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Some new geometric structures on the tangent bundle

By V. OPROIU (Iaşi)

Abstract. One obtains a Kähler Einstein structure on the tangent bundle of a
Riemannian manifold of constant negative sectional curvature. If the constant sectional
curvature is positive then a Kähler Einstein structure is defined in a tube around zero
section in the tangent bundle. Moreover, the holomorphic sectional curvature of the
obtained Kähler Einstein structure is constant. Two special cases are also studied.

Introduction

It is well known that the tangent bundle TM of a Riemannian man-
ifold (M, g) can be organized as an almost Kählerian manifold (see [3], [10],
[9]) by using the splitting of the tangent bundle to TM into the vertical and
horizontal distributions V TM, HTM (the last one being defined by the
Levi Civita connection on M), the Sasaki metric and an almost complex
structure defined by the above splitting (see also [18], [19], [6]). However,
this structure is Kähler only in the case where the base manifold is locally
Euclidean. The Sasaki metric is not a “good” metric in the sense of [1] since
its Ricci curvature is not constant, i.e. the Sasaki metric is not, generally,
Einstein.

In this paper we shall present some interesting Kähler structures de-
fined on the tangent bundle of a Riemannian manifold (M, g) of constant
sectional curvature obtained by adapting an idea of Calabi ([2], [1]) to
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define a hyperKähler structure on the cotangent bundle of a Kähler mani-
fold having constant positive holomorphic sectional curvature (the complex
projective space). The found structures are defined by functions on TM ,
depending explicitely on the energy density (kinetic energy) on TM , only.
In some cases, the obtained Kähler structures on TM have some sup-
plimentary properties: are locally symmetric, have constant holomorphic
sectional curvature etc.

In [13] we have been interested in finding a Kähler Einstein structure
on the tangent bundle of a space form. We have considered a Riemannian
metric G defined on the tangent bundle by using an M -tensor field on
TM obtained in the following way. Denote by τ : TM → M the canonical
projection of the tangent bundle on the base manifold. Let y be the current
tangent vector of TM , denote by

t =
1
2
‖y‖2 =

1
2
gτ(y)(y, y)

the energy density in y and let gy ∈ T ∗M be the cotangent vector obtained
from y by the “musical” isomorphism between TM and T ∗M defined by g

(the “lowering” of indices). Then we may consider the following symmetric
M -tensor field of type (0, 2) on TM

G̃ = u(t) g + v(t) gy ⊗ gy,

where g is thought of as an M -tensor field on TM ([7]) and u, v : [0,∞)→R
are smooth real valued functions depending on t only. We assume that the
values of u and u + 2tv are positive, assuring that G̃ is positive definite.
Later on, we shall study the condititions under which these properties of
u, v are fulfilled. If we try to find the expressions of the functions u, v

in order to obtain an Einstein metric on TM defined by using the M -
tensor field G̃, it is convenient to use an almost complex structure J on
TM , related to the considered metric, such that we shall obtain, in fact,
a Kähler Einstein structure on TM in the case where (M, g) has constant
(negative) sectional curvature. As a matter of fact, we shall obtain the
existence of a Kähler Einstein structure even in the case where (M, g) has
positive constant sectional curvature, but only in a tube around the zero
section in TM (Theorem 4). The surprising fact was that we have obtained
on TM a structure of Kähler manifold with constant holomorphic sectional
curvature (Theorem 5).
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However, during the computations, we had to exclude two important
cases which appeared, in a certain sense, as singular cases. One of them is
the case where the metric is obtained from a Lagrangian depending on the
density energy (in this case v is the derivative of u). The second special
case is the case where u = constant. We have studied, separately, the case
where u = 1, obtaining v = −c, where c is the constant sectional curvature
of the Riemannian manifold (M, g). In this case the found Kähler Einstein
structure is locally symmetric.

There is also another singular case when u = At, A ∈ R∗+. In this case
we obtain a Kähler Einstein structure on a tube around zero section in the
tangent bundle of a Riemannian manifold of positive constant sectional
curvature.

The manifolds, tensor fields and geometric objects we consider in this
paper, are assumed to be differentiable of class C∞ (i.e. smooth). We
use the computations in local coordinates in a fixed local chart, but many
results from this paper may be expressed in an invariant form. The well
known summation convention is used throughout this paper, the range for
the indices i, j, k, l, h, s, r being always{1, . . . , n} (see [5], [4], [14], [15]).
We shall denote by Γ(TM) the module of smooth vector fields on TM .

