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Finsler spaces with the h-curvature tensor
dependent on position alone

By S. BACSO (Debrecen) and M. MATSUMOTO (Kyoto)

Abstract. In a Finsler space the components of a tensor field are usually func-
tions of position (z*) and direction (y*). The main purpose of the present paper is to
consider Finsler spaces having h-curvature tensor whose components are functions of
position alone.

1. Introduction

When we have devoted ourselves to the theory of Douglas spaces [3],
we were greatly surprised and delighted at the discovery of the follow-
ing remarkable fact: For a Douglas space the components Wihjk of the
projective Weyl tensor are functions of position (%) alone.

In a Finsler space almost all tensor fields depend on E. Cartan’s sup-
porting element (x?,y*), that is, they are functions not on the underlying
manifold but on the tangent bundle. We have obtained the rigorous defi-
nition of such a Finslerian tensor field ([1, 2.2.3]; [4, Definition 6.2]), and
it is well-known that it is a singular case for a Finsler space to have some
tensor fields dependent on position alone.

The main purpose of the present paper is to consider Finsler spaces
whose h-curvature tensor depends on position alone.

Let F = {M",L(z,y)} be an n-dimensional Finsler space on a
smooth n-manifold M", equipped with the fundamental metric func-
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tion L(z,y). When considering the extremals of the length integral
[ L(z, dx/dt)dt, we obtain the functions

Gi(z,y) = ¢{(9;0,F)y" — 8;F}, F=17/2,

and G* jlx,y) = ajGi constitute a nonlinear connection (or spray connec-
tion, [1, p. 72]). Then we get the Berwald connection BT = {G*;, G;%, 0},
where Gjik = 3kGij and the last term & means that the v-covariant dif-
ferentiation V¥ in BT is nothing but 9/dy.

F™ is called a Berwald space if the h-connection coefficients G;% of
BT are functions of position (z*) alone, that is, G*(x,y) are homogeneous
polynomials in (y?) of degree two. A Berwald space is similar to a Rie-
mannian space and has certain characteristics as follows:

(1) The hv-curvature tensor Gihjk = (9Gihj of BT vanishes identically.
(2) The h-connection coefficients F;% of the Cartan connection CT' =
{G"}, F}%,C}%} are functions of position alone [4, Proposition 25.1].
(3) The C-tensor (C;%) is h-covariant constant (C;'g;, = 0) in CT.
(4) The hv-curvature tensor Fihjk = ngihj of the Rund connection RI' =
{G';, F}%,0} vanishes identically.
Thus the hv-curvature tensors of a Berwald space vanish in BI' and
RT". On the other hand, a Landsberg space is characterized by the vanish-
ing of the hv-curvature tensor Pihjk of CT.
Let us consider the h-curvature tensors in these Finsler connections.
The h-curvature tensor H = (H;";;) in BT is given by

H Hihjk = (5kGihj + Gierrhk; - (j//{),

where 8, = 8y — G",0, and the symbol (j/k) denotes the interchange of
the indices j, k. The h-curvature tensor K = (K;";) in RI is given by

K: Kihjk = 5kFihj + FiTjFrhk — (]/k‘)

Hence (1) and (2) as above show that both H and K are functions of
position alone for a Berwald space.

Consequenly, if we introduce three sets of a special kind of n-dimens-
ional Finsler spaces as follows:

B(n) ... Berwald spaces,
Hzxz(n) ... spaces with the H dependent on position alone,
Kz(n) ... spaces with the K dependent on position alone,
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then we obtain the inclusion relations

(1.1) (1) B(n) C Hz(n), (2) B(n)C Kz(n).

