Publ. Math. Debrecen
55 /3-4 (1999), 245-252

On the completeness of certain sequences

By NORBERT HEGYVARI (Budapest) and GERARD RAUZY (Marseille)

Abstract. For A = {a1 < ...an < ...} C N we define P(A) = {> e;a;,6; =0
or 1, >"¢; is finite}. A is said to be subcomplete if P(A) contains an infinite arithmetic
progression.

We prove: for every infinite sequence {bm} of integers and for every Graham’s
sequence {[2"a]} the sequence {b,,[2™a]} is subcomplete.

1. Introduction

Let A = {a; < az < -+ < a, < ...} be a sequence of positive
integers. Define

e 00
P(A) = Zé‘iai 1€ € {0’1};25" < 00
1=1 i=1

Alternatively, we may consider A to be a multiset, and define P(A) to be
the set of all sums of the elements of finite submultisets of A.

A is called complete if every sufficiently large integer belongs to P(A).
We call A subcomplete if there is an integer d # 0 such that P(A) contains
an infinite arithmetic progression with difference d. For example the pow-
ers of 2 form a complete sequence. Let 1 < a1 <as < ---<agp<... bea
sequence of integers. Let A(n) =3, ., 1. Clearly we have \{Zle €i;
g; € {0,1}}| < 2%, Thus if limsup,, . (n — 24(") = oo then the sequence
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A={1<a; <---<ay <...} cannot be complete. This implies that if
A is complete then

A(n) > (14 o(1)) log, n.

Denote the set of natural numbers by N, i.e. N = {0,1,2,...}. Let RT
be the set of positive real numbers. Given a set A of positive integers, we
denote by A + A the set of pairwise sums, A+ A = {a+a’ : a,d’ € A}.
Let dA = {da : a € A}.

Let g(n) = A(n)/logn. Many authors investigated sequences for
which g(n) tends to infinity very “slowly” as n tends to infinity. For
example P. ERDOS conjectured and J. BIRCH proved in 1959 (see [1]) that
if (p,q) = 1, then the sequence formed by the values p*¢™ is complete,
where k and m are natural numbers. Clearly these sets have ©(log®n)
elements less than n and so g(n) < C(p, q) logn.

A few years later J.W. CASSELS proved in [2] the following theorem:

Assume that

lim (A(2n) — A(n))/loglogn = oo

n—oo

and for every real 0; 0 < 0 < 1,

o0
> llaxb]| = oc.
k=1

Then A is complete, where ||z|| = min_cccn<oo{|z —n|};n € N.
It is easy to see that the theorem of Cassels contains Birch’s result.
In 1969 R.L. GRAHAM asked [3] (see also [4]): for which pairs of
positive reals («, ) is the sequence A,z = {[2"a|,[2"5] : n,m € N}
complete? The first author investigated the completeness of this sequence
in [5] and [6]. Clearly, here A,3(n) < c(o, B)logn and so g(n) = o(1).
The aim of this note is to investigate an Erdés-Birch-Graham-type
sequence A for which the conditions of Cassels’ theorem are not valid.

Definition. Let B = {by < by < ...} be an infinite sequence of inte-

gers. Let
A(a, B) := {bn[2"a] : a,m € N;a € R}.

We prove the following
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Theorem. For every real number o > 0 and every infinite sequence
B of positive integers, A(«, B) is subcomplete.

We mention here that if B(n) = O(loglogn) then we cannot use
Cassels’ theorem, i.e. our theorem is not covered by Cassels’ argument.
On the other hand it is easy to construct a sequence B so that the second
condition of Cassels’ theorem is not valid for the sequence A(a, B) either
(see [7]). Indeed, first we are going to count the number of elements of
A(a, B) between 2V, 2Vt where N is large and a fixed number. So let
us assume that

2N < [2"a)by, < 2NV

or equivalently
2N 2N+ 1

(1) 2na] <b, < 20l
Since [z] > z/2 if x > 2, for a > 217" we get
(2) oN=na =t < by < 2VTEg L
This yields
|27, 2T N A, B)| < |Unso {(2V a7, 2V 27"~ N BY|

<2B (2N+2a_1) =0 (loglog 2N) .

So we conclude that the first condition of Cassels’ theorem is not valid for
the sequence A(a, B) with B(n) = O(loglogn).

2. Lemmas

Let a, = [2"a] and let a = ) 2, €,(a)2™™ where &, () = 0 or 1,
and assume that £, (o) = 0 holds infinitely often.
We need some lemmas:

Lemma 1. For every n

Apt1 = 2Gn + i1 ().
Indeed
"a=ce_p()e_gy1(a)...en(a) - ent1(a)...
and

2"l = e_p(a)e_pr1(@) .. en(@)ensi(a) - ...
(in base 2).
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So ant1 =cec_p(@)...eny1(@) = 2ayn + €pt1(a) (in base 2).

Lemma 2. Let o =) >, &,(«)27™. Assume that e,(a) = 1 holds
infinitely often. Let H = {h; < hy < ...} be an infinite sequence of
integers. Then P({a, : n € N} U H) contains arbitrarily large intervals.

This lemma is essentially Theorem 3 in [6].

Lemma 3. Let X = {21 < z2 < ...} be an infinite sequence of
integers. Assume that there exists a positive integer T' > x1 such that for
every n

(3) Tpy1 <@ +22+ 0+ + T

Let P(X)={y1 <y2 <...}. Then P(X) has bounded gaps, in fact

ynJrl_ynST
form=1,2,....