Acknowledgements. Some components of the curvature tensor field of
the considered Riemannian metric have quite complicate expressions. We
have used the Mathematica package RICCI for doing tensor calculations,
elaborated by J.M. Lee in order to work with such complicate expressions.
Thus, some of these expressions are not written down in this paper but it is
indicated how they can be obtained by using RICCI. The author is grateful
to Eng. Victor Fecioru from Brisbane, Australia, for helping him with
some advices, software and hardware, necessary in the computations made
by using RICCI.

1. An almost Kähler structure on the tangent bundle

Let (M, g) be a smooth n-dimensional Riemannian manifold and de-
note its tangent bundle by τ : TM−→M . Recall that TM has a structure
of 2n-dimensional smooth manifold induced from the smooth manifold
structure of M . A local chart (U,ϕ) = (U, x1, . . . , xn) on M induces a
local chart (τ−1(U), Φ) = (τ−1(U), x1, . . . , xn, y1, . . . , yn) on TM where
the local coordinates xi, yi; i = 1, . . . , n are defined as follows. The first n
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local coordinates xi = xi◦τ ; i = 1, . . . , n on TM are the local coordinates
in the local chart (U,ϕ) of the base point of a tangent vector from τ−1(U).
The last n local coordinates yi; i = 1, . . . , n are the vector space coordi-
nates of the same tangent vector, with respect to the natural local basis
in the corresponding tangent space, defined by the local chart (U,ϕ).

This special structure of TM allows us to introduce the notion of
M -tensor field on it (see [7]). An M -tensor field of type (p, q) on TM is
defined by sets of functions

T
i1...ip

j1...jq
(x, y); i1, . . . , ip, j1, . . . , jq = 1, . . . , n,

assigned to any induced local chart (τ−1(U), Φ) on TM , such that the
change rule is that of the components of a tensor field of type (p, q) on
the base manifold, when a change of local charts on the base manifold
is performed. The components yi of the tangent vector y define an M -
tensor field of type (1, 0). Every usual tensor field on the base manifold
may be thought of as an M -tensor field on TM , having the same type,
with the components in the induced local chart on TM , equal to the local
coordinate components of the given tensor field in the chosen local chart on
the base manifold. The M -tensor field on the tangent bundle associated to
a covariant tensor field on the base manifold M may be thought of as the
pull back of the given tensor field by the smooth submersion τ : TM−→M .
E.g. the components gij of the metric tensor field g define an M -tensor
field of type (0, 2) on TM . The components g0i = gkiy

k define an M -tensor
field of type (0, 1) on TM .

The tangent bundle TM of a Riemannian manifold (M, g) can be
organized as a Riemannian or a pseudo-Riemannian manifold in many
ways. The most known such structures are given by the Sasaki metric
on TM defined by g (see [18], [3]) and the complete lift type pseudo-
Riemannian metric defined by g (see [19], [20], [10], [11]). Recall that the
Levi Civita connection of g defines a direct sum decomposition

(1) TTM = V TM⊕HTM,

of the tangent bundle to TM into the vertical distribution V TM = Ker τ∗
and the horizontal distribution HTM defined by the Levi Civita connec-
tion ∇̇ of g. The vector fields ( ∂

∂y1 , . . . , ∂
∂yn ) define a local frame field for

V TM and for HTM we have the local frame field ( δ
δx1 , . . . , δ

δxn ), where

δ

δxi
=

∂

∂xi
− Γh

i0

∂

∂yh
, Γh

i0 = Γh
ikyk
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and Γh
ik(x) are the Christoffel symbols defined by the Riemannian metric g.

The distributions V TM and HTM are isomorphic to each other and
it is possible to derive an almost complex structure on TM which, together
with the Sasaki metric, determines a structure of almost Kählerian mani-
fold on TM (see [3]). Consider now the energy density (kinetic energy or
“forza viva”, according to the terminology used by Levi Civita)

(2) t =
1
2
gik(x)yiyk =

1
2
‖y‖2 =

1
2
gτ(y)(y, y),

defined on TM by the Riemannian metric g of M , where gik are the
components of g in the local chart (U,ϕ). Let u, v : [0,∞) → R be two
real smooth functions. We shall assume that u, u+2tv have positive values.
Then we may consider the following symmetric M -tensor field of type (0,2)
on TM , defined by the components (see [16], [12])

(3) Gij = u(t)gij + v(t)g0i g0j ,

where g0i = ghiy
h. The matrix (Gij) is symmetric. Studying the prop-

erty of the quadratic form Gijz
izj to be positive for all nonzero vectors

(z1, . . . , zn), we obtain the conditions u > 0, u + 2tv > 0. The inverse of
the matrix (Gij) has the entries

(4) Hkl =
1
u

gkl + wykyl,

where gkl are the components of the inverse of the matrix (gij) and

(5) w = w(t) = − v

u(u + 2tv)
.

