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Continuity of multivalued maps
in generalized uniform spaces

By JANINA EWERT (Slupsk)

Abstract. For compact-valued maps with values in generalized uniform spaces
theorems on sets of semicontinuity points are given.

The notion of uniform space, expressed in terms of covers, has been
generalized by Morita [3] and studied – among others – by Rinow and
Poppe [4–6]. In general, a generalized uniform space need not be uni-
formizable, but under assumption of regularity various results similar to
those in uniform spaces can be obtained.

In this paper we investigate continuity points of multivalued maps
with values in generalized uniform spaces. We adopt some ideas from [2]
and we extend Fort theorems, which were formulated for the metric case.

1. Basic notions

Let A be a cover of a set Y . For a point x ∈ Y and a set M ⊂ Y we
will use the following notations: St(x,A) =

⋃{A ∈ A : x ∈ A},

St(M,A) =
⋃
{St(x,A) : x ∈ M} =

⋃
{A ∈ A : M ∩A 6= ∅},

Stn+1(M,A) = St(Stn(M,A)) for n = 1, 2, . . .

If A, B are two covers of Y , then we write A ≺ B iff A refines B; we
mean also that A ≺ A.
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A system Σ of covers of a set Y is said to be a generalized uniform
structure (or generalized uniformity) on Y if for each A1,A2 ∈ Σ there
is A ∈ Σ which refines both A1 and A2, [3]. The pair (Y, Σ) is called a
generalized uniform space.

A generalized uniform structure Σ determines – in general – two
topologies τΣ and τΣ on Y in the following way: U ∈ τΣ iff for each
x ∈ U there is A ∈ Σ with St(x,A) ⊂ U , [3]; the τΣ is given by the
subbase {A ⊂ Y : A ∈ A, A ∈ Σ}, [5], [6]. Then we have τΣ ⊂ τΣ and
A ⊂ τΣ for each A ∈ Σ. In the sequel we will use the topology τΣ on Y .
For a set M ⊂ Y its closure and interior we denote by Cl(M) and Int(M),
respectively.

A generalized uniform structure Σ on Y is said to be:
– Hausdorff, if for each points x, y ∈ Y , x 6= y there exists A ∈ Σ such

that St(x,A) ∩ St(y,A) 6= ∅, [4];
– weakly regular, if for each finite number of sets A1, . . . , An with

Ai ∈ Ai and Ai ∈ Σ for i = 1, 2, . . . , n; and for each point x ∈ ⋂n
i=1 Ai

there exists B ∈ Σ such that St(x,B) ⊂ ⋂n
i=1 Ai, [5], [6];

– regular, if it is weakly regular and for each A ∈ Σ there exists B ∈ Σ
with the property, that for each B ∈ B there exists G ∈ Σ and A ∈ A such
that St(B,G) ⊂ A, [3].

It simply follows from the definitions that:
(A) A generalized uniform structure Σ is weakly regular if and only if
τΣ = τΣ.

Lemma 1 [1]. Assume that a generalized uniform structure Σ on Y
is regular. If U ⊂ Y is an open set, M ⊂ U is compact, then for each
n = 1, 2, . . . there exists G ∈ Σ such that Stn(M,G) ⊂ U .

Lemma 2 [1]. If a generalized uniform structure Σ on Y is weakly
regular, then for each set M ⊂ Y it holds:

Cl(M) =
⋂
{St(M,G) : G ∈ Σ}.

Given a generalized uniform space (Y, Σ) we will writeA×B = {A×B :
A ∈ A, B ∈ B} for every A,B ∈ Σ. Then, for any sets U, V ⊂ Y it holds
St(U×V,A×B) = St(U,A)×St(V,B). The class Σ×Σ = {A×B : A,B ∈
Σ} is a generalized uniform structure on Y × Y . Furthermore, it is easy
to verify the following:

(B) If Σ is Hausdorff or weakly regular or regular, then Σ × Σ has the
same property.
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Lemma 3. Let (Y, Σ) be a generalized uniform space. Then for in-

duced topologies in Y × Y we have

τΣ × τΣ ⊂ τΣ×Σ ⊂ τΣ×Σ = τΣ × τΣ.