PROOF of Lemma 3. Clearly, we only have to show that for every
n the longest gap of P({zy,...,x,}) in the interval [1,s,], where s, =
x1+ -+ x,, is at most T. We prove it by induction on n. For n = 1 this
is the condition for ;. Let now n > 1. By the inductive hypothesis the
longest gap in [1,s,_1] is at most T, so we are going to seek the longest
gap in [s,_1,8y,]. Since z,, < s,—1 + T, and by

P{x1,...,zn}) ={0,z,} + P{x1,...,2pn-1}),

the longest gap in [1, s,,] is at most max{7’, the longest gap in[l, s,,—1]}=T"
U

Lemma 3 is proved.

Corollary. Let X = {z1 < z2 < ...} be an infinite sequence of
integers. Assume that there exists a positive integer N such that for every
n>N

Tnt1 < x1 4+ Tp.

Then P(X) has bounded gaps.

Lemma 4. Let x1,%9,...,%, be any r integers. Then there isay > 0,
y € P({z1,...,x,}) for which r|y.

Lemma 4 is well-known.
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3. Proof of the Theorem

Let us assume that there exists an integer N, such that for n > N
en(a) = 0. By Lemma 1 we get

P({blaN,bl- 2&N,b1' day, ... }) = {blaNZ 5121 1 0; € {0, 1},2 0; < OO}
=1

= {biay -n:n e N} C P(A(a, B)),

so A(a, B) is subcomplete in this case.

Now let us assume [{n : (o) = 1}| = co. Let r = by and let us
consider the integers bs, b3, ...,br+1. By Lemma 4 we can select integers
bi,, biy, ..., bi,, 1 <t <r for which

(4) 7|bsy + biy + - + by,

Let
h :l)"1+b"2+”'—i_bit -a
/r. bl

H:{hl < hy < }
Then by Lemma 2 P({a,} U H) contains arbitrarily large intervals.
By (4)

(5) P({bia,} U{(bj; +biy +...,b;,) - an}) =b1- P{a,} UH),
thus for every K there is an integer z such that
(6) {z,z+b1,2+2b1,...,2+ Kby} Cby - P({an} UH) C P(A(a, B)).

Now let us consider the elements b,12,b,43,...,b2,+1 and boy 42, boris, ...,
bsr+1. By Lemma 4 we can choose elements

{bj1abj27 s vbjs} - {br+2a bT+37 ceey b2r+1}

and

{bkys by - oo bk, } € {b2ry2, b2rg 3,00, b3 41}

for which

(7) T|U:: {bjl +bj2 +"'+bjs}
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and

(8) 7”|V = {bk1 + ka +... ,bky}.

Clearly P{Ua,} U{Vay}) C P(A(a, B)).
Lemma 5. P({Ua,} U {Va,}) has bounded gaps.

PROOF of Lemma 5. Let U" = U/r, V! = V/r. Let {U'a,} U
{V'ap} = X = {2z <29 < --- <z, < ...}. We are going to show
that P(X) has bounded gaps. This implies that 7P(X) has also bounded
gaps as we wanted. By Lemma 3 we only have to show that there exists
N such that for n > N

(9) Tpt1 STy +Tp1+ -+ 21,

For brevity let A = V'alog, % +2U" +2. Since lim,_, , 2% /z = 0o we can
choose a fixed integer z for which

(10) 27 > min{z + A/(U'a),V'/(U'a)}.

Let us define s by

/
(11> Qs S Waz S As41

and let x,.1 = U'a,. By (10) an easy calculation shows that 257 1o > 1.
By (11), for n > N we have

(12) {U'ay,U'ay,...,U'a,_1,V'ay,...,V'as} C{x1,..., 2.}

We claim that

(13) Ua, <Uar+ - +Uay1+V'a+- -+ Vag,

which by (12) implies (9). Suppose the claim is false and so
U'2°a>U'a, >U'(a; + - +as_1) + V(a1 + - +as)

(14) SUa(l4+2+-+27 =)+ Va(l+2+---+2°—5)
=U'a(2” —1—-2)+ Va2 —1-5),
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hence by (11) and (14)

Uda(z+1) > Va2 —5 1)
=V'2Ta —V'a(s +1)

15
(15) >V'agyr —V'a(s+1)
>U'a, —V'a(s+1).
We claim
U/
(16) (s +1) <log, (V’) +2z+2.

Indeed, by (10) and (11) we have
U’ U’
2 la<2°a-1<a, < 770 <
which implies (16). So by (15)
U/
Uda, —V'a(s+1)>U'(2°a—1) — V'|log, et 2|,

which yields 2* < z+ A/(U’«). This contradicts (10) which proves the
lemma.

Let P{Uan} U{Van}) ={y1 <y2 <...yn <...}. Lemma 5 yields
that there is a positive integer L for which

(17) Yn+1 —Yn < Limn €N
and
(18) 7|y

Now by (6) there is an integer z for which
(19) {Z,Z+b1,2+2b1,...,Z+Lb1}Cblp({an}UH).

Our last step is to find an infinite arithmetic progression in P(A(«, B)).
We claim {(y1 + 2) + kb1}32, C P(A(a, B)). Let us consider the
element (y; + z) + mb; and let us define n by

(20) Yn <Y1+ 2+ mby < Yng1.
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By (7), (8) and (20) we conclude that

m+7y1_yn eN
by

and

0<m+ =9 <.
b1

By (19) we have z + by (m + ylb_ly") € by P({a,} U H). This implies

(1 +2) + mby = g + 2+ by (m+ L) € P(A(a, B)),
1

as we wanted. A(a, B) is subcomplete and this esthablishes our theorem.
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