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On the completeness of certain sequences

By NORBERT HEGYVÁRI (Budapest) and GERARD RAUZY (Marseille)

Abstract. For A = {a1 ≤ . . . an ≤ . . . } ⊂ N we define P (A) = {P εiai, εi = 0
or 1,

P
εi is finite}. A is said to be subcomplete if P (A) contains an infinite arithmetic

progression.
We prove: for every infinite sequence {bm} of integers and for every Graham’s

sequence {[2nα]} the sequence {bm[2nα]} is subcomplete.

1. Introduction

Let A = {a1 ≤ a2 ≤ · · · ≤ an ≤ . . . } be a sequence of positive
integers. Define

P (A) =

{ ∞∑

i=1

εiai : εi ∈ {0, 1};
∞∑

i=1

εi < ∞
}

.

Alternatively, we may consider A to be a multiset, and define P (A) to be
the set of all sums of the elements of finite submultisets of A.

A is called complete if every sufficiently large integer belongs to P (A).
We call A subcomplete if there is an integer d 6= 0 such that P (A) contains
an infinite arithmetic progression with difference d. For example the pow-
ers of 2 form a complete sequence. Let 1 ≤ a1 < a2 < · · · < ak < . . . be a
sequence of integers. Let A(n) =

∑
ai≤n 1. Clearly we have |{∑k

i=1 εiai :
εi ∈ {0, 1}}| ≤ 2k. Thus if lim supn→∞(n− 2A(n)) = ∞ then the sequence
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A = {1 ≤ a1 < · · · < ak < . . . } cannot be complete. This implies that if
A is complete then

A(n) ≥ (1 + o(1)) log2 n.

Denote the set of natural numbers by N, i.e. N = {0, 1, 2, . . . }. Let R+

be the set of positive real numbers. Given a set A of positive integers, we
denote by A + A the set of pairwise sums, A + A = {a + a′ : a, a′ ∈ A}.
Let dA = {da : a ∈ A}.

Let g(n) = A(n)/ log n. Many authors investigated sequences for
which g(n) tends to infinity very “slowly” as n tends to infinity. For
example P. Erdős conjectured and J. Birch proved in 1959 (see [1]) that
if (p, q) = 1, then the sequence formed by the values pkqm is complete,
where k and m are natural numbers. Clearly these sets have Θ(log2 n)
elements less than n and so g(n) < C(p, q) log n.

A few years later J.W. Cassels proved in [2] the following theorem:
Assume that

lim
n→∞

(A(2n)−A(n))/ log log n = ∞

and for every real θ; 0 < θ < 1,

∞∑

k=1

‖akθ‖ = ∞.

Then A is complete, where ‖x‖ = min−∞<n<∞{|x− n|};n ∈ N.
It is easy to see that the theorem of Cassels contains Birch’s result.
In 1969 R.L. Graham asked [3] (see also [4]): for which pairs of

positive reals (α, β) is the sequence Aαβ := {[2nα], [2mβ] : n,m ∈ N}
complete? The first author investigated the completeness of this sequence
in [5] and [6]. Clearly, here Aαβ(n) < c(α, β) log n and so g(n) = o(1).

The aim of this note is to investigate an Erdős-Birch-Graham-type
sequence A for which the conditions of Cassels’ theorem are not valid.

Definition. Let B = {b1 ≤ b2 ≤ . . . } be an infinite sequence of inte-
gers. Let

A(α,B) := {bm[2nα] : a,m ∈ N;α ∈ R}.

We prove the following
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Theorem. For every real number α > 0 and every infinite sequence
B of positive integers, A(α, B) is subcomplete.

We mention here that if B(n) = O(log log n) then we cannot use
Cassels’ theorem, i.e. our theorem is not covered by Cassels’ argument.
On the other hand it is easy to construct a sequence B so that the second
condition of Cassels’ theorem is not valid for the sequence A(α,B) either
(see [7]). Indeed, first we are going to count the number of elements of
A(α,B) between 2N , 2N+1, where N is large and a fixed number. So let
us assume that

2N ≤ [2nα]bk < 2N+1

or equivalently

(1)
2N

[2nα]
≤ bk <

2N+1

[2nα]
.

Since [x] > x/2 if x ≥ 2, for α ≥ 21−n we get
(2) 2N−nα−1 ≤ bk ≤ 2N+2−nα−1.