2. Hz(n) and Kz(n)

The three connections, the Berwald connection BT = {G*;, G,%,0},
the Cartan connection CT = {G*;, F;%,C;%}, and the Rund connection
RT = {G';, F}", 0}, have the same nonlinear connection (G’;), and hence
their (v)h-torsion tensors

R': RMj = 0,.G'5 = (j/k)
coincide. The h-curvature tensor R = (R;";;) in CT is written as [4, (18.2)]
(2.1) R: Ri"e = Ki"ji + C" R ji..
On the other hand, the h-curvature tensor H in BT is given by [1, (18.16)]
(2.2) H"y = K" + {P"ij + PP — (5/K)},

where Phij = Cihﬂo are components of the (v)hv-torsion tensor of CT.
We have the well-known relations:

(2.3) y' Hi"x = y' K" = y' R = R i,

and the H is simply constructed by [4, (18.22)]

(2.4) H"p = 0;R"j1.

Now we consider an F™ € Kz(n). Then we have from (2.3) and (2.4)
Rl =y K, p(x),  Hi" =0,y K, "ix (@) = K"jx (@),

which implies that H of F™ depends on position alone. Therefore

Theorem 1. We have the inclusion relation Kx(n) C Hxz(n). For
F" € Kx(n), H= K holds.

Let us define further two sets:

L(n) ... Landsberg spaces,

S(n) ... spaces with vanishing stretch curvature.
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The inclusion relations
(2.5) B(n) C L(n) C S(n)

have already been given by L. BERWALD in 1926 [4], [5], but the notion of
stretch curvature has faded out of memory, except for C. SHIBATA’s work
in 1978 [6].

The stretch curvature tensor ¥ = (2,1 ), reflecting the non-metrical
property of BT, is written in the form [5]:

(2.6) Yhijk = —YrHn" jki = 2(Prijik — Prikij),

where i = 9/dy* and Phij = gnP"ij. The latter gives L(n) C S(n),
because F™ € L(n) has P";; = 0 and the former gives Hz(n) C S(n),
because F" € Hx(n) has Hp," j,; = 0. Therefore

Theorem 2. We have the inclusion relations
B(n) € Kz(n) C Hx(n) C S(n).

Next we deal with the intersections L(n) N Hx(n) and L(n) N Kx(n).
We have the well-known relation [4, (18.14)]

szk — szk = szk:-

From the characteristic Pj; = 0 of F™ € L(n) it follows that BI' =
{G';,G;%,0} = {G}, F}%,0} = RT, and hence

Theorem 3. L(n) N Hz(n) = L(n) N Kx(n).

3. Hx(2) and Kz(2)

The theory of two-dimensional Finsler spaces can be treated in terms
of Berwald’s orthonormal frame field (I, m) ([1, 3.5]; [4, §28]; [2]). The
main scalar I and the h-scalar curvature R of a space 2 are defined as

(3.1) LC;m*j = Imhmimj, Rihjk = ERGithk,

where ¢ is the signature, the angular metric tensor h;; = em;m;, and
Gi; = l;mj — ljm;. Then we have the following expressions of the H- and
of the K-tensor:

(3.2) Hihjk = E(RGih + R;gmimh)ij,
Kihjk = (€RGih — RImimh)ij.
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In the two-dimensional case all the Bianchi identities in CI' are reduced
to the trivial one, except (17.15) of [4] ([1, (3.5.2.4)]):

(33) ER;Q + RI + 17171 =0.
Now the stretch curvature tensor X is written as Xp;jn = —21 1,1mim;G .
Therefore

Proposition 1. A Finsler space F? belongs to S(n), if and only if the
main scalar I satisfies I 11 = 0.

Thus (3.3) is reduced to eR.o + RI = 0 for an F? € S(2), and hence
(3.2) shows

Theorem 4. Ka:(?) = Hzx(2).

Now we deal with Hz(2) only. First we recall two-dimensional Ber-
wald spaces. F? € B(2) is characterized by Cpijjx = 0, that is, I; =
I, = 0. Then one of the Ricci identities shows I 15— 121 = —RI» = 0.
Consequently F? € B(2) is characterized by I; = I 5 = 0 and B(2) is the
disjoint union
(3.4) B(2) = B1(2) + B2(2) + B3(2),

Bi(2)...R=0, I,#0,
(34&) 32(2) ...R= O, I;2 = 0,
Bg(2)R7éO, 1;2:0.