The components Hkl(x, y) are well defined and define a symmetric M -
tensor field of type (2, 0) on TM . We shall use also the components
Hij(x, y) of a symmetric M -tensor field of type (0, 2) obtained from the
components Hkl by “lowering” the indices

(6) Hij = gikHklglj =
1
u

gij + w g0ig0j .

Throughout this paper we shall use also the following M -tensor fields
on TM

(7)





Gkl = gkiGijg
jl = ugkl + vykyl, Gi

k = Gihghk = Gkhghi

= uδi
k + v yig0k,Hi

k = Hihghk = Hkhghi =
1
u

δi
k + w yig0k.
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Remark that the matrix (Hi
k) is the inverse of the matrix (Gi

k).

The following Riemannian metric may be considered on TM

(8) G = Gijdxidxj + Hij∇̇yi∇̇yj ,

where ∇̇yi = dyi + Γi
j0dxj is the absolute differential of yi with respect to

the Levi Civita connection ∇̇ of g. Equivalently, we have

G

(
δ

δxi
,

δ

δxj

)
= Gij ,

G

(
∂

∂yi
,

∂

∂yj

)
= Hij ,

G

(
∂

∂yi
,

δ

δxj

)
= G

(
δ

δxj
,

∂

∂yi

)
= 0.

Remark that HTM , V TM are orthogonal to each other with respect to
G but the Riemannian metrics induced from G on HTM , V TM are not
isometric, so the considered metric G on TM is no longer a metric of Sasaki
type. Remark also that the system of 1-forms (dx1, . . . , dxn, ∇̇y1, . . . , ∇̇yn)
defines a local frame of T ∗TM , dual to the local frame ( δ

δx1 , . . . , δ
δxn , ∂

∂y1 ,

. . . , ∂
∂yn ) adapted to the direct sum decomposition (1).

An almost complex structure J may be defined on TM by

(9) J
δ

δxi
= Gk

i

∂

∂yk
; J

∂

∂yi
= −Hk

i

δ

δxk
.

Then we obtain obtain by a straightforward computation

Theorem 1. (TM, G, J) is an almost Kählerian manifold.

The associated 2-form Ω is given by

(10) Ω = gij∇̇yi∧dxj

and it is closed since it does coincide with the 2-form associated to the
Sasaki metric on TM (see [3]).
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2. A Kähler structure on TM

In this section we shall study the integrability of the almost complex
structure defined by J on TM . To do this we need the following well
known formulas for the brackets of the vector fields ∂

∂yi ,
δ

δxi ; i = 1, . . . , n

(11)

[
∂

∂yi
,

∂

∂yj

]
= 0;

[
∂

∂yi
,

δ

δxj

]
= −Γh

ij

∂

∂yh
;

[
δ

δxi
,

δ

δxj

]
= −Rh

0ij

∂

∂yh
,

where Rh
0ij = Rh

kijy
k and Rh

kij are the local coordinate components of the
curvature tensor field of ∇̇ on M .

Theorem 2. The almost complex structure J on TM is integrable if

(M, g) has constant sectional curvature c and the function v is given by

(12) v =
c− uu′

2tu′ − u
.

Of course we have to study the conditions under which u + 2tv has
positive values. From the conditon

NJ = 0

it follows that the curvature tensor field of ∇̇ must have the expression

(13) Rk
hij = c(δk

i ghj − δk
j ghi),

where c is a constant and then we obtain the expression (12) of v. Next,
we obtain easily the expression of the function w

(14) w = w(t) =
uu′ − c

u(2tc− u2)
.

3. A Kähler Einstein structure on TM

In this section we shall study the property of (TM, G) to be Einstein.
We shall find the expression of the Levi Civita connection∇ of the metric G

on TM , then we shall find the expression of the curvature tensor field of ∇.
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Then, computing the corresponding traces we shall find the components
of the Ricci tensor field of ∇. Asking for the Ricci tensor field to be
proportional with the metric G we find a second order ordinary differential
equation which must be fulfilled by the function u. Fortunately, we have
been able to find the general solution of this differential equation. For a
special value of one of the integration constants we obtained the property
of G to be Einstein. At the same time we have been able to study the
conditions under which the functions u, u + 2tv have positive values.