If Σ is weakly regular, then above topologies coincide.

Proof. Let W ∈ τΣ × τΣ and (x, y) ∈ W ; then there exist sets
U, V ∈ τΣ with (x, y) ∈ U × V ⊂ W . Now we choose G ∈ Σ such that
St(x,G) ⊂ U and St(y,G) ⊂ V . Thus St((x, y),G × G) ⊂ U × V ⊂ W

and it means W ∈ τΣ×Σ. Hence we obtain τΣ × τΣ ⊂ τΣ×Σ. Assume
that W ∈ τΣ × τΣ and (x, y) ∈ W ; let us take U, V ∈ τΣ such that
(x, y) ∈ U ×V ⊂ W . Then we can choose A1, . . . ,An,B1, . . . ,Bk ∈ Σ and
the sets Ai ∈ Ai for i = 1, 2, . . . , n, Bj ∈ Bj for j = 1, . . . , k, with

x ∈
n⋂

i=1

Ai ⊂ U and y ∈
k⋂

j=1

Bj ⊂ V.

Hence

(x, y) ∈
n⋂

i=1

k⋂

j=1

(Ai ×Bj) ⊂ W.

Since Ai × Bj ∈ Ai × Bj ∈ Σ × Σ, we obtain W ∈ τΣ×Σ and in the
consequence τΣ × τΣ ⊂ τΣ×Σ.

Conversely, let W ∈ τΣ×Σ and (x, y) ∈ W . Then for some Ai,Bi ∈ Σ,
Ai ∈ Ai and Bi ∈ Bi for i = 1, 2, . . . , n it holds

(x, y) ∈
n⋂

i=1

(Ai ×Bi) ⊂ W.

Since Ai, Bi ∈ τΣ for i = 1, . . . , n,we have
⋂n

i=1(Ai × Bi) ∈ τΣ × τΣ; so
W ∈ τΣ × τΣ. Hence we have shown τΣ×Σ ⊂ τΣ × τΣ. If Σ is weakly
regular, then the conclusion follows from the equality τΣ = τΣ. ¤

For any sets H1,H2 ⊂ Y × Y we denote H2 •H1 = {(x, y) ∈ Y × Y :
there is z ∈ Y with (x, z) ∈ H1 and (z, y) ∈ H2}. Furthermore, for each
A ∈ Σ we will write

HA =
⋃
{A×A : A ∈ A}.
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It is easy to verify that for each set M ⊂ Y × Y and A,B ∈ Σ we have

St(M,A× B) = HB •M •HA.

Thus applying Lemma 2 to the space (Y × Y, Σ×Σ), according to (B) we
obtain:

Corollary 1. Let (Y, Σ) be a generalized uniform space with a weakly

regular structure. Then for each set M ⊂ Y × Y it holds

Cl(M) =
⋂
{HB •M •HA : A,B ∈ Σ} =

⋂
{HA •M •HA : A ∈ Σ}.

Let X, Z be topological spaces and let F : X → Z be a multivalued
map. For each A ⊂ X, B ⊂ Z we will denote F (A) =

⋃{F (x) : x∈A},
F+(B) = {x ∈ X : F (x) ⊂ B} and F−(B) = {x ∈ X : F (x) ∩ B 6= ∅}.
We remind that a multivalued map F is called upper (lower) semicontin-
uous at a point x0 ∈ X if for each open set W ⊂ Z such that F (x0) ⊂ W

(resp. F (x0)∩W 6= ∅) there exists a neighbourhood U of x0 with F (x) ⊂ W

(resp. F (x) ∩ W 6= ∅) for each x ∈ U . The set of all points at which F

is upper or lower semicontinuous will be denoted by C+(F ) or C−(F ) re-
spectively. A map F is called upper (lower) semicontinuous if C+(F ) = X

(resp. C−(F ) = X). In virtue of Lemma 1 we can formulate the following
characterization of the upper semicontinuity:

(C) Let X be a topological space, (Y, Σ) a generalized uniform one with a
regular structure and let F : X → Y be a multivalued map with compact
values. The map F is upper semicontinuous at x ∈ X if and only if for
each A ∈ Σ there exists a neighbourhood U of x with F (U) ⊂ St(F (x),A).