This yields∣∣[2N , 2N+1
] ∩A(α,B)

∣∣ ≤ ∣∣∪n≥0

{(
2N−nα−1, 2N+2−nα−1

) ∩B
}∣∣

≤ 2B
(
2N+2α−1

)
= O

(
log log 2N

)
.

So we conclude that the first condition of Cassels’ theorem is not valid for
the sequence A(α,B) with B(n) = O(log log n).

2. Lemmas

Let an = [2nα] and let α =
∑∞

n=−k εn(α)2−n where εn(α) = 0 or 1,
and assume that εn(α) = 0 holds infinitely often.

We need some lemmas:

Lemma 1. For every n

an+1 = 2an + εn+1(α).
Indeed

2nα = ε−k(α)ε−k+1(α) . . . εn(α) · εn+1(α) . . .
and

2n+1α = ε−k(α)ε−k+1(α) . . . εn(α)εn+1(α) · . . .
(in base 2).
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So an+1 = ε−k(α) . . . εn+1(α) = 2an + εn+1(α) (in base 2).

Lemma 2. Let α =
∑∞

n=−k εn(α)2−n. Assume that εn(α) = 1 holds

infinitely often. Let H = {h1 < h2 < . . . } be an infinite sequence of

integers. Then P ({an : n ∈ N} ∪H) contains arbitrarily large intervals.

This lemma is essentially Theorem 3 in [6].

Lemma 3. Let X = {x1 < x2 < . . . } be an infinite sequence of

integers. Assume that there exists a positive integer T ≥ x1 such that for

every n

(3) xn+1 ≤ x1 + x2 + · · ·+ xn + T.

Let P (X) = {y1 < y2 < . . . }. Then P (X) has bounded gaps, in fact

yn+1 − yn ≤ T

for n = 1, 2, . . . .

Proof of Lemma 3. Clearly, we only have to show that for every
n the longest gap of P ({x1, . . . , xn}) in the interval [1, sn], where sn =
x1 + · · ·+ xn, is at most T . We prove it by induction on n. For n = 1 this
is the condition for x1. Let now n > 1. By the inductive hypothesis the
longest gap in [1, sn−1] is at most T , so we are going to seek the longest
gap in [sn−1, sn]. Since xn < sn−1 + T , and by

P ({x1, . . . , xn}) = {0, xn}+ P ({x1, . . . , xn−1}),

the longest gap in [1, sn] is at most max{T, the longest gap in[1, sn−1]}=T .
¤

Lemma 3 is proved.

Corollary. Let X = {x1 < x2 < . . . } be an infinite sequence of

integers. Assume that there exists a positive integer N such that for every

n > N

xn+1 ≤ x1 + · · ·+ xn.

Then P (X) has bounded gaps.

Lemma 4. Let x1, x2, . . . , xr be any r integers. Then there is a y > 0,

y ∈ P ({x1, . . . , xr}) for which r|y.

Lemma 4 is well-known.
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3. Proof of the Theorem

Let us assume that there exists an integer N , such that for n > N

εn(α) = 0. By Lemma 1 we get

P ({b1aN , b1 · 2aN , b1 · 4aN , . . . }) =
{
b1aN

∞∑

i=1

δi2i : δi ∈ {0, 1},
∑

δi < ∞
}

= {b1aN · n : n ∈ N} ⊂ P (A(α,B)),

so A(α, B) is subcomplete in this case.
Now let us assume |{n : ε(α) = 1}| = ∞. Let r = b1 and let us

consider the integers b2, b3, . . . , br+1. By Lemma 4 we can select integers
bi1 , bi2 , . . . , bit , 1 ≤ t ≤ r for which

(4) r|bi1 + bi2 + · · ·+ bit .

Let
hn =

bi1 + bi2 + · · ·+ bit

r
· an,

H = {h1 < h2 < . . . }.
Then by Lemma 2 P ({an} ∪ H) contains arbitrarily large intervals.

By (4)

(5) P ({b1an} ∪ {(bi1 + bi2 + . . . , bit) · an}) = b1 · P ({an} ∪H),

thus for every K there is an integer z such that

(6) {z, z + b1, z + 2b1, . . . , z + Kb1} ⊂ b1 · P ({an} ∪H) ⊂ P (A(α,B)).

