathbb{R}_+ , then this mean is called *homogeneous* if

$$(3.1) M(tx,ty) = tM(x,y)$$

holds for all $x, y, t \in \mathbb{R}_+$.

Theorem 4. Let $L : \mathbb{R}^2_+ \to \mathbb{R}_+$ be a fixed homogeneous mean on \mathbb{R}_+ and let $\varphi \in CM(\mathbb{R}_+)$. Then the L-conjugate mean $L^*_{\varphi} : \mathbb{R}^2_+ \to \mathbb{R}_+$ on \mathbb{R}_+ is homogeneous if and only if

(3.2)
$$\varphi(x) = \frac{x^a - 1}{a} \qquad (a \in \mathbb{R}, \ a \neq 0)$$

or

(3.3)
$$\varphi(x) = \log x$$

for all $x \in \mathbb{R}_+$, up to equivalence for the generating functions. According to this, the L-conjugate homogeneous means for homogeneous L are the family of means of one parameter $(a \in \mathbb{R})$

(3.4)
$$L_a^*(x,y) := \begin{cases} (x^a + y^a - L(x,y)^a)^{\frac{1}{a}} & \text{if } a \neq 0\\ \frac{xy}{L(x,y)} & \text{if } a = 0. \end{cases}$$

Notice that

(3.5)
$$\lim_{a \to 0} L_a^*(x, y) = L_0^*(x, y)$$

for all $x, y \in \mathbb{R}_+$.

PROOF. Let $L: \mathbb{R}^2_+ \to \mathbb{R}_+$ be a homogeneous mean and $\varphi \in CM(\mathbb{R}_+)$ for which

(3.6)
$$L^*_{\varphi}(tx, ty) = tL^*_{\varphi}(x, y)$$

holds for all $t, x, y \in \mathbb{R}_+$. For a fixed $t \in \mathbb{R}_+$, let

(3.7)
$$\psi_t(x) := \varphi(tx) \qquad (x \in \mathbb{R}_+).$$

Clearly, $\psi_t \in CM(\mathbb{R}_+)$ and

$$\begin{split} L^*_{\psi_t}(x,y) &= \psi^{-1}(\psi_t(x) + \psi_t(y) - \psi_t(L(x,y))) \\ &= \frac{1}{t}\varphi^{-1}(\varphi(tx) + \varphi(ty) - \varphi(tL(x,y))) \\ &= \frac{1}{t}\varphi^{-1}(\varphi(tx) + \varphi(ty) - \varphi(L(tx,ty))) \\ &= \frac{1}{t}L^*_{\varphi}(tx,ty) = L^*_{\varphi}(x,y) \end{split}$$

for all $x, y \in \mathbb{R}_+$. Thus by Theorem 2 there exist real numbers $\alpha(t) \neq 0$ and $\beta(t)$ such that

$$\psi_t(x) = \alpha(t)\varphi(x) + \beta(t)$$

for all $x \in \mathbb{R}_+$, which implies

(3.8)
$$\varphi(tx) = \alpha(t)\varphi(x) + \beta(t)$$

for all elements $x \in \mathbb{R}_+$ and $t \in \mathbb{R}_+$ and $\alpha(t) \neq 0$. Since $\varphi \in CM(\mathbb{R})$, by a well-known theorem of Lebesgue [18] there exists $x_0 \in \mathbb{R}_+$ at which φ is differentiable. Then the left hand side of (3.8) is differentiable at the point $x = x_0$, i.e., $\varphi'(tx_0)$ exists. Since $tx_0 = s$ runs through all the elements of \mathbb{R}_+ , $\varphi'(s)$ exists for all $s \in \mathbb{R}_+$. We show that $\varphi'(s) \neq 0$ for all $s \in \mathbb{R}_+$. If there existed $s_0 \in \mathbb{R}_+$ for which $\varphi'(s_0) = 0$, then differentiating (3.8) with respect to x and putting $x = s_0$ we would obtain $\varphi'(ts_0) = 0$ for all $t \in \mathbb{R}_+$, i.e., φ would be constant, which contradicts $\varphi \in CM(\mathbb{R}_+)$.

Thus $\varphi : \mathbb{R}_+ \to \mathbb{R}$ is differentiable and $\varphi'(x) \neq 0$ for all $x \in \mathbb{R}_+$. We look for solutions φ for which $\varphi(1) = 0$ and $\varphi'(1) = 1$. This causes no loss of generality, as for all φ the generating function

$$\varphi^*(t) := \frac{\varphi(t)}{\varphi'(1)} - \frac{\varphi(1)}{\varphi'(1)}$$

satisfies the required property and $\varphi \sim \varphi^*$.