Thus we have

(3.4b) B1(2) 4+ B2(2) ... locally Minkowski spaces,
Bs(2) + B3(2) ... spaces with constant I.

Now we deal with Hz(2). Applying the formulae

Lli.j = amimj, Lli_j = Emimj, Lth_j = Ethmj,
Lm;j = —(l; —elmy)my,  Lm' ;= —("+eIm')ym;,
to H;"; = e{R(l;m" — I"m;) + R.am;m"}Gj, we obtain

LHihjk,l = 5{(R;2;2 + 5IR;2)mh — 2(R;2 + 6]R)lh}miijjk.
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Consequently it is necessary and sufficient for an F? € Hz(2) that
(1) R;Q;Q + EIR;Q =0, (2) R;Q +eIR=0.

The latter holds, as mentioned above, and the former reduces to IR = 0
by (2). Thus, similarly to the case of B(2), we have

Theorem 5. F? € Hx(2) satisfies I 17 = 0 and IoR = 0. Hx(2) is

the disjoint union

Hi(2)...R=0, I,#0,
Hy(2)...R=0, I,=0,
Hs(2)...R#0, I,=0.

Corollary 1. The sets B;(2), i = 1,2,3, coincide with the intersec-
tions H;(2) N B(2), respectively.

The T-tensor (Thijx) ([1, (3.5.3.1)]; [4, (28.20)]) of F? is written as
LTy;ji = Lompm;mjmy. Then we have

Corollary 2. An F? € H;(2), i = 2,3, has vanishing T-tensor.

Remark. Since Léil = I.om;, T" = 0 means that I depends on position

alone.

We consider an F? € L(2) N Hxz(2). F? is a Landsberg space if and
only if LC;j0 = I 1mpm;m; = 0, that is, 11 = 0. Theorem 5 shows that

L(2)NH(2)...R=0, I;=0, Iy #0,
L(2)NH2(2)...R=0, I;=0, 15=0,
L(2)mH3(2)R7£07 I,1:07 I;2:0-

On the other hand, one of the Ricci formulae gives I 1,0 —1,2 1 = I 2. Hence

I1 =15 =0implies I = constant, and hence (3.4) shows that L(2)NH;(2)
is equal to B;(2) for i = 2,3. Therefore
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Theorem 6. (1) L(2) N H1(2) = B;(2), i =2,3. (2) L(2) N H1(2) D
B1(2), and F? € L(2) N H1(2) belongs to B1(2), if and only if I 5 = 0.
4. Rz(n)

We consider the h-curvature tensor R = (Rihjk) of the Cartan con-
nection CT = {G;, F;%, C;%} and define the set

Rx(n) ... spaces with the R dependent on position alone.
First let us define the Q-tensor as
Qm"kij = P jrii + P P71 — (/7).

Then, rewriting |(= V) by .(= 0/dy), one of the Bianchi identities (17.15)
of [1] is written in the form

(4.1)  Rpijk + Sm %R ij + Rin"i;C™% — R C "% + Qo kij = 0.
Consequently we have directly
Proposition 2. A Finsler space F™ belongs to Rxz(n), if and only if
SmhkrRrij + Rmrijorhk - RrhiijTk + thk:ij =0.
For an F™ € Rx(n) we have from (2.3) and (2.4)
H"p = R jii = (y R, i () s = Rifj ().
Thus we have

Theorem 7. Rz(n) C Hz(n), and F" € Rx(n) has H;";;, = R;".(z).

We consider an F" with vanishing ()-tensor. Then Proposition 2 gives
(42) SmhkrRTij + Rmrijcrhk - RrhiijTk =0.

