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Additive uniqueness sets for multiplicative functions

By PHAM VAN CHUNG (Eger) and BUI MINH PHONG (Budapest)

Abstract. We prove that if a multiplicative function f satisfies the equation

f(a + b) = f(a) + f(b)

for all a, b ∈ H2 or for all a, b ∈ H3, then f(n) = n for all positive integers n, where

Hk :=
n

n(n+1)...(n+k−1)
1·2···k | n = 1, 2, . . .

o
.

Throughout this note, let N denote the set of positive integers and let
M be the set of complex valued multiplicative functions f with f(1) = 1.

In 1992, C. Spiro [4] showed that if a function f ∈ M satisfying
f(p + q) = f(p) + f(q) for all primes p and q, then f(n) = n for all n ∈ N.
Recently, in [2] the identity function was characterized as the multiplicative
function f for which f(p + n2) = f(p) + f(n2) holds for all primes p

and for all n ∈ N. It follows from the results of [1] that a completely
multiplicative function f satisfies the equation f(n2+m2) = f(n2)+f(m2)
for all n, m ∈ N if and only if f(2) = 2, f(p) = p for all primes p ≡ 1
(mod 4) and f(q) = q or f(q) = −q for all primes p ≡ 3 (mod 4). In [3]
the second named author proved that if a multiplicative function f satisfies
the equation f(n2+m2+3) = f(n2+1)+f(m2+2) for all positive integers n

and m, then either f(n) = n or f(n2+1) = f(m2+2) = f(n2+m2+3) = 0
holds for all n,m ∈ N.
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Following C. Spiro, we call a subset E of N is an additive uniqueness
set for M if there is exactly one element f of M which satisfies

f(a + b) = f(a) + f(b) for all a ∈ E and b ∈ E.

For each k ∈ N let

Hk :=
{

n(n + 1) . . . (n + k − 1)
1 · 2 · · · k

∣∣∣ n ∈ N
}

.

The set H1 = N is clearly a uniqueness set for M. In this note we
prove the same result for the sets H2 and H3.

Theorem 1. The set

H2 =
{

tn :=
n(n + 1)

2

∣∣∣ n ∈ N
}

is an additive uniqueness set for M. In other words, if f ∈M satisfies the

condition

(1) f (tn + tm) = f (tn) + f (tm)

for all n,m ∈ N, then f(n) is the identity function, i.e. f(n) = n for all

n ∈ N.

Theorem 2. The set

H3 =
{
Ln :=

n(n + 1)(n + 2)
6

∣∣∣ n ∈ N
}

is an additive uniqueness set for M. In other words, if f ∈M satisfies the

condition

(2) f (Ln + Lm) = f (Ln) + f (Lm)

for all n,m ∈ N, then f(n) is the identity function, i.e. f(n) = n for all

n ∈ N.

Remark. Is it true that for every k ≥ 4 the set Hk is an additive
uniqueness set forM? We think that this question can be treated similarly
as the above theorems for small fixed values of k.
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Proof of Theorem 1. First we prove

(3) f(n) = n for all positive integers n ≤ 16.

Let tn := n(n+1)
2 and f(3) := x. Repeated use of (1) gives f(2) =

f(1 + 1) = f(t1 + t1) = f(1) + f(1) = 2, f(4) = f(1 + 3) = f(t1 +
t2) = 1 + x and thus x(1 + x) = f(3)f(4) = f(12) = f(6 + 6) = f(t3 +
t3) = 2f(6) = 4x. Then either x = 0 or x = 3. Moreover f(22) =
f(2)f(11) = 2f(1 + 10) = 2f(t1 + t4) = 2 + 4f(5), while also f(22) =
f(1 + 21) = f(t1 + t6) = 1 + xf(7) = 1 + x(1 + 2x). These imply that
4f(5) = 2x2 + x − 1, therefore since x = 0 or x = 3, f(5) 6= 0. Finally,
f(4)f(5) = f(20) = f(10+10) = f(t4+t4) = 2f(10) = 4f(5), consequently
f(4) = 4 and f(3) = 3. It easily follows that f(n) = n successively for
n = 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, because 7 = t1 + t3, 3.8 = t2 + t6 =
3 + 3.7, 9 = t2 + t3, 11 = t1 + t4, 13 = t2 + t4, 16 = t3 + t5. Thus (3) is
proved.