Now we are going to give the similar “symmetrical” characterization
of the lower semicontinuity. For a filter base P we will write F (P) =
{F (G) : G ∈ P}. We will also apply the following:

Lemma 4. Let X,Z be topological spaces. A multivalued map F :
X → Z is lower semicontinuous at a point x ∈ X if and only if for each

filter base P in X that converges to x, every point y ∈ F (x) is a cluster

point of the filter base F (P), [7].
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2. Main theorems

Theorem 1. Let X be a topological space and (Y, Σ) a generalized

uniform one with a regular Hausdorff structure. For a multivalued map

F : X → Y with compact values the following conditions are equivalent:

(a) F is lower semicontinuous at a point x0 ∈ X;

(b) for each A ∈ Σ there exists a neighbourhood U of x0 such that

F (x0) ⊂ St(F (x),A) for each x ∈ U ;

(c) for each A ∈ Σ and n = 1, 2, . . . there exists a neighbourhood U of x0

such that F (x0) ⊂ Stn(F (x),A) for each x ∈ U .

Proof. Let (a) be satisfied; we assume to contrary that (b) does not
hold. Then there exists A ∈ Σ such that each neighbourhood U of x0

contains a point xU for which F (x0) 6⊂ St(F (xU ),A). By S we denote
the family of all open neighbourhoods of x0 and for any U1, U2 ∈ S we
assume U1 ≤ U2 iff U2 ⊂ U1; so (S,≤) is a directed set. For each U ∈ S

we fix a point yU ∈ F (x0) \ St(F (xU ),A). Then {yU : U ∈ S} is a
net in the compact set F (x0); by y0 we denote a cluster point of this
net. Now, for A we choose B ∈ Σ that satisfies the condition from the
definition of regular structure. We fix B ∈ B, G ∈ Σ and A ∈ A such
that y0 ∈ B and St(B,G) ⊂ A. Since B is a neighbourhood of y0, the set
S1 = {U ∈ S : yU ∈ B} is cofinal in S. For U ∈ S1 we put

U = {xV : V ∈ S1, V ⊂ U} and P = {U : U ∈ S1};

thus P is a filter base in X that converges to x0. On the other hand
for each U ∈ S1 we have yU ∈ B ⊂ St(B,G) ⊂ A, so A ⊂ St(yU ,A).
Since St(yU ,A) ∩ F (xU ) = ∅ we obtain A ∩ F (xU ) = ∅ for U ∈ S1, and
in the consequence St(y0,G) ∩ F (xU ) = ∅ for U ∈ S1. This implies that
St(y0,G) ∩ F (U) = ∅ for each U ∈ P, so y0 is not a cluster point of the
filter base F (P). According to Lemma 4, F is not lower semicontinuous at
x0; hence the implication (a) ⇒ (b) is proved. Evidently (b) implies (c);
now we are going to show that (c) implies (a). Let n be fixed, W ∈ τΣ

such that F (x0)∩W 6= ∅ and let y0 ∈ F (x0)∩W . According to Lemma 1
we can choose A ∈ Σ with Stn(y0,A) ⊂ W . Following (c) there is a
neighbourhood U of x0 such that F (x0) ⊂ Stn(F (x),A) for each x ∈ U .
Then y0 ∈ Stn(F (x),A) for x ∈ U , so F (x) ∩ Stn(y0,A) 6= ∅. Thus
F (x) ∩W 6= ∅ for x ∈ U and the proof is completed. ¤
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Lemma 5. Assume that a generalized uniform structure Σ on Y is

regular. If D ⊂ Y is a compact set, then for each finite open cover

{U1, . . . , Um} of D there is G ∈ Σ such that {St(x,G) : x ∈ D} ≺
{U1, . . . , Um}.