Transvection by y™ yields Rrierhk = 0, and consequently SmhkrR’”ij =
(Crn5-Cs — C’mSkCShT)RTij = 0. Thus (4.2) is reduced to

(4.3) Rp"i;Co — Ry C = 0.

Conversely, if F™ with ) = 0 satisfies (4.3), then we have (4.2). Therefore
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Theorem 8. Let a Finsler space F" satisfy thm»j = 0. Then F"
belongs to Rx(n), if and only if (4.3) holds identically.

A Landsberg space is characterized by Pihjk =0 or P"jk = 0, and
hence @ = 0. Therefore

Corollary 3. The intersection L(n) N Rx(n) is characterized by (4.3).

We are specially interested in the two-dimensional case. We have in
general

h h h h h
P ij — le mimg;, LPl jk — I7l(lim —1 mi)mjmk,

which gives Lthkij = I7171(lmmh — lhmm)Gijmk. Thus

Lemma. The QQ-tensor of the two-dimensional case vanishes, if and
only if F? € S(2).
The condition (4.3) of the two-dimensional case is written as

eRIG;jmy(lymy + lymy,) = 0, that is, RI = 0. Therefore

Theorem 9. F? € Rz(2) is a Riemannian space, provided that the
h-scalar curvature R does not vanish.

5. D(n),W(n) and Wz(n)

We have two projectively invariant tensors which play a leading role
in the projective theory of paths and Finsler spaces [1, Chapter 0]. One is
the Douglas tensor D = (D;";):

(5.1) D"y = G — [Gijey™ +{Gij0"k + (3,5, %)}/ (n + 1),

where G = (G;"j;) is the hv-curvature tensor in BT, G;; = G,"j the
hv-Ricci tensor, Gijr = Gijx, and the symbol (i, j, k) denotes the cyclic
permutation of the indices 4, j and k.

The other is the Weyl tensor W = (W;";.):

(5.2) Wi = Hi"j + {6"iHjp, + y" Hjpi + 6" jHy.i — (3/k)}/ (n + 1),

where Hj, = H;", is the h-Ricci tensor in BI', Hj; = Hji; and Hy, =
(nHpk + Hir)y" /(n — 1).
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The notion of Douglas space, arising from the problem of the equations
of the geodesics, has been proposed by the present authors [3] and yields
interesting topics in Finsler geometry. A Finsler space is a Douglas space,
if and only if the Douglas tensor D vanishes identically. Let us define the
set

D(n)... Douglas spaces.

It has been proved that L(n) N D(n) = B(n) [3, I]. As a consequence,
from (2.5) we may say that D(n) is a generalization of B(n) in a completely
different direction from L(n).

On the other hand, according to Z. SZABO’s theorem [7], a Finsler
space I, n > 2, is of scalar curvature if and only if the Weyl tensor W
vanishes identically. Thus, if we define the sets

W(n), n > 2,... spaces of scalar curvature,

Wo(n), n > 2,... spaces of non-zero scalar curvature,

then we may state one of the fundamental theorems of the projective the-
ory [3, II] as follows: F™, n > 2, is with rectilinear extremals or projectively
flat, if and only if F™ € D(n) N W (n).

It is well-known from S. NUMATA’s theorem [4, Theorem 30.6] that
L(n)NWy(n) > F™ is nothing but a Riemannian space of non-zero constant
curvature. This theorem has been generalized by C. SHIBATA [6], to whom
we referred in §2: S(n) N Wy(n) is still the set of Riemannian spaces of
non-zero constant curvature.

Therefore we already know the following inclusion relations:

Proposition 3.

(1) D(n) N L(n) = B(n),

(2) n>2, D(n)NW(n)= (spaces with rectilinear extremals),

(3) n>2,Sn)NWy(n)=L(n)NWy(n) = (Riemannian spaces
of non-zero constant curvature).