Recall that the Levi Civita connection ∇ on a Riemannian manifold
(M, g) is obtained from the formula

2g(∇XY,Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))

+g([X, Y ], Z)− g([X, Z], Y )− g([Y, Z], X); ∀X, Y, Z∈χ(M)

and is characterized by the conditions

∇G = 0, T = 0,

where T is the torsion tensor of ∇.

Theorem 3 [16]. The Levi Civita connection ∇ of G has the following

expression in the local adapted frame ( ∂
∂y1 , . . . , ∂

∂yn , δ
δx1 , . . . , δ

δxn )

(15)





∇ ∂
∂yi

∂

∂yj
= Qh

ij

∂

∂yh
, ∇ δ

δxi

∂

∂yj
= Γh

ij

∂

∂yh
+ Ph

ji

δ

δxh

∇ ∂
∂yi

δ

δxj
= Ph

ij

δ

δxh
, ∇ δ

δxi

δ

δxj
= Γh

ij

δ

δxh
+ Sh

ij

∂

∂yh
,

where the M -tensor fields Ph
ij , Qh

ij , Sh
ij are given by

(16)





Ph
ij =

1
2

(
∂Gjk

∂yi
+HilR

l
0jk

)
Hkh, Sh

ij =
1
2

(
−Rh

0ij−
∂Gij

∂yk
Gkh

)
,

Qh
ij =

1
2
Ghk

(
∂Hjk

∂yi
+

∂Hik

∂yj
− ∂Hij

∂yk

)
.



Some new geometric structures on the tangent bundle 269

Taking into account the expressions (3), (6) of Gij and Hij and by
using the formulas (12), (14), (5) we may obtain the following expressions





Ph
ij =

u′

2u
δh
j g0i +

uv − c

2u2
δh
i g0j

− (c + uv)w
2v

gijy
h+

vw(uv − c) + uw(u′v − uv′)
2uv

g0ig0jy
h,

(17)





Qh
ij = − u′

2u
(δh

j g0i + δh
i g0j)

−v(u′ + 2u2w)
2u3w

gijy
h−v(2u′w + uw′)

2u2w
g0ig0jy

h,

(18)





Sh
ij =

c− uv

2
δh
j g0i − c + uv

2
δh
i g0j

+
u′v
2uw

gijy
h +

v(v′ − 2uvw)
2uw

g0ig0jy
h.

(19)

Remark that in the obtained formulas we have used the formula (5) in
order to replace the energy density t, such that it is not involved explicitly.
Of course, we can replace v, v′, w, w′ as functions of u, u′, u′′ and t but
we obtain much more complicated expressions for Ph

ij , Qh
ij , Sh

ij .

The curvature tensor field K of the connection ∇ is defined by the
well known formula

K(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Γ(TM).

By using the local frame ( δ
δxi ,

∂
∂yi ), i = 1, . . . , n we obtain, after a standard

straightforward computation

K

(
δ

δxi
,

δ

δxj

)
δ

δxk
= XXXh

kij

δ

δxj
, K

(
δ

δxi
,

δ

δxj

)
∂

∂yk
= XXY h

kij

∂

∂yh
,

K

(
∂

∂yi
,

∂

∂yj

)
δ

δxk
= Y Y Xh

kij

δ

δxh
, K

(
∂

∂yi
,

∂

∂yj

)
∂

∂yk
= Y Y Y h

kij

∂

∂yh
,

K

(
∂

∂yi
,

δ

δxj

)
δ

δxk
= Y XXh

kij

∂

∂yh
, K

(
∂

∂yi
,

δ

δxj

)
∂

∂yk
= Y XY h

kij

δ

δxh
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where

(20)





XXXh
kij = Rh

kij + Ph
lkRl

0ij + Ph
liS

l
jk − Ph

ljS
l
ik,

XXY h
kij = Rh

kij + Qh
lkRl

0ij + Sh
ilP

l
kj − Sh

jlP
l
ki,

Y Y Xh
kij =

∂

∂yi
Ph

jk −
∂

∂yj
Ph

ik + Ph
ilP

l
jk − Ph

jlP
l
ik,

Y Y Y h
kij =

∂

∂yi
Qh

jk −
∂

∂yj
Qh

ik + Qh
ilQ

l
jk −Qh

jlQ
l
ik,

Y XXh
kij =

∂

∂yi
Sh

jk + Qh
ilS

l
jk − Sh

jlP
l
ik,

Y XY h
kij =

∂

∂yi
Ph

kj + Ph
ilP

l
kj − Ph

ljQ
l
ik.