It is clear that the theorem will follow if we can prove the following
assertion: If T is a positive integer such that f(n) = n for all n < T , then
f(T ) = T . Because of (3), we can assume that T ≥ 17.

Assume that T ≥ 17 is a positive integer satisfying the condition

(4) f(n) = n for all positive integers n < T.

We shall prove:

(5) f(T ) = T.

It is obvious that (5) holds if T is not a prime power. We must therefore
have T = qα, where q is a prime and α ∈ N. We note that (5) is valid for
q = 2. Indeed, if q = 2, then by using the multiplicativity of f , we have

f(2α(2α − 1)) = f((2α − 1)2α−1 + (2α − 1)2α−1)

= 2f((2α − 1)2α−1) = 2α(2α − 1),

which implies f(2α) = 2α.
For T = qα, where q is an odd prime and α ∈ N we now show

(6) f(m2) = m2 for all m ≤ T − 2.
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Indeed, (1) and the facts m2 = tm−1+tm = (m−1)m
2 + m(m+1)

2 , (m,m−1) =
(m,m + 1) = 1 with the condition (4) lead to

f(m2) = f

(
(m− 1)m

2

)
+ f

(
m(m + 1)

2

)
= m2

when m + 1 < T . Therefore (6) follows immediately.
First we consider the case when T − 1 6= 2β , β ∈ N. In this case (1),

(4) and q > 2 imply f
[
(T − 1)2

]
= (T − 1)2 and

(T − 2)(T − 1)
2

+
T − 1

2
f(T ) = f

(
(T − 2)(T − 1)

2

)
+ f

(
(T − 1)T

2

)

= f

(
(T − 2)(T − 1)

2
+

(T − 1)T
2

)
= f

[
(T − 1)2

]
= (T − 1)2,

which gives (5).
Next we assume T = qα = 2β +1, where α, β ∈ N. This together with

T ≥ 17 implies α = 1, β = 2h, and so T = q = 22h

+ 1 is a Fermat-prime.
It is clear that T = 22h

+ 1 ≡ 2 (mod 3), consequently

3 | T + 1 and T + 1 = 22h

+ 2 6= 3γ ,

4 | T + 3 and T + 3 = 22h

+ 4 6= 2δ

and

3 | T + 4 and T + 4 = 22h

+ 5 6= 3ν ,

where γ, δ, ν ∈ N. Together with (4) and (6) we obtain

(7) f((T+1)2) = (T+1)2, f((T+3)2) = (T+3)2 and f(T+4) = T+4.

Finally, let us consider the relation

f

(
(m− 1)m

2

)
+ f

(
m(m + 1)

2

)
= f(m2)

for m = T + 1 and for m = T + 3. By (1), (4) and (7) we have

f(T + 2) = T + 2 and f(T ) = T.

Thus Theorem 1 is proved.
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Proof of Theorem 2. We first deduce from (2)

(8) f(n) = n for n ≤ 8.

We have f(2) = f(1 + 1) = f(L1 + L1) = 2f(1) = 2, f(5) = f(1 +
4) = f(L1 + L2) = f(1) + f(4) = 1 + f(4), consequently f(4) + f(4)2 =
f(4)f(5) = f(20) = f(10+10) = f(L3+L3) = 2f(10) = 4f(5) = 4+4f(4),
which implies f(4) = 4 or f(4) = −1. On the other hand, we get from
(2) that f(8) = f(4 + 4) = f(L2 + L2) = 2f(4), 2f(3)f(4) = f(3)f(8) =
f(24) = f(4 + 20) = f(L2 +L3) = f(4) + f(4)f(5) = 2f(4) + f(4)2, which
together with the fact f(4) 6= 0 show that 2f(3) = 2 + f(4). Furthermore,
we also get from (2) that 2f(7) = f(2)f(7) = f(14) = f(4 + 10) = f(L2 +
L3) = f(4) + 2f(5) = 2 + 3f(4) and f(3)f(7) = f(21) = f(1 + 20) =
f(L1 +L4) = 1+f(4)f(5) = 1+f(4)+f(4)2, consequently f(4)2 = 4f(4).
This, compared with f(4) 6= 0, shows that f(4) = 4. Thus, (8) is proved.