Putting x = 1 in equation (3.8), we obtain $\beta(t) = \varphi(t)$. Differentiating equation (3.8) with respect to x we have

$$\varphi'(tx)t = \alpha(t)\varphi'(x),$$

which implies, with the substitution x = 1, $\alpha(t) = t\varphi'(t)$. Now putting the results we got back into equation (3.8) and interchanging the variables t and x we get

$$\varphi(tx) = t\varphi'(t)\varphi(x) + \varphi(t) = x\varphi'(x)\varphi(t) + \varphi(x),$$

from which, with the substitution t = 2, since $\varphi(2) \neq 0$,

(3.9)
$$x\varphi'(x) - 1 = \frac{2\varphi'(2) - 1}{\varphi(2)}\varphi(x) = a\varphi(x)$$

follows, where $a \in \mathbb{R}$ is a constant value. If $a \neq 0$, then the only solution of the differential equation (3.9) is (3.2). If a = 0 we obtain solution (3.3). The remaining statement of the theorem is obvious.

Remark. The functional equation (3.8) and its solutions are known (see [6], p. 69). Here we gave a different argument by using the monotonicity of φ and reducing (3.8) directly to the differential equation (3.9).

The comparison theorem implies

Theorem 5. If $L : \mathbb{R}^2_+ \to \mathbb{R}_+$ is a homogeneous mean on \mathbb{R}_+ and $a, b \in \mathbb{R}_+$ then

(3.10)
$$L_a^*(x,y) \le L_b^*(x,y)$$

holds for all $x, y \in \mathbb{R}_+$ if and only if

$$(3.11) a \le b.$$

PROOF. With the notation

(3.12)
$$\chi_a(u) := \begin{cases} \frac{u^a - 1}{a} & \text{if } a \neq 0\\ \log u & \text{if } a = 0 \end{cases} \quad (u \in \mathbb{R}_+),$$

(3.10) holds if and only if

(3.13)
$$L^*_{\chi_a}(x,y) \le L^*_{\chi_b}(x,y)$$

holds for all $x, y \in \mathbb{R}_+$, where $\chi_a, \chi_b \in CM(\mathbb{R}_+)$. One can easily check that $\chi_a : \mathbb{R}_+ \to \mathbb{R}$ is differentiable and $\chi'_a(u) > 0$ for all $u \in \mathbb{R}_+$. Therefore, by the comparison theorem, (3.13) holds if and only if $f := \chi_b \circ \chi_a^{-1}$ is *convex* on the interval $J := \chi_a(\mathbb{R}_+)$. Since the function f is differentiable, this holds if and only if

$$f(x) - f(y) \ge (x - y)f'(y)$$

for all $x, y \in J$, that is,

$$\chi_b \circ \chi_a^{-1}(x) - \chi_b \circ \chi_a^{-1}(y) \ge (x - y)\chi_b' \circ \chi_a^{-1}(y) \frac{1}{\chi_a' \circ \chi_a^{-1}(y)},$$

from which, with the notations $u := \chi_a^{-1}(x), \ v := \chi_a^{-1}(y) \ (u, v \in \mathbb{R}_+)$

(3.14)
$$\frac{\chi_b(u) - \chi_b(v)}{\chi_b'(v)} \ge \frac{\chi_a(u) - \chi_a(v)}{\chi_a'(v)}$$

follows for all $u, v \in \mathbb{R}_+$. Putting the function (3.12) into the inequality (3.14) we obtain

$$v\chi_a\left(\frac{u}{v}\right) \le v\chi_b\left(\frac{u}{v}\right),$$

which implies, with the notation $\frac{u}{v} =: s \in \mathbb{R}_+,$

(3.15)
$$\chi_a(s) \le \chi_b(s)$$

for all $s \in \mathbb{R}_+$. Therefore it is enough to show that (3.15) holds for all $s \in \mathbb{R}_+$ if and only if $a \leq b$. This means that $\mathbb{R} \ni a \mapsto \chi_a(s)$ is increasing for any fixed $s \in \mathbb{R}_+$ and there exists $s_0 \in \mathbb{R}_+$ for which $\mathbb{R} \ni a \mapsto \chi_a(s_0)$ is strictly increasing. This follows from

$$\frac{\partial}{\partial a}\chi_a(s) = \begin{cases} \frac{s^a \log s^a - s^a + 1}{a^2} & \text{if } a \neq 0\\ \frac{(\log s)^2}{2} & \text{if } a = 0 \end{cases} (s \in \mathbb{R}_+)$$

and since $z \log z - z + 1 \ge 0$ $(z \in \mathbb{R}_+)$,

$$\frac{\partial}{\partial a}\chi_a(s) \ge 0 \qquad (s \in \mathbb{R}_+),$$

that is, $a \mapsto \chi_a(s)$ is increasing in a with s fixed. If $s \neq 0$ then $a \mapsto \chi_a(s)$ is strictly increasing. This completes the proof of the theorem. \Box

