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Finsler spaces with the h-curvature tensor
dependent on position alone

By S. BÁCSÓ (Debrecen) and M. MATSUMOTO (Kyoto)

Abstract. In a Finsler space the components of a tensor field are usually func-
tions of position (xi) and direction (yi). The main purpose of the present paper is to
consider Finsler spaces having h-curvature tensor whose components are functions of
position alone.

1. Introduction

When we have devoted ourselves to the theory of Douglas spaces [3],
we were greatly surprised and delighted at the discovery of the follow-
ing remarkable fact: For a Douglas space the components Wi

h
jk of the

projective Weyl tensor are functions of position (xi) alone.
In a Finsler space almost all tensor fields depend on E. Cartan’s sup-

porting element (xi, yi), that is, they are functions not on the underlying
manifold but on the tangent bundle. We have obtained the rigorous defi-
nition of such a Finslerian tensor field ([1, 2.2.3]; [4, Definition 6.2]), and
it is well-known that it is a singular case for a Finsler space to have some
tensor fields dependent on position alone.

The main purpose of the present paper is to consider Finsler spaces
whose h-curvature tensor depends on position alone.

Let Fn = {Mn, L(x, y)} be an n-dimensional Finsler space on a
smooth n-manifold Mn, equipped with the fundamental metric func-
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tion L(x, y). When considering the extremals of the length integral∫
L(x, dx/dt)dt, we obtain the functions

Gi(x, y) = gij{(∂̇j∂rF )yr − ∂jF}, F = L2/2,

and Gi
j(x, y) = ∂̇jG

i constitute a nonlinear connection (or spray connec-
tion, [1, p. 72]). Then we get the Berwald connection BΓ = {Gi

j , Gj
i
k, 0},

where Gj
i
k = ∂̇kGi

j and the last term ∂̇ means that the v-covariant dif-
ferentiation ∇v in BΓ is nothing but ∂/∂y.

Fn is called a Berwald space if the h-connection coefficients Gj
i
k of

BΓ are functions of position (xi) alone, that is, Gi(x, y) are homogeneous
polynomials in (yi) of degree two. A Berwald space is similar to a Rie-
mannian space and has certain characteristics as follows:
(1) The hv-curvature tensor Gi

h
jk = ∂̇Gi

h
j of BΓ vanishes identically.

(2) The h-connection coefficients Fj
i
k of the Cartan connection CΓ =

{Gi
j , Fj

i
k, Cj

i
k} are functions of position alone [4, Proposition 25.1].

(3) The C-tensor (Cj
i
k) is h-covariant constant (Cj

i
k|h = 0) in CΓ.

(4) The hv-curvature tensor Fi
h
jk = ∂̇kFi

h
j of the Rund connection RΓ =

{Gi
j , Fj

i
k, 0} vanishes identically.

Thus the hv-curvature tensors of a Berwald space vanish in BΓ and
RΓ. On the other hand, a Landsberg space is characterized by the vanish-
ing of the hv-curvature tensor Pi

h
jk of CΓ.

Let us consider the h-curvature tensors in these Finsler connections.
The h-curvature tensor H = (Hi

h
jk) in BΓ is given by

H : Hi
h
jk = δkGi

h
j + Gi

r
jGr

h
k − (j/k),

where δk = ∂k − Gr
k∂̇r and the symbol (j/k) denotes the interchange of

the indices j, k. The h-curvature tensor K = (Ki
h
jk) in RΓ is given by

K : Ki
h
jk = δkFi

h
j + Fi

r
jFr

h
k − (j/k).

Hence (1) and (2) as above show that both H and K are functions of
position alone for a Berwald space.

Consequenly, if we introduce three sets of a special kind of n-dimens-
ional Finsler spaces as follows:

B(n) . . . Berwald spaces,
Hx(n) . . . spaces with the H dependent on position alone,
Kx(n) . . . spaces with the K dependent on position alone,
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then we obtain the inclusion relations

(1.1) (1) B(n) ⊂ Hx(n), (2) B(n) ⊂ Kx(n).

2. Hx(n) and Kx(n)

The three connections, the Berwald connection BΓ = {Gi
j , Gj

i
k, 0},

the Cartan connection CΓ = {Gi
j , Fj

i
k, Cj

i
k}, and the Rund connection

RΓ = {Gi
j , Fj

i
k, 0}, have the same nonlinear connection (Gi

j), and hence
their (v)h-torsion tensors

R1 : Rh
jk = δkGi

j − (j/k)

coincide. The h-curvature tensor R = (Ri
h
jk) in CΓ is written as [4, (18.2)]

(2.1) R : Ri
h
jk = Ki

h
jk + Ci

h
rR

r
jk.