Now we observe (5.2) for an F" € Hz(n).
Hjr = H;"pr(x), Hj.; =0, Hy; = {nH;i(x) + Hii(z)}/(n — 1).
Hence the tensor W depends on position alone. Thus we define

Wx(n)... spaces with the W dependent on position alone,

and we have Hz(n) C Wx(n).
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Next we have proved D(n) C Wz(n) [3, II] making use of the charac-
teristics Q;7k(z) of F™ € D(n). Consequently we have

Proposition 4. Hx(n) C Wx(n) and D(n) C Wz(n).

Now we have an interesting problem, namely to consider the intersec-
tion Hx(n) N D(n).

To deal with this problem, we first consider a Douglas space F™ €
D(n). It follows from (5.1) that D = 0 gives

(n+ )G = Giny"™ + {Gijo"x + (1,5, k) }.
Transvection by the angular metric tensor h!j, = 8'), — y'y;, /L? leads to
Giie = Gi%y' /L + {Gijh' e + (i,4,k)}/(n + 1).
Consequently we obtain
(5.3) Gijkin — Gijnie = {Gi%jkn — (k/h)}y' ) L?
+{Gijinh'x — (k/h)} +{Gjnhls + Gawnl j — (k/R)}]/(n + 1),

where ;= V" in BT.
Secondly we shall recall one of the Bianchi identities in BI' ([1,
(2.5.2.12]; [4, (18.21)]), corresponding to (4.1) in CT*:

(5.4) Hi'wij + Gil jion — Gil jr = 0.

This yields directly

Proposition 5. A Finsler space F™ belongs to Hx(n), if and only if
in BT
Gilitn — Giting = 0.

Now we consider an F™ € D(n) N Hx(n). Then the above gives
Gikh — Gink = 0, Gi%jpen — Gi%jnag = 0.

Hence (5.3) reduces to Gij;hhlk — Gij;khlh = 0, which implies
(’/L — Q)Gij;h + Gij;oyh/lﬂ = 0 and Gij;O = 0. Thus we get Gij;h =0,
provided n > 2.
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Conversely, if F € D(n), n > 2, satisfies G;;,;, = 0 and
(5.5) Giojk;h - Giojh;k =0,

then (5.3) leads to Giljk;h — Giljh;k = 0, hence (5.4) shows that F" €
Hz(n). The condition (5.5) is nothing but F™ € S(n) because of (5.4)
and (2.6) (1). Therefore

Theorem 10. A Douglas space F™, n > 2, belongs to Hx(n), if and
only if the hv-Ricci tensor G;j is h-covariant constant in BI' and F" €
S(n), that is, (5.5) holds.

We are concerned with the exceptional case n = 2 of Theorem 10.
According to Theorem 5, D(2) N Hz(2) is the direct sum

D(2)NHzx(2) = D(2) N H1(2) + D(2) N Hz(2) + D(2) N H3(2).

We have proved in our paper [3, I]: If a Douglas space F'? has vanishing 7-
tensor, it is a Berwald space with constant main scalar I. Then Corollary 2
together with (3.4b) shows that D(2) N H;(2) coincides with B;(2) for
i = 2,3. On the other hand, (1) of Proposition 3 shows B1(2) C D(2)
and (1.1) gives B1(2) C Hx(2). Therefore

Theorem 11.

(1) D@2)NHi(2)=Bi(2),i=23.
(2) D(2) N Hy(2) D Bi(2) and F? € D(2) N Hy(2) belongs to
B1(2), ifand only if [ 1 = 15 = 0.

Finally we pay special attention to F? € Hx(2) having non-zero h-
scalar curvature R. For these spaces Theorems 6 and 11 give a kind of
reduction theorems to Berwald spaces as follows:

Theorem 12. Let F? be a two-dimensional Finsler space having non-
zero h-curvature tensor H dependent on position alone. If F? is a Lands-
berg space or a Douglas space, then F? is a Berwald space.
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