As a special case of the theorem we obtain the inequality $L_{-1}^* \leq L_0^* \leq L_1^*$: If $L : \mathbb{R}^2_+ \to \mathbb{R}_+$ is a homogeneous mean then

$$\left(\frac{1}{x} + \frac{1}{y} - \frac{1}{L(x,y)}\right)^{-1} \le \frac{xy}{L(x,y)} \le x + y - L(x,y)$$

for all values $x, y \in \mathbb{R}_+$. Of course, this inequality can be proved in an elementary way.

4. Translative L-conjugate means in the case of translative L

Definition 5. A mean $M: \mathbb{R}^2 \to \mathbb{R}$ on \mathbb{R} is called *translative* if

(4.1)
$$M(t+x,t+y) = t + M(x,y)$$

holds for all $t, x, y \in \mathbb{R}$.

Theorem 6. Let $L : \mathbb{R}^2 \to \mathbb{R}$ be a translative mean in \mathbb{R} and $\varphi \in CM(\mathbb{R})$. Then the L-conjugate mean $L_{\varphi}^* : \mathbb{R}^2 \to \mathbb{R}$ on \mathbb{R} is translative if and only if

(4.2)
$$\varphi(x) = \frac{e^{ax} - 1}{a} \qquad (a \in \mathbb{R}, \ a \neq 0)$$

or

(4.3)
$$\varphi(x) = x$$

for all $x \in \mathbb{R}$ up to equivalence for the generating functions.

According to this, the *L*-conjugate translative means for translative *L* are the family of means of one parameter $(a \in \mathbb{R})$

(4.4)
$$L_{[a]}^{*}(x,y) := \begin{cases} \frac{1}{a} \log \left(e^{ax} + e^{ay} - e^{aL(x,y)} \right) & \text{if } a \neq 0 \\ x + y - L(x,y) & \text{if } a = 0 \end{cases}$$

for which

(4.5)
$$\lim_{a \to 0} L^*_{[a]}(x,y) = L^*_{[0]}(x,y)$$

for all $x, y \in \mathbb{R}$.

PROOF. Let $L: \mathbb{R}^2 \to \mathbb{R}$ be a translative mean on \mathbb{R} and $\varphi \in CM(\mathbb{R})$. Then

(4.6)
$$H(u,v) := \exp L(\log u, \log v) \qquad (u,v \in \mathbb{R}_+)$$

is a homogeneous mean on \mathbb{R}_+ and with the notation $\psi(u) := \varphi(\log u)$ $(u \in \mathbb{R}_+) \ \psi \in CM(\mathbb{R}_+)$, furthermore, for all $s, u, v \in \mathbb{R}_+$

(4.7)

$$H^*_{\psi}(su, sv) = \psi^{-1}(\psi(su) + \psi(sv) - \psi(H(su, sv)))$$

$$= \exp \varphi^{-1}(\varphi(\log su) + \varphi(\log sv) - \varphi(L(\log su, \log sv)))$$

$$= \exp L^*_{\varphi}(\log s + \log u, \log s + \log v)))$$

$$= \exp(\log s) \exp L^*_{\varphi}(\log u, \log v)$$

$$= sH^*_{\psi}(u, v),$$

that is, $H_{\psi}^* : \mathbb{R}^2_+ \to \mathbb{R}_+$ is a homogeneous mean. Thus from Theorem 4 either $\psi(u) = \frac{u^a - 1}{a}$ $(a \neq 0)$ or $\psi(u) = \log u$ $(u \in \mathbb{R}_+)$ follows, which implies (4.2) and (4.3) for φ . The remaining statement of the theorem is obvious.