On the other hand, the h-curvature tensor H in BΓ is given by [1, (18.16)]

(2.2) Hi
h
jk = Ki

h
jk + {Ph

ij|k + P r
ijP

r
rk − (j/k)},

where Ph
ij = Ci

h
j|0 are components of the (v)hv-torsion tensor of CΓ.

We have the well-known relations:

(2.3) yiHi
h
jk = yiKi

h
jk = yiRi

h
jk = Rh

jk,

and the H is simply constructed by [4, (18.22)]

(2.4) Hi
h
jk = ∂̇iR

h
jk.

Now we consider an Fn ∈ Kx(n). Then we have from (2.3) and (2.4)

Rh
jk = yrKr

h
jk(x), Hi

h
jk = ∂̇i(yrKr

h
jk(x)) = Ki

h
jk(x),

which implies that H of Fn depends on position alone. Therefore

Theorem 1. We have the inclusion relation Kx(n) ⊂ Hx(n). For
Fn ∈ Kx(n), H = K holds.

Let us define further two sets:

L(n) . . . Landsberg spaces,

S(n) . . . spaces with vanishing stretch curvature.
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The inclusion relations

(2.5) B(n) ⊂ L(n) ⊂ S(n)

have already been given by L. Berwald in 1926 [4], [5], but the notion of
stretch curvature has faded out of memory, except for C. Shibata’s work
in 1978 [6].

The stretch curvature tensor Σ = (Σhijk), reflecting the non-metrical
property of BΓ, is written in the form [5]:

(2.6) Σhijk = −yrHh
r
jk.i = 2(Phij|k − Phik|j),

where .i = ∂̇/∂yi and Phij = ghrP
r
ij . The latter gives L(n) ⊂ S(n),

because Fn ∈ L(n) has Ph
ij = 0 and the former gives Hx(n) ⊂ S(n),

because Fn ∈ Hx(n) has Hh
r
jk.i = 0. Therefore

Theorem 2. We have the inclusion relations

B(n) ⊂ Kx(n) ⊂ Hx(n) ⊂ S(n).

Next we deal with the intersections L(n)∩Hx(n) and L(n)∩Kx(n).
We have the well-known relation [4, (18.14)]

Gj
i
k − Fj

i
k = P i

jk.

From the characteristic P i
jk = 0 of Fn ∈ L(n) it follows that BΓ =

{Gi
j , Gj

i
k, 0} = {Gi

j , Fj
i
k, 0} = RΓ, and hence

Theorem 3. L(n) ∩Hx(n) = L(n) ∩Kx(n).

3. Hx(2) and Kx(2)

The theory of two-dimensional Finsler spaces can be treated in terms
of Berwald’s orthonormal frame field (l,m) ([1, 3.5]; [4, §28]; [2]). The
main scalar I and the h-scalar curvature R of a space F 2 are defined as

(3.1) LChij = Imhmimj , Rihjk = εRGihGjk,

where ε is the signature, the angular metric tensor hij = εmimj , and
Gij = limj − ljmi. Then we have the following expressions of the H- and
of the K-tensor:

Hihjk = ε(RGih + R;2mimh)Gjk,(3.2)
Kihjk = (εRGih −RImimh)Gjk.
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In the two-dimensional case all the Bianchi identities in CΓ are reduced
to the trivial one, except (17.15) of [4] ([1, (3.5.2.4)]):

(3.3) εR;2 + RI + I,1,1 = 0.

Now the stretch curvature tensor Σ is written as Σhijk = −2I,1,1mimjGjk.
Therefore

Proposition 1. A Finsler space F 2 belongs to S(n), if and only if the

main scalar I satisfies I,1,1 = 0.

Thus (3.3) is reduced to εR;2 + RI = 0 for an F 2 ∈ S(2), and hence
(3.2) shows

Theorem 4. Kx(2) = Hx(2).

Now we deal with Hx(2) only. First we recall two-dimensional Ber-
wald spaces. F 2 ∈ B(2) is characterized by Chij|k = 0, that is, I,1 =
I,2 = 0. Then one of the Ricci identities shows I,1,2 − I,2,1 = −RI;2 = 0.
Consequently F 2 ∈ B(2) is characterized by I,1 = I,2 = 0 and B(2) is the
disjoint union

B(2) = B1(2) + B2(2) + B3(2),(3.4)




B1(2) . . . R = 0, I;2 6= 0,

B2(2) . . . R = 0, I;2 = 0,

B3(2) . . . R 6= 0, I;2 = 0.

