On the completeness of certain sequences

By NORBERT HEGYVÁRI (Budapest) and GERARD RAUZY (Marseille)

Abstract

For $A=\left\{a_{1} \leq \ldots a_{n} \leq \ldots\right\} \subset N$ we define $P(A)=\left\{\sum \varepsilon_{i} a_{i}, \varepsilon_{i}=0\right.$ or $1, \sum \varepsilon_{i}$ is finite $\}$. A is said to be subcomplete if $P(A)$ contains an infinite arithmetic progression.

We prove: for every infinite sequence $\left\{b_{m}\right\}$ of integers and for every Graham's sequence $\left\{\left[2^{n} \alpha\right]\right\}$ the sequence $\left\{b_{m}\left[2^{n} \alpha\right]\right\}$ is subcomplete.

1. Introduction

Let $A=\left\{a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \ldots\right\}$ be a sequence of positive integers. Define

$$
P(A)=\left\{\sum_{i=1}^{\infty} \varepsilon_{i} a_{i}: \varepsilon_{i} \in\{0,1\} ; \sum_{i=1}^{\infty} \varepsilon_{i}<\infty\right\}
$$

Alternatively, we may consider A to be a multiset, and define $P(A)$ to be the set of all sums of the elements of finite submultisets of A.
A is called complete if every sufficiently large integer belongs to $P(A)$. We call A subcomplete if there is an integer $d \neq 0$ such that $P(A)$ contains an infinite arithmetic progression with difference d. For example the powers of 2 form a complete sequence. Let $1 \leq a_{1}<a_{2}<\cdots<a_{k}<\ldots$ be a sequence of integers. Let $A(n)=\sum_{a_{i} \leq n} 1$. Clearly we have $\mid\left\{\sum_{i=1}^{k} \varepsilon_{i} a_{i}\right.$: $\left.\varepsilon_{i} \in\{0,1\}\right\} \mid \leq 2^{k}$. Thus if $\lim \sup _{n \rightarrow \infty}\left(n-2^{A(n)}\right)=\infty$ then the sequence

Mathematics Subject Classification: 11B75, 11P81, 11B13, 05A17.
Research partially supported by CEE fund. No. CIPA-CT92-4022. This paper was written while the first author was visiting the Laboratoire de Mathematiques Discretes (UPR 9016 CNRS), Marseille.
$A=\left\{1 \leq a_{1}<\cdots<a_{k}<\ldots\right\}$ cannot be complete. This implies that if A is complete then

$$
A(n) \geq(1+o(1)) \log _{2} n .
$$

Denote the set of natural numbers by \mathbb{N}, i.e. $\mathbb{N}=\{0,1,2, \ldots\}$. Let \mathbb{R}^{+} be the set of positive real numbers. Given a set A of positive integers, we denote by $A+A$ the set of pairwise sums, $A+A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\}$. Let $d A=\{d a: a \in A\}$.

Let $g(n)=A(n) / \log n$. Many authors investigated sequences for which $g(n)$ tends to infinity very "slowly" as n tends to infinity. For example P. Erdős conjectured and J. Birch proved in 1959 (see [1]) that if $(p, q)=1$, then the sequence formed by the values $p^{k} q^{m}$ is complete, where k and m are natural numbers. Clearly these sets have $\Theta\left(\log ^{2} n\right)$ elements less than n and so $g(n)<C(p, q) \log n$.

A few years later J.W. Cassels proved in [2] the following theorem:
Assume that

$$
\lim _{n \rightarrow \infty}(A(2 n)-A(n)) / \log \log n=\infty
$$

and for every real $\theta ; 0<\theta<1$,

$$
\sum_{k=1}^{\infty}\left\|a_{k} \theta\right\|=\infty
$$

Then A is complete, where $\|x\|=\min _{-\infty<n<\infty}\{|x-n|\} ; n \in \mathbb{N}$.
It is easy to see that the theorem of Cassels contains Birch's result.
In 1969 R.L. Graham asked [3] (see also [4]): for which pairs of positive reals (α, β) is the sequence $A_{\alpha \beta}:=\left\{\left[2^{n} \alpha\right],\left[2^{m} \beta\right]: n, m \in \mathbb{N}\right\}$ complete? The first author investigated the completeness of this sequence in [5] and [6]. Clearly, here $A_{\alpha \beta}(n)<c(\alpha, \beta) \log n$ and so $g(n)=o(1)$.