Theorem 7. If $L : \mathbb{R}^2 \to \mathbb{R}$ is a translative mean on \mathbb{R} and $a, b \in \mathbb{R}$, then

(4.8)
$$L^*_{[a]}(x,y) \le L^*_{[b]}(x,y)$$

holds for all $x, y \in \mathbb{R}$ if and only if

$$(4.9) a \le b.$$

PROOF. The statement easily follows from the relation between homogeneous and translative means and Theorem 5. $\hfill \Box$

5. A-conjugate means which are quasi-arithmetic means

The best-known mean is the arithmetic mean $A: I^2 \to I$ defined by

(5.1)
$$A(x,y) := \frac{x+y}{2} \quad (x,y \in I)$$

and can be defined on any open interval $I \subset \mathbb{R}$. The following problem seems to be natural: For which $\varphi \in CM(I)$ will the A-conjugate mean $A_{\varphi}^*: I^2 \to I$ be also quasi-arithmetic on the interval I? This means that if φ is the required generating function, then there exists $\psi \in CM(I)$ such that

(5.2)
$$A^*_{\omega}(x,y) = A_{\psi}(x,y)$$

holds for all $x, y \in I$. In more detail, for the unknown functions $\varphi, \psi \in CM(I)$ the functional equation

(5.3)
$$\varphi^{-1}\left(\varphi(x) + \varphi(y) - \varphi\left(\frac{x+y}{2}\right)\right) = \psi^{-1}\left(\frac{\psi(x) + \psi(y)}{2}\right)$$

holds for all $x, y \in I$.

The problem has not been solved yet in its most general form. If we require that the generating function φ in (5.2) (or (5.3)) satisfy further conditions then the generating functions φ and ψ can be determined, and therefore we can derive means from them that are A-conjugate and quasi-arithmetic at the same time. Our aim, which will be realized in Section 6, is to prove the following:

Theorem 8. Suppose that $\varphi \in CM(I)$ is twice differentiable in I. Then the A-conjugate mean $A_{\varphi}^* : I^2 \to I$ is quasi-arithmetic in I if and only if φ is one of the functions below (disregarding the equivalence of generating functions):

- (i) $\varphi(x) = x$ if $x \in I$,
- (ii) There exists $\lambda \in P_+ := \{\lambda \in \mathbb{R} \mid I + \lambda \subset \mathbb{R}_+\}$ such that $\varphi(x) = \log(x + \lambda)$ if $x \in I$,
- (iii) There exists $\mu \in P_- := \{\mu \in \mathbb{R} \mid -I + \mu \subset \mathbb{R}_+\}$ such that $\varphi(x) = \log(-x + \mu)$ if $x \in I$.

Remarks.

(1) If $I =]a, b[(a, b \in \mathbb{R}, a < b)]$ is bounded then

$$P_{+} = \{\lambda \in \mathbb{R} \mid \lambda > -a\} \quad \text{and} \quad P_{-} = \{\mu \in \mathbb{R} \mid \mu > b\}$$

(2) If *I* is not bounded then $I = \mathbb{R}$ and cases (ii) and (iii) do not occur; or $I =]-\infty, b[\ (b \in \mathbb{R})$ and case (ii) does not occur; or $I =]a, \infty[\ (a \in \mathbb{R})$ and case (iii) does not occur.

6. The proof of Theorem 8

To make the proof of Theorem 8 easier to read we first prove the following two lemmas:

Lemma 2. Let $\varphi \in CM(I)$ be (once) continuously differentiable in Iand $\varphi'(x) \neq 0$ if $x \in I$. If there exists $\psi \in CM(I)$ for which

(6.1)
$$A^*_{\varphi}(x,y) = A_{\psi}(x,y)$$

holds for all $x, y \in I$ then ψ is (once) differentiable in I and $\psi'(x) \neq 0$ if $x \in I$.

PROOF. By (6.1), for all $x, y \in I$

(6.2)
$$\psi(x) = 2\psi(A^*_{\varphi}(x,y)) - \psi(y)$$

Now let $x_0 \in I$ be arbitrarily fixed. Then from (6.2)

$$\psi(x_0) = 2\psi(A^*_{\varphi}(x_0, y)) - \psi(y)$$

follows for all $y \in I$. Since the function $y \mapsto A^*_{\varphi}(x_0, y)$ $(y \in I)$ is continuous, $A^*_{\varphi}(x_0, I)$ is a nonvoid open interval. Then by the monotonity of ψ and Lebesgue's theorem ψ is almost everywhere differentiable, thus there exists $y_0 \in I$ such that ψ is differentiable at $A^*_{\varphi}(x_0, y_0)$. Since φ is differentiable and $\varphi'(x) \neq 0$ $(x \in I)$, its inverse is also differentiable, therefore the function $x \mapsto A^*_{\varphi}(x, y_0)$ $(x \in I)$ is differentiable at x_0 , and by

$$\psi(x) = 2\psi(A^*_{\omega}(x, y_0)) - \psi(y_0) \qquad (x \in I)$$

 ψ is differentiable at x_0 by the differentiation rule of composite functions. Thus differentiating (6.2) with respect to x we have

(6.3)
$$\psi'(x) = 2\psi'(A^*_{\varphi}(x,y))\frac{\varphi'(x) - \varphi'\left(\frac{x+y}{2}\right)\frac{1}{2}}{\varphi'(A^*_{\varphi}(x,y))}$$

for all $x, y \in I$.