Proof. For each i ∈ {1, . . . , m} and each x ∈ D ∩ Ui, according to
Lemma 1, we can select A = A(x, i) ∈ Σ with St2(x,A(x, i)) ⊂ Ui. The
open cover {St(x,A(x, i)) : i = 1, . . . , m; x ∈ D ∩ Ui} contains a finite
subcover; thus for each i = 1, . . . , m there exist points xi,1, . . . , xi,n(i) ∈
D ∩ Ui and Ai,1, . . . ,Ai,n(i) ∈ Σ such that St2(xi,j ,Ai,j) ⊂ Ui for i =
1, . . . ,m; j = 1, . . . , n(i) and

D ⊂
m⋃

i=1

n(i)⋃

j=1

St(xi,j ,Ai,j).

By Lemma 1, G ∈ Σ can be taken such that G ≺ Ai,j for i = 1, . . . , m;
j = 1, . . . , n(i) and

St(D,G) ⊂
m⋃

i=1

n(i)⋃

j=1

St(xi,j ,Ai,j).

If x ∈ D, then x ∈ St(xi,j ,Ai,j) for some i ∈ {1, . . . , m} and j ∈
{1, . . . , n(i)}. Thus for y ∈ St(x,G) we have y ∈ St2(xi,j ,Ai,j) ⊂ Ui.
This gives {St(x,G) : x ∈ D} ≺ {U1, . . . , Um} which finishes the proof.

¤

Theorem 2. Let X be a topological space and (Y, Σ) a generalized

uniform one with a regular Hausdorff structure. If F : X → Y is a lower

semicontinuous map with compact values, then X \ C+(F ) =
⋃{K(A) :

A ∈ Σ}, where K(A) are of the first category.

Proof. For a compact set D ⊂ Y and A ∈ Σ we denote MA[D] =
sup{m : there exist points y1, . . . , ym ∈ D with (yi, yj) /∈ Cl(HA) for
i, j ∈ {1, . . . , m}, i 6= j}, if D×D 6⊂ Cl(HA) and MA[D] = 0 in the other
case.

We will show that MA[D] < ∞. Assume to contrary MA[D] = ∞.
For each m = 2, 3, . . . there exist points ym1, . . . , ymm ∈ D such that
(ymi, ymj) /∈ Cl(HA) for i, j ∈ {1, . . . ,m}, i 6= j. Let A1, . . . , Ak ∈ A be
fixed with D ⊂ A1 ∪ . . . ∪ Ak. Following Lemma 5 we can take G∈Σ,
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G ≺ A such that {St(x,G) : x ∈ D} ≺ {A1, . . . , Ak}. Now we fix
x1, . . . , xn ∈ D for which it holds D ⊂ ⋃n

i=1 St(xi,G). Then for m = 2n

there are i, j ∈ {1, . . . ,m}, i 6= j, p ∈ {1, . . . , n} and s ∈ {1, . . . , k}
such that ymi, ymj ∈ St(xp,G) ⊂ As; hence (ymi, ymj) ∈ HA which is
impossible. Thus we have shown MA[D] < ∞.

Now for each n = 1, 2, . . . and A ∈ Σ by Bn(A) we denote the set of
all points x ∈ X at which the following two conditions are satisfied:

(1) MA[F (x)] ≤ n;

(2) for each G ∈ Σ with G ≺ A and for each neighbourhood U of x

there is a point x′ ∈ U such that F (x′) 6⊂ St3(F (x),G).
Let us take x ∈ X, A ∈ Σ and let MA[F (x)] = k > 0. We choose

points y1, . . . , yk ∈ F (x) such that (yi, yj) /∈ Cl(HA) for i, j ∈ {1, . . . , k},
i 6= j. Following Corollary 1 there is B ∈ Σ such that (yi, yj) /∈ HB •
HA • HB for i, j ∈ {1, . . . , k}, i 6= j. We take G ∈ Σ for which it holds
St2(yi,G) ⊂ St(yi,B) for i ∈ {1, . . . , k}; then

St2(yi,G) ∩ St(St2(yj ,G),A) = ∅ for i, j ∈ {1, . . . , k}, i 6= j.