The aim of this note is to investigate an Erdős-Birch-Graham-type sequence A for which the conditions of Cassels' theorem are not valid.

Definition. Let $B=\left\{b_{1} \leq b_{2} \leq \ldots\right\}$ be an infinite sequence of integers. Let

$$
A(\alpha, B):=\left\{b_{m}\left[2^{n} \alpha\right]: a, m \in \mathbb{N} ; \alpha \in \mathbb{R}\right\} .
$$

We prove the following

Theorem. For every real number $\alpha>0$ and every infinite sequence B of positive integers, $A(\alpha, B)$ is subcomplete.

We mention here that if $B(n)=O(\log \log n)$ then we cannot use Cassels' theorem, i.e. our theorem is not covered by Cassels' argument. On the other hand it is easy to construct a sequence B so that the second condition of Cassels' theorem is not valid for the sequence $A(\alpha, B)$ either (see [7]). Indeed, first we are going to count the number of elements of $A(\alpha, B)$ between $2^{N}, 2^{N+1}$, where N is large and a fixed number. So let us assume that

$$
2^{N} \leq\left[2^{n} \alpha\right] b_{k}<2^{N+1}
$$

or equivalently

$$
\begin{equation*}
\frac{2^{N}}{\left[2^{n} \alpha\right]} \leq b_{k}<\frac{2^{N+1}}{\left[2^{n} \alpha\right]} \tag{1}
\end{equation*}
$$

Since $[x]>x / 2$ if $x \geq 2$, for $\alpha \geq 2^{1-n}$ we get

$$
\begin{equation*}
2^{N-n} \alpha^{-1} \leq b_{k} \leq 2^{N+2-n} \alpha^{-1} . \tag{2}
\end{equation*}
$$

This yields

$$
\begin{aligned}
\left|\left[2^{N}, 2^{N+1}\right] \cap A(\alpha, B)\right| & \leq\left|\cup_{n \geq 0}\left\{\left(2^{N-n} \alpha^{-1}, 2^{N+2-n} \alpha^{-1}\right) \cap B\right\}\right| \\
& \leq 2 B\left(2^{N+2} \alpha^{-1}\right)=O\left(\log \log 2^{N}\right) .
\end{aligned}
$$

So we conclude that the first condition of Cassels' theorem is not valid for the sequence $A(\alpha, B)$ with $B(n)=O(\log \log n)$.

2. Lemmas

Let $a_{n}=\left[2^{n} \alpha\right]$ and let $\alpha=\sum_{n=-k}^{\infty} \varepsilon_{n}(\alpha) 2^{-n}$ where $\varepsilon_{n}(\alpha)=0$ or 1 , and assume that $\varepsilon_{n}(\alpha)=0$ holds infinitely often.

We need some lemmas:
Lemma 1. For every n

$$
a_{n+1}=2 a_{n}+\varepsilon_{n+1}(\alpha) .
$$

Indeed

$$
2^{n} \alpha=\varepsilon_{-k}(\alpha) \varepsilon_{-k+1}(\alpha) \ldots \varepsilon_{n}(\alpha) \cdot \varepsilon_{n+1}(\alpha) \ldots
$$

and

$$
2^{n+1} \alpha=\varepsilon_{-k}(\alpha) \varepsilon_{-k+1}(\alpha) \ldots \varepsilon_{n}(\alpha) \varepsilon_{n+1}(\alpha) \cdot \ldots
$$

(in base 2).

So $a_{n+1}=\varepsilon_{-k}(\alpha) \ldots \varepsilon_{n+1}(\alpha)=2 a_{n}+\varepsilon_{n+1}(\alpha)$ (in base 2).
Lemma 2. Let $\alpha=\sum_{n=-k}^{\infty} \varepsilon_{n}(\alpha) 2^{-n}$. Assume that $\varepsilon_{n}(\alpha)=1$ holds infinitely often. Let $H=\left\{h_{1}<h_{2}<\ldots\right\}$ be an infinite sequence of integers. Then $P\left(\left\{a_{n}: n \in \mathbb{N}\right\} \cup H\right)$ contains arbitrarily large intervals.