As in the proof of Theorem 1, we assume that T ≥ 9 is a positive
integer for which

(9) f(n) = n for all positive integers n < T.

We shall prove that

(10) f(T ) = T.

It is obvious that (10) holds if T is not a prime power. We must therefore
have T = qα, where q is a prime and α ∈ N. We note that (10) is valid for
q = 2. Indeed, if q = 2, then α ≥ 4 and by (2), (9) we have

2α (2α−1 − 1)(2α−2 − 1)
3

= 2f

(
2α−1 (2α−1 − 1)(2α−1 − 2)

6

)

= f(L2α−1−2 + L2α−1−2) = f

(
2α (2α−1 − 1)(2α−2 − 1)

3

)

= f (2α)
(2α−1 − 1)(2α−2 − 1)

3
,

and so f(2α) = 2α as asserted.
We now consider the case when T = 3α, α ≥ 2. The proof of (10)

depends on the relation

(11) Ln−1+Ln =
(n− 1)n(n + 1)

6
+

n(n + 1)(n + 2)
6

=
n(n + 1)(2n + 1)

6
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and on the fact:

(12) if x, y ∈ N satisfy 3x + 1 = 2y, then (x, y) = (1, 2).

Let n = (3T − 1)/2 = (3α+1 − 1)/2. Then by (11), we have

(T − 1)(3T − 1)(3T + 1)
16

+
(3T − 1)(3T + 1)(T + 1)

16
(13)

=
(3T − 1)(3T + 1)T

8
.

If 4 | 3T − 1, then ( 3T−1
4 , T−1

2
3T+1

2 ) = 1 and (T−1
2 , 3T+1

2 ) = 1, therefore it
follows from (2), (9), (12) and (13) that

T − 1
2

3T − 1
4

f

(
3T + 1

2

)
+

3T − 1
4

T + 1
2

f

(
3T + 1

2

)
(14)

=
3T − 1

4
f

(
3T + 1

2

)
f(T ).

An application of (11) for n = 3T−1
4 leads us to

1
2

3T − 5
4

3T − 1
4

T + 1
4

+
1
2

3T − 1
4

T + 1
4

3T + 7
4

=
1
2

3T − 1
4

T + 1
4

3T + 1
2

,

which, compared with (2) and (9), implies f(3T+1
2 ) = 3T+1

2 . This together
with (14) proves (10). So, (10) holds for the case T = 3α and 4 | 3T − 1.

Assume that T = 3α and 4 - 3T − 1. Then, by applying (2),(9), (12)
and (13), we have

(T − 1)(3T + 1)
8

f

(
3T − 1

2

)
+

(3T + 1)(T + 1)
8

f

(
3T − 1

2

)

=
3T + 1

4
f

(
3T − 1

2

)
f(T ).

Finally, an application of (11) for n = 3T−1
4 , using (2) and (9), shows that

f( 3T−1
2 ) = 3T−1

2 . This with the last relation proves (10) for the case when
T = 3α.

Now we complete the proof of Theorem 2 by showing (10) for T = qα,
where (T, 6) = 1. Let us consider (11) for n = T−1

2 . We have

(15)
T − 3

2
(T − 1)(T + 1)

24
+

(T − 1)(T + 1)
24

T + 3
2

=
(T − 1)(T + 1)

24
T,
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where (T−1)(T+1)
24 is a positive integer. It is clear by (9) that

f

(
T − 3

2
(T − 1)(T + 1)

24

)
=

T − 3
2

(T − 1)(T + 1)
24

,

f

(
(T − 1)(T + 1)

24
T + 3

2

)
=

(T − 1)(T + 1)
24

T + 3
2

and

f

(
(T − 1)(T + 1)

24
T

)
=

(T − 1)(T + 1)
24

f(T ),

which together with (2) and (15) imply f(T ) = T .
The proof of Theorem 2 is finished.
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