Since F is lower semicontinuous, there is a neighbourhood U of x such
that F (x) ⊂ St(F (x′),G) for x′ ∈ U . Let x′ ∈ U be fixed. We choose
points y′1, . . . , y′k ∈ F (x′) with y′i ∈ St(yi,G) for i ∈ {1, . . . , k}. Suppose
that for some i, j ∈ {1, . . . , k} we have (y′i, y

′
j) ∈ Cl(HA). Then (y′i, y

′
j) ∈

HG•HA•HG , so St(y′i,G)∩St(St(y′j ,G),A) 6= ∅. But St(y′i,G) ⊂ St2(yi,G),
so we obtain a contradiction. Hence (y′i, y

′
j) /∈ Cl(HA) for i, j ∈ {1, . . . , k},

i 6= j, and we have shown

(3) for each x ∈ X, A ∈ Σ there is a neighbourhood U of x such that
MA[F (x)] ≤ MA[F (x′)] for x′ ∈ U .

We are going to show

(4) MA[F (z)] ≤ n for each z ∈ Cl(Bn(A)).
Suppose, contrary to our claim that for some z ∈ Cl(Bn(A)) we have

MA[F (z)] > n. According to (3), there is a neighbourhood U of z such that
MA[F (x′)] ≥ MA[F (z)] for x′ ∈ U . Then for each point x′1 ∈ U ∩ Bn(A)
it holds MA[F (x′1)] > n. This contradicts (1), so (4) is proved.

Now, let x0 ∈ Cl(Bn(A)), a neighbourhood V of x0 and let x ∈
Bn(A) ∩ V be given. Then m = MA[F (x)] ≤ n; at first suppose m> 0.
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We choose points y1, . . . , ym ∈ F (x) such that (yi, yj) /∈ Cl(HA) for i, j ∈
{1, . . . ,m}, i 6= j. There exists G ∈ Σ, G ≺ A such that St2(yi,G) ⊂
St(yi,A) for i ∈ {1, . . . ,m} and St3(yi,G)∩St(St3(yj ,G),A) = ∅ for i, j ∈
{1, . . . ,m}, i 6= j.

By the lower semicontinuity of F and since x ∈ Bn(A), there is a point
y ∈ V for which we have F (x) ⊂ St(F (y),G) and F (y) 6⊂ St3(F (x),A).
Then we take points z1, . . . , zm+1 ∈ F (y) with yi ∈ St(zi,G) for i ∈
{1, . . . ,m} and zm+1 ∈ F (y) \ St3(F (x),A). Suppose (zi, zm+1) ∈ HG •
HA •HG for some i ∈ {1, . . . , m}. This gives
zm+1 ∈ St(St(St(zi,G),A),G) ⊂ St(St(St2(yi,G),A),G) ⊂ St3(yi,A) ⊂
St3(F (x),A), which is a contradiction. Hence (zi, zm+1) /∈ Cl(HA) for
i ∈ {1, . . . , m}, so MA[F (y)] ≥ m + 1.

In the other case, if m = 0, we fix y1 ∈ F (x) and G ∈ Σ, G≺A.
By the same arguments as above, there is a point y ∈ V for which
F (x) ⊂ St(F (y),G) and F (y) 6⊂ St3(F (x),A). Taking z1 ∈ F (y) with y1 ∈
St(z1,G) and z2 ∈ F (y) \ St3(F (x),A) we obtain (z1, z2) ∈ HG •HA •HG ;
this leads to the conclusion MA[F (y)] ≥ 2. Thus we have actually proved
that

(5) if x0 ∈ Cl(Bn(A)), then each neighbourhood V of x0 contains a
point y such that MA[F (y)] ≥ MA[F (x0)] + 1.