Now let $x_0 \in I$ be arbitrarily fixed. Then the function $y \mapsto \varphi'(x_0) - \varphi'\left(\frac{x+y}{2}\right)\frac{1}{2}$ $(y \in I)$ takes the value $\varphi'(x_0)\frac{1}{2} \neq 0$ at $y = x_0$, thus, by the continuity of φ , there exists $\delta > 0$ such that for any $y \in]x_0 - \delta, x_0 + \delta[\subset I, \varphi'(x_0) - \varphi'\left(\frac{x+y}{2}\right)\frac{1}{2} \neq 0$. On the other hand, as ψ is strictly monotonic, there exists $y_0 \in]x_0 - \delta, x_0 + \delta[$ for which $\psi'(A_{\varphi}^*(x_0, y_0)) \neq 0$. This implies, by (6.3),

$$\psi'(x_0) \neq 0,$$

which completes the proof of the Lemma.

Lemma 3. Let $J \subset \mathbb{R}$ be an open interval and $F: J \to \mathbb{R}$ such that

(6.4)
$$(F(x) - F(y))\left(F\left(\frac{x+y}{2}\right) - \frac{F(x) + F(y)}{2}\right) = 0$$

holds for all $x, y \in J$. If F is continuous on J then there exist constants $\alpha, \beta \in \mathbb{R}$ for which

(6.5)
$$F(x) = \alpha x + \beta \quad \text{if } x \in I.$$

PROOF. If F is constant in J then (6.4) holds and $\alpha = 0$ in (6.4). If F is not constant in J then there exist $a, b \in J$ with a < b such that

 $F(a) \neq F(b)$. Then (6.4) implies

$$F\left(\frac{a+b}{2}\right) = \frac{F(a)+F(b)}{2}.$$

It can be seen by induction that

$$F\left(\frac{ka+lb}{2^n}\right) = \frac{kF(a)+lF(b)}{2^n},$$

where $k \ge 0$, $l \ge 0$ are integers and $k+l=2^n$ (n=0,1,2,...). From this, by the continuity of F and the density of $\frac{ka+lb}{2^n}$ in [a,b], we obtain

(6.6)
$$F(x) = \alpha x + \beta \quad \text{if } x \in [a, b],$$

where

$$\alpha = \frac{F(b) - F(a)}{b - a} \neq 0$$
 and $\beta = \frac{bF(a) - aF(b)}{b - a}$.

If $t \in J$ and $t \notin [a, b]$ and $t \in]a - \delta, a[$ or $t \in]b, b + \delta[$ (where $0 < \delta < \frac{b-a}{2}$) then there exists $x \in]a, b[$ such that $F(x) \neq F(t)$ and $\frac{x+t}{2} \in]a, b[$, from which, by (6.4)

$$\alpha \frac{x+t}{2} + \beta = F\left(\frac{x+t}{2}\right) = \frac{F(x) + F(t)}{2} = \frac{\alpha x + \beta + F(t)}{2}$$

follows, that is, $F(t) = \alpha t + \beta$. Thus the solution (6.6) can be extended to J, with this the proof of the Lemma is complete.

PROOF of Theorem 8. Let

$$N := \{ x \mid x \in I, \ \varphi'(x) = 0 \}.$$

Then, by the continuity of φ' , N is a closed set, whose interior, $\operatorname{int} N = \emptyset$. Thus $I \cap (\mathbb{R} \setminus N)$ is open, that is, it can be obtained as a union of at most countably infinite disjoint open intervals. Let $J =]a, b[\subset I \cap (\mathbb{R} \setminus N)$ be an interval of maximal length for which $a, b \notin I \cap (\mathbb{R} \setminus N)$. According to the definition, if $a \in I$ then $\varphi'(a) = 0$ and the same holds for b. If $a = -\infty$ and $b = \infty$ then according to the definition $J =] - \infty, \infty[= I = \mathbb{R}$ (and $N = \emptyset$). If this is not the case then by the maximality either J = I (and then $N = \emptyset$) or at least one of the endpoints of J belongs to I.