This lemma is essentially Theorem 3 in [6].
Lemma 3. Let $X=\left\{x_{1}<x_{2}<\ldots\right\}$ be an infinite sequence of integers. Assume that there exists a positive integer $T \geq x_{1}$ such that for every n

$$
\begin{equation*}
x_{n+1} \leq x_{1}+x_{2}+\cdots+x_{n}+T \tag{3}
\end{equation*}
$$

Let $P(X)=\left\{y_{1}<y_{2}<\ldots\right\}$. Then $P(X)$ has bounded gaps, in fact

$$
y_{n+1}-y_{n} \leq T
$$

for $n=1,2, \ldots$.
Proof of Lemma 3. Clearly, we only have to show that for every n the longest gap of $P\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ in the interval $\left[1, s_{n}\right]$, where $s_{n}=$ $x_{1}+\cdots+x_{n}$, is at most T. We prove it by induction on n. For $n=1$ this is the condition for x_{1}. Let now $n>1$. By the inductive hypothesis the longest gap in $\left[1, s_{n-1}\right]$ is at most T, so we are going to seek the longest gap in $\left[s_{n-1}, s_{n}\right]$. Since $x_{n}<s_{n-1}+T$, and by

$$
P\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)=\left\{0, x_{n}\right\}+P\left(\left\{x_{1}, \ldots, x_{n-1}\right\}\right),
$$

the longest gap in $\left[1, s_{n}\right]$ is at $\operatorname{most} \max \left\{T\right.$, the longest gap in $\left.\left[1, s_{n-1}\right]\right\}=T$.

Lemma 3 is proved.
Corollary. Let $X=\left\{x_{1}<x_{2}<\ldots\right\}$ be an infinite sequence of integers. Assume that there exists a positive integer N such that for every $n>N$

$$
x_{n+1} \leq x_{1}+\cdots+x_{n} .
$$

Then $P(X)$ has bounded gaps.
Lemma 4. Let $x_{1}, x_{2}, \ldots, x_{r}$ be any r integers. Then there is a $y>0$, $y \in P\left(\left\{x_{1}, \ldots, x_{r}\right\}\right)$ for which $r \mid y$.

Lemma 4 is well-known.

3. Proof of the Theorem

Let us assume that there exists an integer N, such that for $n>N$ $\varepsilon_{n}(\alpha)=0$. By Lemma 1 we get

$$
\begin{gathered}
P\left(\left\{b_{1} a_{N}, b_{1} \cdot 2 a_{N}, b_{1} \cdot 4 a_{N}, \ldots\right\}\right)=\left\{b_{1} a_{N} \sum_{i=1}^{\infty} \delta_{i} 2^{i}: \delta_{i} \in\{0,1\}, \sum \delta_{i}<\infty\right\} \\
=\left\{b_{1} a_{N} \cdot n: n \in \mathbb{N}\right\} \subset P(A(\alpha, B)),
\end{gathered}
$$

so $A(\alpha, B)$ is subcomplete in this case.
Now let us assume $|\{n: \varepsilon(\alpha)=1\}|=\infty$. Let $r=b_{1}$ and let us consider the integers $b_{2}, b_{3}, \ldots, b_{r+1}$. By Lemma 4 we can select integers $b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{t}}, 1 \leq t \leq r$ for which

$$
\begin{equation*}
r \mid b_{i_{1}}+b_{i_{2}}+\cdots+b_{i_{t}} . \tag{4}
\end{equation*}
$$

Let

$$
h_{n}=\frac{b_{i_{1}}+b_{i_{2}}+\cdots+b_{i_{t}}}{r} \cdot a_{n},
$$

$H=\left\{h_{1}<h_{2}<\ldots\right\}$.
Then by Lemma $2 P\left(\left\{a_{n}\right\} \cup H\right)$ contains arbitrarily large intervals. By (4)

$$
\begin{equation*}
P\left(\left\{b_{1} a_{n}\right\} \cup\left\{\left(b_{i_{1}}+b_{i_{2}}+\ldots, b_{i_{t}}\right) \cdot a_{n}\right\}\right)=b_{1} \cdot P\left(\left\{a_{n}\right\} \cup H\right), \tag{5}
\end{equation*}
$$

thus for every K there is an integer z such that

$$
\begin{equation*}
\left\{z, z+b_{1}, z+2 b_{1}, \ldots, z+K b_{1}\right\} \subset b_{1} \cdot P\left(\left\{a_{n}\right\} \cup H\right) \subset P(A(\alpha, B)) . \tag{6}
\end{equation*}
$$