As an immediate consequence of the above we have Int(Cl(B1(A)))=∅.
Assume that Int(Cl(Bn(A))) = ∅ and let x0 ∈ Cl(Bn+1(A)) \ Cl(Bn(A)).
Since Bn(A) ⊂ Bn+1(A), we have MA[F (x0)] = n + 1. Thus according to
(5), V 6⊂ Cl(Bn+1(A)) for each neighbourhood V of x0; so we have shown:

(6) Int(Cl(Bn(A))) = ∅ for each A ∈ Σ, n = 1, 2, . . . .

Finally, let x0 ∈ X \ ⋃
A∈Σ

⋃∞
n=1 Bn(A), A ∈ Σ and let m =

MA[F (x0)]. Because x0 /∈ Bm(A) there is G ∈ Σ, G ≺ A and a neigh-
bourhood U of x0 such that F (x′) ⊂ St3(F (x0),G) for x′ ∈ U . This means
x0 ∈ C+(F ), so X \ C+(F ) ⊂ ⋃

A∈Σ

⋃∞
n=1 Bn(A).

Conversely, for x0 ∈ C+(F ) we take A,G ∈ Σ with G ≺ A. There
exists a neighbourhood U of x0 such thatF (x) ⊂ St3(F (x0),G) for x ∈ U ,
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so x0 ∈ X \ Bn(A) for n = 1, 2, . . . . Hence x0 ∈
⋂
A∈Σ

⋂∞
n=1(X \ Bn(A))

and in the consequence we obtain

X \ C+(F ) =
⋃

A∈Σ

∞⋃
n=1

Bn(A).

In virtue of (6) it suffices to put K(A) =
⋃∞

n=1 Bn(A) and the proof
is completed. ¤

Theorem 3. Let X be a topological space and (Y, Σ) a generalized

uniform one with a regular Hausdorff structure. If F : X → Y is an upper

semicontinuous map with compact values, then X \ C−(F ) =
⋃{E(A) :

A ∈ Σ}, where E(A) are nowhere dense sets.

Proof. For a compact set D ⊂ Y and A ∈ Σ we denote NA[D] =
inf{m : there are points y1, . . . , ym ∈ Y such D ⊂ ⋃m

i=1 St(yi,A)}. By
En(A) we denote the set of all points x ∈ X satisfying the following two
conditions:

(1) NA[F (x)] ≥ n;

(2) each neighbourhood U of x contains a point x′ with F (x) 6⊂
St3(F (x′),A).

Let us remark that En+1(A) ⊂ En(A) for each A ∈ Σ, n = 1, 2, . . . .
We fix x ∈ X, A ∈ Σ and let m = NA[F (x)]; then there are points
y1, . . . , ym ∈ Y such that F (x) ⊂ ⋃m

i=1 St(yi,A). Since F is upper semi-
continuous, there is a neighbourhood U of x such that F (x′) ⊂⋃m

i=1 St(yi,A) for x′ ∈ U . This means NA[F (x′)] ≤ m for x′ ∈ U , thus

(3) for each x ∈ X, A ∈ Σ there is a neighbourhood U of x with
NA[F (x′)] ≤ NA[F (x)] for x′ ∈ U .

If for x ∈ X we have NA[F (x)] < n, then according to (3) there is a
neighbourhood U of x such that NA[F (x′)] ≤ NA[F (x)] < n for x′ ∈ U ,
i.e. U ∩ En(A) = ∅. Then x /∈ Cl(En(A)), so we obtain:

(4) NA[F (x)] ≥ n for each x ∈ Cl(En(A)).