Now let us consider the elements br+2, br+3, . . . , b2r+1 and b2r+2, b2r+3, . . . ,

b3r+1. By Lemma 4 we can choose elements

{bj1 , bj2 , . . . , bjs} ⊆ {br+2, br+3, . . . , b2r+1}
and

{bk1 , bk2 , . . . , bky} ⊆ {b2r+2, b2r+3, . . . , b3r+1}

for which

r|U := {bj1 + bj2 + · · ·+ bjs}(7)
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and

r|V := {bk1 + bk2 + . . . , bky}.(8)

Clearly P ({Uan} ∪ {V am}) ⊂ P (A(α, B)).

Lemma 5. P ({Uan} ∪ {V am}) has bounded gaps.

Proof of Lemma 5. Let U ′ = U/r, V ′ = V/r. Let {U ′an} ∪
{V ′am} = X = {x1 ≤ x2 ≤ · · · ≤ xn ≤ . . . }. We are going to show
that P (X) has bounded gaps. This implies that rP (X) has also bounded
gaps as we wanted. By Lemma 3 we only have to show that there exists
N such that for n > N

(9) xn+1 ≤ xn + xn−1 + · · ·+ x1.

For brevity let A = V ′α log2
U ′
V ′ +2U ′+2. Since limz→∞ 2z/z = ∞ we can

choose a fixed integer z for which

(10) 2z > min{z + A/(U ′α), V ′/(U ′α)}.

Let us define s by

(11) as ≤ U ′

V ′ az ≤ as+1

and let xn+1 = U ′az. By (10) an easy calculation shows that 2s−1α > 1.
By (11), for n > N we have

(12) {U ′a1, U
′a2, . . . , U

′az−1, V
′a1, . . . , V

′as} ⊂ {x1, . . . , xn}.

We claim that

(13) U ′az ≤ U ′a1 + · · ·+ U ′az−1 + V ′a1 + · · ·+ V ′as,

which by (12) implies (9). Suppose the claim is false and so

U ′2zα ≥ U ′az ≥ U ′(a1 + · · ·+ az−1) + V ′(a1 + · · ·+ as)

> U ′α(1 + 2 + · · ·+ 2z−1 − z) + V ′α(1 + 2 + · · ·+ 2s − s)(14)

= U ′α(2z − 1− z) + V ′α(2s+1 − 1− s),
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hence by (11) and (14)

(15)

U ′α(z + 1) ≥ V ′α(2s+1 − s− 1)

= V ′2s+1α− V ′α(s + 1)

≥ V ′as+1 − V ′α(s + 1)

≥ U ′az − V ′α(s + 1).

We claim

(16) (s + 1) ≤ log2

(
U ′

V ′

)
+ z + 2.

Indeed, by (10) and (11) we have

2s−1α ≤ 2sα− 1 ≤ as ≤ U ′

V ′ az ≤ U ′

V ′ 2
zα,

which implies (16). So by (15)

U ′az − V ′α(s + 1) ≥ U ′(2zα− 1)− V ′
[
log2

U ′

V ′ + z + 2
]
,

which yields 2z ≤ z + A/(U ′α). This contradicts (10) which proves the
lemma.

Let P ({Uan} ∪ {V am}) = {y1 < y2 < . . . yn < . . . }. Lemma 5 yields
that there is a positive integer L for which

(17) yn+1 − yn ≤ L; n ∈ N

and

(18) r|yn.

Now by (6) there is an integer z for which

(19) {z, z + b1, z + 2b1, . . . , z + Lb1} ⊂ b1P ({an} ∪H).

Our last step is to find an infinite arithmetic progression in P (A(α,B)).
We claim {(y1 + z) + kb1}∞k=1 ⊂ P (A(α,B)). Let us consider the

element (y1 + z) + mb1 and let us define n by

(20) yn ≤ y1 + z + mb1 < yn+1.



252 Norbert Hegyvári and Gerard Rauzy : On the completeness of certain sequences

By (7), (8) and (20) we conclude that

m +
y1 − yn

b1
∈ N

and

0 ≤ m +
y1 − yn

b1
≤ L.

By (19) we have z + b1

(
m + y1−yn

b1

)
∈ b1P ({an} ∪H). This implies

(y1 + z) + mb1 = yn + z + b1

(
m +

y1 − yn

b1

)
∈ P (A(α,B)),

as we wanted. A(α,B) is subcomplete and this esthablishes our theorem.

References
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