Now let us consider the elements $b_{r+2}, b_{r+3}, \ldots, b_{2 r+1}$ and $b_{2 r+2}, b_{2 r+3}, \ldots$, $b_{3 r+1}$. By Lemma 4 we can choose elements

$$
\left\{b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{s}}\right\} \subseteq\left\{b_{r+2}, b_{r+3}, \ldots, b_{2 r+1}\right\}
$$

and

$$
\left\{b_{k_{1}}, b_{k_{2}}, \ldots, b_{k_{y}}\right\} \subseteq\left\{b_{2 r+2}, b_{2 r+3}, \ldots, b_{3 r+1}\right\}
$$

for which

$$
\begin{equation*}
r \mid U:=\left\{b_{j_{1}}+b_{j_{2}}+\cdots+b_{j_{s}}\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
r \mid V:=\left\{b_{k_{1}}+b_{k_{2}}+\ldots, b_{k_{y}}\right\} . \tag{8}
\end{equation*}
$$

Clearly $P\left(\left\{U a_{n}\right\} \cup\left\{V a_{m}\right\}\right) \subset P(A(\alpha, B))$.
Lemma 5. $P\left(\left\{U a_{n}\right\} \cup\left\{V a_{m}\right\}\right)$ has bounded gaps.
Proof of Lemma 5. Let $U^{\prime}=U / r, V^{\prime}=V / r$. Let $\left\{U^{\prime} a_{n}\right\} \cup$ $\left\{V^{\prime} a_{m}\right\}=X=\left\{x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq \ldots\right\}$. We are going to show that $P(X)$ has bounded gaps. This implies that $r P(X)$ has also bounded gaps as we wanted. By Lemma 3 we only have to show that there exists N such that for $n>N$

$$
\begin{equation*}
x_{n+1} \leq x_{n}+x_{n-1}+\cdots+x_{1} . \tag{9}
\end{equation*}
$$

For brevity let $A=V^{\prime} \alpha \log _{2} \frac{U^{\prime}}{V^{\prime}}+2 U^{\prime}+2$. Since $\lim _{z \rightarrow \infty} 2^{z} / z=\infty$ we can choose a fixed integer z for which

$$
\begin{equation*}
2^{z}>\min \left\{z+A /\left(U^{\prime} \alpha\right), V^{\prime} /\left(U^{\prime} \alpha\right)\right\} . \tag{10}
\end{equation*}
$$

Let us define s by

$$
\begin{equation*}
a_{s} \leq \frac{U^{\prime}}{V^{\prime}} a_{z} \leq a_{s+1} \tag{11}
\end{equation*}
$$

and let $x_{n+1}=U^{\prime} a_{z}$. By (10) an easy calculation shows that $2^{s-1} \alpha>1$. By (11), for $n>N$ we have

$$
\begin{equation*}
\left\{U^{\prime} a_{1}, U^{\prime} a_{2}, \ldots, U^{\prime} a_{z-1}, V^{\prime} a_{1}, \ldots, V^{\prime} a_{s}\right\} \subset\left\{x_{1}, \ldots, x_{n}\right\} . \tag{12}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
U^{\prime} a_{z} \leq U^{\prime} a_{1}+\cdots+U^{\prime} a_{z-1}+V^{\prime} a_{1}+\cdots+V^{\prime} a_{s} \tag{13}
\end{equation*}
$$

which by (12) implies (9). Suppose the claim is false and so

$$
\begin{align*}
U^{\prime} 2^{z} \alpha & \geq U^{\prime} a_{z} \geq U^{\prime}\left(a_{1}+\cdots+a_{z-1}\right)+V^{\prime}\left(a_{1}+\cdots+a_{s}\right) \\
& >U^{\prime} \alpha\left(1+2+\cdots+2^{z-1}-z\right)+V^{\prime} \alpha\left(1+2+\cdots+2^{s}-s\right) \tag{14}\\
& =U^{\prime} \alpha\left(2^{z}-1-z\right)+V^{\prime} \alpha\left(2^{s+1}-1-s\right),
\end{align*}
$$

hence by (11) and (14)

$$
\begin{align*}
U^{\prime} \alpha(z+1) & \geq V^{\prime} \alpha\left(2^{s+1}-s-1\right) \\
& =V^{\prime} 2^{s+1} \alpha-V^{\prime} \alpha(s+1) \tag{15}\\
& \geq V^{\prime} a_{s+1}-V^{\prime} \alpha(s+1) \\
& \geq U^{\prime} a_{z}-V^{\prime} \alpha(s+1) .
\end{align*}
$$