For a point x0 ∈ Cl(Em(A))\Cl(Em+1(A)) and a neighbourhood V of
x0 it holds (V \Cl(Em+1(A)))∩Em(A) 6= ∅. Let x ∈ (V \Cl(Em+1(A)))∩
Em(A); then NA[F (x)] = m. We choose points y1, . . . , ym ∈ Y for which



234 Janina Ewert

we have F (x) ⊂ ⋃m
i=1 St(yi,A). Using the upper semicontinuity of F

and (2) we can select a point x1 ∈ V such that F (x1) ⊂ St(F (x),A) and
F (x) 6⊂ St3(F (x1),A). Let y ∈ F (x)\St3(F (x1),A), then y ∈ St(yj ,A) for
some j ∈ {1, . . . , m}. Suppose p ∈ F (x1)∩ St(yj ,A); then p, y ∈ St(yj ,A)
implies y ∈ St2(p,A) ⊂ St2(F (x1),A) which is impossible. Hence F (x1)∩
St(yj ,A) = ∅ and in the consequence F (x1) ⊂

⋃m
i=1,i 6=j St(yi,A). This

means NA[F (x1)] ≤ m− 1, so in virtue of (4) we obtain x1 /∈ Cl(Em(A)).
Thus we have shown for each A ∈ Σ, m = 1, 2, . . . :

(5) if x ∈ Cl(Em(A)) \ Cl(Em+1(A)), then V 6⊂ Cl(Em(A)) for each
neighbourhood V of x.

This implies
(6) (Cl(Em(A)) \ Cl(Em+1(A))) ∩ Int(Cl(Em(A))) = ∅ for each A ∈

Σ, m = 1, 2, . . . , which means Int(Cl(Em(A))) ⊂ Cl(Em+1(A)). This
gives Int(Cl(Em(A))) = Int(Cl(Em+1(A))) for m = 1, 2, . . . ; so (6) im-
plies (Cl(En(A)) \ Cl(En+1(A))) ∩ Int(Cl(E1(A))) = ∅ for each A ∈ Σ,
m = 1, 2, . . . . Since Cl(E1(A)) can be presented in the form

Cl(E1(A)) =
∞⋃

n=1

(Cl(En(A)) \ Cl(En+1(A))),

we have Int(Cl(E1(A))) = ∅ for A ∈ Σ.
Finally, let x ∈ X \⋃{E1(A) : A ∈ Σ} and let A ∈ Σ, m = NA[F (x)].

Since x /∈ Em(A), it follows from (2) that there is a neighbourhood U of
x such that F (x) ⊂ St3(F (x′),A) for x′ ∈ U . Then x ∈ C−(F ) and in the
consequence

X \ C−(F ) ⊂
⋃
{E1(A) : A ∈ Σ}.

Conversely, if x ∈ C−(F ), then for each A ∈ Σ the condition (2) is not
satisfied, which leads to the conclusion

X \ C−(F ) =
⋃
{E1(A) : A ∈ Σ}

and the proof is completed. ¤

Given a Hausdorff uniform space (Y,U) by w(U) we denote the weight
of U and B a base of U with cardB = w(U). For each V ∈ U we will
write V [y] = {x ∈ Y : (y, x) ∈ V }; further AV = {V [y] : y ∈ Y } and
Σ = {AV : V ∈ B}. Then Σ is a regular Hausdorff generalized uniformity
in Y . In this case Theorems 2 and 3 can be rewritten in the form:
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Corollary 2. Let X be a topological space, (Y,U) a Hausdorff uniform

one and let F : X → Y be a multivalued map with compact values. If F

is lower ( upper ) semicontinuous, then X \ C+(F ) =
⋃{K(V ) : V ∈ B},

(resp. X \ C−(F ) =
⋃{K(V ) : V ∈ B}), where K(V ) are of the first

category (nowhere dense) sets and B is a base of U with cardB = w(U).

Corollary 3 [2]. Let X be a topological space and Y a metric one.

If F : X → Y is upper (lower) semicontinuous map with compact values,

then X \ C−(F ), (resp. X \ C+(F ) ) is of the first category.
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