(3.4a)

Thus we have

B1(2) + B2(2) . . . locally Minkowski spaces,(3.4b)

B2(2) + B3(2) . . . spaces with constant I.

Now we deal with Hx(2). Applying the formulae

Lli.j = εmimj , Lli.j = εmimj , LGhk.j = εGhkmj ,

Lmi.j = −(li − εImi)mj , Lmi
.j = −(li + εImi)mj ,

to Hi
h
jk = ε{R(limh − lhmi) + R;2mim

h}Gjk, we obtain

LHi
h

jk.l = ε{(R;2;2 + εIR;2)mh − 2(R;2 + εIR)lh}mimjGjk.
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Consequently it is necessary and sufficient for an F 2 ∈ Hx(2) that

(1) R;2;2 + εIR;2 = 0, (2) R;2 + εIR = 0.

The latter holds, as mentioned above, and the former reduces to I;2R = 0
by (2). Thus, similarly to the case of B(2), we have

Theorem 5. F 2 ∈ Hx(2) satisfies I,1,1 = 0 and I;2R = 0. Hx(2) is

the disjoint union

Hx(2) = H1(2) + H2(2) + H3(2),




H1(2) . . . R = 0, I;2 6= 0,

H2(2) . . . R = 0, I;2 = 0,

H3(2) . . . R 6= 0, I;2 = 0.

Corollary 1. The sets Bi(2), i = 1, 2, 3, coincide with the intersec-

tions Hi(2) ∩B(2), respectively.

The T -tensor (Thijk) ([1, (3.5.3.1)]; [4, (28.20)]) of F 2 is written as
LThijk = I;2mhmimjmk. Then we have

Corollary 2. An F 2 ∈ Hi(2), i = 2, 3, has vanishing T -tensor.

Remark. Since L∂̇iI = I;2mi, T = 0 means that I depends on position
alone.

We consider an F 2 ∈ L(2) ∩Hx(2). F 2 is a Landsberg space if and
only if LChij|0 = I,1mhmimj = 0, that is, I,1 = 0. Theorem 5 shows that





L(2) ∩H1(2) . . . R = 0, I,1 = 0, I;2 6= 0,

L(2) ∩H2(2) . . . R = 0, I,1 = 0, I;2 = 0,

L(2) ∩H3(2) . . . R 6= 0, I,1 = 0, I;2 = 0.

On the other hand, one of the Ricci formulae gives I,1;2−I;2,1 = I,2. Hence
I,1 = I;2 = 0 implies I = constant, and hence (3.4) shows that L(2)∩Hi(2)
is equal to Bi(2) for i = 2, 3. Therefore
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Theorem 6. (1) L(2) ∩H1(2) = Bi(2), i = 2, 3. (2) L(2) ∩H1(2) ⊃
B1(2), and F 2 ∈ L(2) ∩H1(2) belongs to B1(2), if and only if I,2 = 0.

4. Rx(n)

We consider the h-curvature tensor R = (Ri
h
jk) of the Cartan con-

nection CΓ = {Gi
j , Fj

i
k, Cj

i
k} and define the set

Rx(n) . . . spaces with the R dependent on position alone.

First let us define the Q-tensor as

Qm
h
kij = Pm

h
jk|i + Pm

h
irP

r
jk − (i/j).

Then, rewriting |(= ∇v) by .(= ∂/∂y), one of the Bianchi identities (17.15)
of [1] is written in the form

(4.1) Rm
h

ij.k + Sm
h
krR

r
ij + Rm

r
ijCr

h
k −Rr

h
ijCm

r
k + Qm

h
kij = 0.

Consequently we have directly

Proposition 2. A Finsler space Fn belongs to Rx(n), if and only if

Sm
h
krR

r
ij + Rm

r
ijCr

h
k −Rr

h
ijCm

r
k + Qm

h
kij = 0.

For an Fn ∈ Rx(n) we have from (2.3) and (2.4)

Hi
h
jk = Rh

jk.i = (yrRr
h
jk(x)).i = Ri

h
jk(x).

Thus we have

Theorem 7. Rx(n) ⊂ Hx(n), and Fn ∈ Rx(n) has Hi
h
jk = Ri

h
jk(x).