These conditions guarantee the existence of a function $\psi \in CM(I)$ for which the functional equation

(6.7)
$$\varphi^{-1}\left(\varphi(x) + \varphi(y) - \varphi\left(\frac{x+y}{2}\right)\right) = \psi^{-1}\left(\frac{\psi(x) + \psi(y)}{2}\right)$$

holds for all $x, y \in I$. Then (6.7) also holds for all $x, y \in J$, where obviously $\varphi'(x) \neq 0$ if $x \in J$ and $\varphi, \psi \in CM(J)$. Thus, by Lemma 2, ψ' exists and $\psi'(x) \neq 0$ if $x \in J$. Consequently, equation (6.7) can be differentiated in J with respect to x, that is,

$$\frac{\varphi'(x) - \varphi'\left(\frac{x+y}{2}\right)\frac{1}{2}}{\varphi'\left(A^*_{\varphi}(x,y)\right)} = \frac{\psi'(x)}{2\psi'\left(A_{\psi}(x,y)\right)}$$

follows for all $x, y \in J$. From this, by the symmetry of A_{φ}^* and A_{ψ} , we have

(6.8)
$$\frac{\varphi'(x) - \varphi'\left(\frac{x+y}{2}\right)\frac{1}{2}}{\psi'(x)} = \frac{\varphi'(y) - \varphi'\left(\frac{x+y}{2}\right)\frac{1}{2}}{\psi'(y)}$$

for all $x, y \in J$. We introduce the following notation:

$$\varepsilon_{\chi} := \begin{cases} 1 & \text{if } \chi \text{ is increasing} \\ -1 & \text{if } \chi \text{ is decreasing} \end{cases}$$

for all $\chi \in CM(I)$, and let

(6.9)
$$F(x) := \frac{\varepsilon_{\varphi}}{\varphi'(x)}, \quad G(x) := \frac{\varepsilon_{\psi}\varphi'(x)}{\psi'(x)\varepsilon_{\varphi}} \quad \text{if } x \in J.$$

Then from (6.8) we have that the functional equation

(6.10)
$$2F\left(\frac{x+y}{2}\right)(G(x) - G(y)) = F(x)G(x) - F(y)G(y)$$

holds for all $x, y \in J$, where F is (continuous and) differentiable in J because φ is twice differentiable. (6.10) implies

$$G(y)\left(2F\left(\frac{x+y}{2}\right) - F(y)\right) = G(x)\left(2F\left(\frac{x+y}{2}\right) - F(x)\right)$$

for all $x, y \in I$, from which, by the continuity of F, the existence of

$$\lim_{y \to x} G(y) = \lim_{y \to x} G(x) \frac{2F\left(\frac{x+y}{2}\right) - F(x)}{2F\left(\frac{x+y}{2}\right) - F(y)} = G(x)$$

follows, as there exists $\delta > 0$ for which $2F\left(\frac{x+y}{2}\right) - F(y) \neq 0$ if $y \in]x - \delta, x + \delta[\subset J$. Thus G is *continuous* in J. From (6.10) we have

$$\left(2F\left(\frac{x+y}{2}\right) - F(x)\right)\frac{G(x) - G(y)}{x-y} = G(y)\frac{F(x) - F(y)}{x-y}$$

for all $x, y \in J$ with $x \neq y$, from which the reader can easily see (using the continuity of G) that G is differentiable in J and if $y \to x$

$$F(x)G'(x) = G(x)F'(x)$$
 if $x \in J$.

This implies $(\log G(x) - \log F(x))' = 0$ $(x \in J)$, that is, there exists c > 0 such that $\log G(x) - \log F(x) = \log c$ $(x \in J)$, from which we have

(6.11)
$$G(x) = cF(x) \quad \text{if } x \in J.$$

Thus, by (6.11), (6.10) implies (6.4) for all $x, y \in J$, where $F : J \to \mathbb{R}_+$ is a continuous function. By Lemma 3, there exist constants $\alpha, \beta \in \mathbb{R}$ for which

(6.12)
$$F(x) = \alpha x + \beta > 0 \quad \text{if } x \in J.$$

This implies, by (6.9)

(6.13)
$$\varphi'(x) = \frac{\varepsilon_{\varphi}}{\alpha x + \beta} \quad (\alpha x + \beta > 0) \quad \text{if } x \in J.$$