We claim

$$
\begin{equation*}
(s+1) \leq \log _{2}\left(\frac{U^{\prime}}{V^{\prime}}\right)+z+2 \tag{16}
\end{equation*}
$$

Indeed, by (10) and (11) we have

$$
2^{s-1} \alpha \leq 2^{s} \alpha-1 \leq a_{s} \leq \frac{U^{\prime}}{V^{\prime}} a_{z} \leq \frac{U^{\prime}}{V^{\prime}} 2^{z} \alpha,
$$

which implies (16). So by (15)

$$
U^{\prime} a_{z}-V^{\prime} \alpha(s+1) \geq U^{\prime}\left(2^{z} \alpha-1\right)-V^{\prime}\left[\log _{2} \frac{U^{\prime}}{V^{\prime}}+z+2\right],
$$

which yields $2^{z} \leq z+A /\left(U^{\prime} \alpha\right)$. This contradicts (10) which proves the lemma.

Let $P\left(\left\{U a_{n}\right\} \cup\left\{V a_{m}\right\}\right)=\left\{y_{1}<y_{2}<\ldots y_{n}<\ldots\right\}$. Lemma 5 yields that there is a positive integer L for which

$$
\begin{equation*}
y_{n+1}-y_{n} \leq L ; n \in \mathbb{N} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
r \mid y_{n} \tag{18}
\end{equation*}
$$

Now by (6) there is an integer z for which

$$
\begin{equation*}
\left\{z, z+b_{1}, z+2 b_{1}, \ldots, z+L b_{1}\right\} \subset b_{1} P\left(\left\{a_{n}\right\} \cup H\right) \tag{19}
\end{equation*}
$$

Our last step is to find an infinite arithmetic progression in $P(A(\alpha, B))$.
We claim $\left\{\left(y_{1}+z\right)+k b_{1}\right\}_{k=1}^{\infty} \subset P(A(\alpha, B))$. Let us consider the element $\left(y_{1}+z\right)+m b_{1}$ and let us define n by

$$
\begin{equation*}
y_{n} \leq y_{1}+z+m b_{1}<y_{n+1} . \tag{20}
\end{equation*}
$$

252 Norbert Hegyvári and Gerard Rauzy : On the completeness of certain sequences

By (7), (8) and (20) we conclude that

$$
m+\frac{y_{1}-y_{n}}{b_{1}} \in \mathbb{N}
$$

and

$$
0 \leq m+\frac{y_{1}-y_{n}}{b_{1}} \leq L
$$

By (19) we have $z+b_{1}\left(m+\frac{y_{1}-y_{n}}{b_{1}}\right) \in b_{1} P\left(\left\{a_{n}\right\} \cup H\right)$. This implies

$$
\left(y_{1}+z\right)+m b_{1}=y_{n}+z+b_{1}\left(m+\frac{y_{1}-y_{n}}{b_{1}}\right) \in P(A(\alpha, B))
$$

as we wanted. $A(\alpha, B)$ is subcomplete and this esthablishes our theorem.

References

[1] J. Birch, Note on a problem of Erdős, Proc. Cambridge Philos. Soc. 55 (1959), 370-373.
[2] J. W. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. 21 (1960), 111-124.
[3] P. Erdős and R.L. Graham, Old and new results in the combinatorial number theory, Monographie No. 28, L'Enseignement Mathématique, Genève, 1980.
[4] R. L. Graham, On sums of integers taken from a fixed sequence, Proc. Wash. State Univ. Conf. on Number Theory, 1971, 22-40.
[5] N. Hegyvári, Some remarks on a problem of Erdős and Graham, Acta Math. Hung. 53 ((1-2), 149-154.
[6] N. Hegyvári, On sumset of certain sets, Publ. Math. Debrecen 45 (1-2) (1994), 115-122.
[7] G. Rauzy, Caractérisation des ensembles normaux, Bull. Soc. Math. France 98, 401-414.

NORBERT HEGYVÁRI
DEPARTMENT OF MATHEMATICS
UNIVERSITY EÖTVÖS L., BUDAPEST
H-1055 MARKO U. 29.
HUNGARY
E-mail: norb@ludens.elte.hu

GERARD RAUZY
LABORATOIRE DE MATHEMATIQUES DISCRETES
CNRS-UPR 9016
163 AV. DE LUMINY, F13288
MARSEILLE CEDEX 9
FRANCE
E-mail: rauzy@lmd.univ-mrs.fr
(Received September 12, 1997; revised October 22, 1998)