We consider an Fn with vanishing Q-tensor. Then Proposition 2 gives

(4.2) Sm
h
krR

r
ij + Rm

r
ijCr

h
k −Rr

h
ijCm

r
k = 0.

Transvection by ym yields Rr
ijCr

h
k = 0, and consequently Sm

h
krR

r
ij =

(Cm
s
rCs

h
k − Cm

s
kCs

h
r)Rr

ij = 0. Thus (4.2) is reduced to

(4.3) Rm
r
ijCr

h
k −Rr

h
ijCm

r
k = 0.

Conversely, if Fn with Q = 0 satisfies (4.3), then we have (4.2). Therefore
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Theorem 8. Let a Finsler space Fn satisfy Qm
h
kij = 0. Then Fn

belongs to Rx(n), if and only if (4.3) holds identically.

A Landsberg space is characterized by Pi
h
jk = 0 or P i

jk = 0, and
hence Q = 0. Therefore

Corollary 3. The intersection L(n)∩Rx(n) is characterized by (4.3).

We are specially interested in the two-dimensional case. We have in
general

Ph
ij = I,1m

hmimj , LPi
h
jk = I,1(limh − lhmi)mjmk,

which gives LQm
h
kij = I,1,1(lmmh − lhmm)Gijmk. Thus

Lemma. The Q-tensor of the two-dimensional case vanishes, if and

only if F 2 ∈ S(2).

The condition (4.3) of the two-dimensional case is written as
εRIGijmk(lmmh + lhmm) = 0, that is, RI = 0. Therefore

Theorem 9. F 2 ∈ Rx(2) is a Riemannian space, provided that the

h-scalar curvature R does not vanish.

5. D(n),W (n) and Wx(n)

We have two projectively invariant tensors which play a leading role
in the projective theory of paths and Finsler spaces [1, Chapter 0]. One is
the Douglas tensor D = (Di

h
jk):

(5.1) Di
h
jk = Gi

h
jk − [Gijkyh + {Gijδ

h
k + (i, j, k)}]/(n + 1),

where G = (Gi
h
jk) is the hv-curvature tensor in BΓ, Gij = Gi

r
jr the

hv-Ricci tensor, Gijk = Gij.k, and the symbol (i, j, k) denotes the cyclic
permutation of the indices i, j and k.

The other is the Weyl tensor W = (Wi
h
jk):

(5.2) Wi
h
jk = Hi

h
jk + {δh

iHjk + yhHjki + δh
jHk.i − (j/k)}/(n + 1),

where Hjk = Hj
r
kr is the h-Ricci tensor in BΓ, Hjki = Hjk.i and Hk =

(nHrk + Hkr)yr/(n− 1).
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The notion of Douglas space, arising from the problem of the equations
of the geodesics, has been proposed by the present authors [3] and yields
interesting topics in Finsler geometry. A Finsler space is a Douglas space,
if and only if the Douglas tensor D vanishes identically. Let us define the
set

D(n) . . . Douglas spaces.

It has been proved that L(n) ∩ D(n) = B(n) [3, I]. As a consequence,
from (2.5) we may say that D(n) is a generalization of B(n) in a completely
different direction from L(n).

On the other hand, according to Z. Szabó’s theorem [7], a Finsler
space Fn, n > 2, is of scalar curvature if and only if the Weyl tensor W
vanishes identically. Thus, if we define the sets

W (n), n > 2, . . . spaces of scalar curvature,
W0(n), n > 2, . . . spaces of non-zero scalar curvature,

then we may state one of the fundamental theorems of the projective the-
ory [3, II] as follows: Fn, n > 2, is with rectilinear extremals or projectively
flat, if and only if Fn ∈ D(n) ∩W (n).

It is well-known from S. Numata’s theorem [4, Theorem 30.6] that
L(n)∩W0(n) 3 Fn is nothing but a Riemannian space of non-zero constant
curvature. This theorem has been generalized by C. Shibata [6], to whom
we referred in §2: S(n) ∩ W0(n) is still the set of Riemannian spaces of
non-zero constant curvature.

Therefore we already know the following inclusion relations:

Proposition 3.

(1) D(n) ∩ L(n) = B(n),
(2) n > 2, D(n) ∩W (n) = (spaces with rectilinear extremals),

(3) n > 2, S(n)∩W0(n) = L(n)∩W0(n) = (Riemannian spaces
of non-zero constant curvature).