According to the definition, the following cases are possible: either J = Ior one of the endpoints of J belongs to I; let us denote it by $c \in I$ (c = aor b if J =]a, b[). Then $\varphi'(c) = 0$, but this contradicts (6.13) by the continuity of φ' in I. Therefore in any case $N = \emptyset$ and J = I. Thus the solution (6.13) is a function defined on the whole of I. Up to equivalence for the generating functions, there are the following possible cases:

(i) $\alpha = 0$ then $\beta > 0$ thus (6.13) implies

$$\varphi(x) = \varepsilon_{\varphi} \frac{1}{\beta} x + \delta \sim x \quad \text{if } x \in I;$$

(ii) $\alpha > 0$ then (6.13) implies

$$\begin{split} \varphi(x) &= \varepsilon_{\varphi} \frac{1}{\alpha} \log(\alpha x + \beta) + \delta \\ &= \varepsilon_{\varphi} \frac{1}{\alpha} \log\left(x + \frac{\beta}{\alpha}\right) + \varepsilon_{\varphi} \frac{1}{\alpha} \log\alpha + \delta \sim \log(x + \lambda) \\ &\text{if } x \in I, \end{split}$$

where $\lambda = \frac{\beta}{\alpha} \in P_+$; (iii) $\alpha < 0$ then

$$\begin{split} \varphi(x) &= \varepsilon_{\varphi} \frac{1}{\alpha} \log(\alpha x + \beta) + \delta \\ &= \varepsilon_{\varphi} \frac{1}{\alpha} \log\left(-x + \frac{\beta}{-\alpha}\right) + \varepsilon_{\varphi} \frac{1}{\alpha} \log(-\alpha) + \delta \sim \log(-x + \mu) \\ &\text{if } x \in I, \end{split}$$

where $\mu = \frac{\beta}{-\alpha} \in P_-$.

With this we obtain the solutions stated in Theorem 8. It can easily be seen that the A-conjugate means formed with these generating functions are quasi-arithmetic means as well. $\hfill \Box$

7. Inequalities

If $x, y \in \mathbb{R}_+$ then let

(7.1)
$$H(x,y) := \frac{2xy}{x+y}$$

be the well-known harmonic mean. If $I \subset \mathbb{R}$ is an open interval and $\lambda \in P_+$ then let

(7.2)
$$H_{\lambda}^{+}(x,y) := H(x+\lambda,y+\lambda) - \lambda \quad (x,y \in I),$$

and for $\mu \in P_{-}$ let

(7.3)
$$H^{-}_{\mu}(x,y) := -H(-x+\mu,-y+\mu) + \mu \quad (x,y \in I).$$

It can easily be seen that $H_{\lambda}^+: I^2 \to I$ ($\lambda \in P_+$) and $H_{\mu}^-: I^2 \to I$ ($\mu \in P_-$) are means. These means can be formed according to the rules in the following scheme.

If $I =]a, b[(a < b, a, b \in \mathbb{R})$ is a *bounded* open interval then $P_+ = \{\lambda \mid \lambda > -a\}$. Then the mean $H_{\lambda}^+ : I^2 \to I$ can be obtained as follows:

$$\begin{array}{ccc} x < y \ (x,y \in I) & \xrightarrow{\lambda \in P_+} & 0 < x+\lambda < y+\lambda \\ & & & \downarrow \\ x < H_{\lambda}^+(x,y) < y & \longleftarrow & x+\lambda < H(x+\lambda,y+\lambda) < y+\lambda. \end{array}$$

Similarly we get that $P_- = \{\mu \mid \mu > b\}$ and for $\mu \in P_-$ the mean $H^-_{\mu}: I^2 \to I$ can be obtained as follows:

$$\begin{array}{ccc} x < y \ (x,y \in I) & \xrightarrow{\mu \in P_{-}} & -x + \mu > -y + \mu > 0 \\ & & \downarrow \\ & & -x + \mu > H(-x + \mu, y + \mu) > -y + \mu \\ & & \downarrow \uparrow \\ x < H_{\mu}^{-}(x,y) < y \longleftrightarrow x - \mu < -H(-x + \mu, -y + \mu) < y - \mu. \end{array}$$

The cases $I =] - \infty$, $b[(b \in \mathbb{R}) \text{ and } I =]a, \infty[(a \in \mathbb{R}) \text{ can be handled} in a similar way.}$

Theorem 9. An A-conjugate mean generated by a twice differentiable function is quasi-arithmetic if and only if it is one of the following:

- (i) A(x, y) $(x, y \in I)$, or
- (ii) $H^+_{\lambda}(x,y)$ $(x,y \in I)$ for some $\lambda \in P_+$, or
- (iii) $H^{-}_{\mu}(x,y) \ (x,y \in I)$ for some $\mu \in P_{-}$.

PROOF. The statement trivially follows from the form of the generating functions given in Theorem 8. $\hfill \Box$

Theorem 10. Let $x, y \in I$ and $x \neq y$. Then the function $\lambda \mapsto H_{\lambda}^{+}(x, y)$ is strictly increasing on P_{+} , the function $\mu \mapsto H_{\mu}^{-}(x, y)$ is strictly decreasing on P_{-} , and the inequality

(7.4)
$$H_{\lambda}^{+}(x,y) < A(x,y) < H_{\mu}^{-}(x,y) \quad (\lambda \in P_{+}, \ \mu \in P_{-})$$

holds for all $x, y \in I, x \neq y$. Furthermore,

(7.5)
$$\lim_{\lambda \to \infty} H_{\lambda}^+(x,y) = \lim_{\mu \to \infty} H_{\mu}^-(x,y) = A(x,y).$$

PROOF. Supposing $P_+ \neq \emptyset$ and $P_- \neq \emptyset$ we easily obtain

$$\begin{aligned} \frac{\partial H^+_\lambda(x,y)}{\partial \lambda} &= \frac{(x-y)^2}{(x+y+2\lambda)^2} > 0 \quad \text{and} \\ \frac{\partial H^-_\mu(x,y)}{\partial \mu} &= \frac{-(x-y)^2}{(-x+-y+2\mu)^2} < 0, \end{aligned}$$

from which the statements concerning monotony follow. (7.5) can be calculated directly, and it easily implies (7.4).

References

- J. ACZÉL, Un problème de M.L. Fejér sur la construction de Leibniz, Bull. Sci. Math. 72 (1948), 35–45.
- [2] J. ACZÉL, I. FENYŐ and J. HORVÁTH, Sur certaines classes de fonctionelles, Portugaliae Math. 8 (1949), 1–11.
- [3] J. ACZÉL, Lectures on functional equations and their applications, Academic Press, New York, London, 1966.
- [4] J. ACZÉL and J. DHOMBRES, Functional equations in several variables, Cambridge University Press, Cambridge, 1989.
- [5] B. DE FINETTI, Sul concetto die media, Giornale dell' Instituto Italiano degli Attuari 2 (1931), 369–396.
- [6] G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, Inequalities, Cambridge, 1934.
- [7] J. HORVÁTH, Note sur un problème de L. Fejér, Bull. École Polyt. Jassy 3 (1948), 164–168.
- [8] J. L. W. V. JENSEN, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), 175–193.
- B. JESSEN, Bemaekinger om konvekse Funktioner og Uligheder immellem Middelvaerdier (II), Mat. Tidsskrift B (1931), Nos. 3–4.
- [10] B. JESSEN, Über die Verallgemeinerungen de arithmetischen Mittels, Acta. Litt. ac Scient. Univ. Hung. 5 (1931), 108–116.
- [11] B. KNASTER, Sur une équivalence pour les fonctions, Colloquium Math. 2 (1949), 1-4.
- [12] B. KNOPP, Neuere Sätze über Reihen mit positiven Gliedern, Math. Zeitschr. 30 (1929), 387–413.
- [13] A. KOLMOGOROV, Sur la notion de la moyenne, Rend. Accad. dei Lincei (6) 12 (1930), 388–391.
- [14] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Uniw. Stąski – P.W.N., Warszawa-Kraków-Katowice, 1985.
- [15] J. MATKOWSKI, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87–107.

- [16] M. NAGUMO, Über eine Klasse der Mittelwerte, Jap. Jour. of Math. 7 (1930), 71–79.
- [17] ZS. PÁLES, On two variable functional inequality, C.R. Math. Rep. Acad. Sci. Canada 10 (1988), 25–27.
- [18] F. Sz. RIESZ and B. NAGY, Functional analysis, New York, 1955.
- [19] C. RYLL-NARDZEWSKI, Sur les moyennes, Studis Math. 11 (1949), 31–37.
- [20] H. P. THIELMAN, On Generalized Means, Proc. Iowa Acad. Sci. 56 (1949), 241-247.

ZOLTÁN DARÓCZY INSTITUTE OF MATHEMATICS AND INFORMATICS LAJOS KOSSUTH UNIVERSITY H–4010 DEBRECEN, P.O.B. 12 HUNGARY *E-mail*: daroczy@math.klte.hu

(Received February 8, 1999)