Now we observe (5.2) for an Fn ∈ Hx(n).

Hjk = Hi
r
kr(x), Hjki = 0, Hk.i = {nHik(x) + Hki(x)}/(n− 1).

Hence the tensor W depends on position alone. Thus we define

Wx(n) . . . spaces with the W dependent on position alone,

and we have Hx(n) ⊂ Wx(n).
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Next we have proved D(n) ⊂ Wx(n) [3, II] making use of the charac-
teristics Qi

j
k(x) of Fn ∈ D(n). Consequently we have

Proposition 4. Hx(n) ⊂ Wx(n) and D(n) ⊂ Wx(n).

Now we have an interesting problem, namely to consider the intersec-
tion Hx(n) ∩D(n).

To deal with this problem, we first consider a Douglas space Fn ∈
D(n). It follows from (5.1) that D = 0 gives

(n + 1)Gi
h
jk = Gijkyh + {Gijδ

h
k + (i, j, k)}.

Transvection by the angular metric tensor hl
h = δl

h − ylyh/L2 leads to

Gi
l
jk = Gi

0
jkyl/L2 + {Gijh

l
k + (i, j, k)}/(n + 1).

Consequently we obtain

Gi
l
jk;h −Gi

l
jh;k = {Gi

0
jk;h − (k/h)}yl/L2(5.3)

+[{Gij;hhl
k − (k/h)}+ {Gjk;hhl

i + Gik;hhl
j − (k/h)}]/(n + 1),

where ;= ∇h in BΓ.
Secondly we shall recall one of the Bianchi identities in BΓ ([1,

(2.5.2.12]; [4, (18.21)]), corresponding to (4.1) in CΓ:

(5.4) Hi
l
hk.j + Gi

l
jk;h −Gi

l
jh;k = 0.

This yields directly

Proposition 5. A Finsler space Fn belongs to Hx(n), if and only if

in BΓ
Gi

l
jk;h −Gi

l
jh;k = 0.

Now we consider an Fn ∈ D(n) ∩Hx(n). Then the above gives

Gjk;h −Gjh;k = 0, Gi
0
jk;h −Gi

0
jh;k = 0.

Hence (5.3) reduces to Gij;hhl
k − Gij;khl

h = 0, which implies
(n − 2)Gij;h + Gij;0yh/L2 = 0 and Gij;0 = 0. Thus we get Gij;h = 0,
provided n > 2.
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Conversely, if Fn ∈ D(n), n > 2, satisfies Gij;k = 0 and

(5.5) Gi
0
jk;h −Gi

0
jh;k = 0,

then (5.3) leads to Gi
l
jk;h − Gi

l
jh;k = 0, hence (5.4) shows that Fn ∈

Hx(n). The condition (5.5) is nothing but Fn ∈ S(n) because of (5.4)
and (2.6) (1). Therefore

Theorem 10. A Douglas space Fn, n > 2, belongs to Hx(n), if and

only if the hv-Ricci tensor Gij is h-covariant constant in BΓ and Fn ∈
S(n), that is, (5.5) holds.

We are concerned with the exceptional case n = 2 of Theorem 10.
According to Theorem 5, D(2) ∩Hx(2) is the direct sum

D(2) ∩Hx(2) = D(2) ∩H1(2) + D(2) ∩H2(2) + D(2) ∩H3(2).

We have proved in our paper [3, I]: If a Douglas space F 2 has vanishing T -
tensor, it is a Berwald space with constant main scalar I. Then Corollary 2
together with (3.4b) shows that D(2) ∩ Hi(2) coincides with Bi(2) for
i = 2, 3. On the other hand, (1) of Proposition 3 shows B1(2) ⊂ D(2)
and (1.1) gives B1(2) ⊂ Hx(2). Therefore

Theorem 11.

(1) D(2) ∩Hi(2) = Bi(2), i = 2, 3.

(2) D(2) ∩ H1(2) ⊃ B1(2) and F 2 ∈ D(2) ∩ H1(2) belongs to

B1(2), if and only if I,1 = I,2 = 0.

Finally we pay special attention to F 2 ∈ Hx(2) having non-zero h-
scalar curvature R. For these spaces Theorems 6 and 11 give a kind of
reduction theorems to Berwald spaces as follows:

Theorem 12. Let F 2 be a two-dimensional Finsler space having non-

zero h-curvature tensor H dependent on position alone. If F 2 is a Lands-

berg space or a Douglas space, then F 2 is a Berwald space.
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