Remark that, at a first step, the formulas for the expressions of K

contained also some other terms involving the Christoffel symbols Γk
ij .

However, after some standard computations, we have been able to show
that those other terms are zero.

Now we have to replace the expressions (17), (18), (19) of the M -
tensor fields Ph

ij , Qh
ij , Sh

ij and the expressions (12), (14), (5) of the functions
v, w and of their derivatives in order to obtain the components from (20)
as functions of u, u′, u′′, u(3) only. The obtained expressions are quite
complicate and, at this stage, we decided to use the Mathematica package
RICCI in order to do the necessary tensor calculations. It has been useful
to consider c, t, u, v, w, u′, v′, w′, u′′, v′′, w′′, and u(3) as constants,
the tangent vector y as a first order tensor, the components Gij , Hij as
second order tensors and so on, on the tangent bundle to the Riemannian
manifold M , the associated indices being h, i, j, k, l, r, s. It was not
convenient to think of u, v, w as functions of t since RICCI did not make
some useful factorizations after the command TensorSimplify.

The components of the Ricci tensor field of the connection ∇, defined
as Ric(Y,Z) = trace (X → K(X, Y )Z), X, Y, Z ∈ Γ(TM) are obtained as
follows

Ric
(

δ

δxj
,

δ

δxk

)
= Ric XXjk = XXXh

khj + Y XXh
khj ,

Ric
(

∂

∂yj
,

∂

∂yj

)
= Ric Y Yjk = Y Y Y h

khj − Y XY h
kjh,
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Ric
(

∂

∂yj
,

δ

δxk

)
= Ric

(
δ

δxk
,

∂

∂yj

)
= 0.

The expressions of Ric XXjk, Ric Y Yjk are quite complicate. In order
to present a summary description of these expressions we introduce the
function

(21) a = n(u− 2tu′)(2cu− 2ctu′−u2u′) + 2(2ct−u2)(tuu′′+ uu′− tu′2).

Then

RicXXjk =
a

2(u− 2tu′)2
gjk + α(t, u, u′, u′′, u(3))g0jg0k

Ric Y Yjk =
a

2u2(u− 2tu′)2
gjk + β(t, u, u′, u′′, u(3))g0jg0k,

where α, β are rational expressions in t, u, u′, u′′, u(3).
To study the conditions under which (TM,G) is Einstein, we consider

the differences

Diff XXjk = Ric XXjk − a

2u(u− 2tu′)2
Gjk,

Diff Y Yjk = Ric Y Yjk − a

2u(u− 2tu′)2
Hjk.

Then we obtain

Diff XXjk =
1

2u2(u− 2tu′)4
[
n(u2 − 2ct)(2tu′ − u)(u2u′′ − 2tu′3 + 2uu′2)

− 8c2tu3u′ + 4cu5u′ + 16c2t2u2u′2 + 4ctu4u′2 − 6u6u′2

− 24c2t3uu′3 − 8ct2u3u′3 + 10tu5u′3 + 16c2t4u′4 − 4t2u4u′4

− 24c2t2u3u′′ + 20ctu5u′′ − 4u7u′′ + 16c2t3u2u′u′′−4tu6u′u′′

− 16ct3u3u′2u′′ + 8t2u5u′2u′′ − 32c2t4u2u′′2 + 32ct3u4u′′2

− 8t2u6u′′2 − 8c2t3u3u(3) + 8ct2u5u(3) − 2tu7u(3)

+ 16c2t4u2u′u(3) − 16ct3u4u′u(3) + 4t2u6u′u(3)
]
g0jg0k,

Diff Y Yjk =
1

2u2(u2 − 2ct)(u− 2tu′)2
[
n(u2 − 2ct)(2tu′ − u)
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× (u2u′′ − 2tu′3 + 2uu′2) + 4cu3u′ − 8ctu2u′2 − 6u4u′2

+ 12ct2uu′3 + 10tu3u′3 − 8ct3u′4 − 4t2u2u′4 + 12ctu3u′′

− 4u5u′′−8ct2u2u′u′′ − 4tu4u′u′′ + 8t2u3u′2u′′+16ct3u2u′′2

− 8t2u4u′′2 + 4ct2u3u(3) − 2tu5u(3)

− 8ct3u2u′u(3) + 4t2u2u′u(3)
]
g0jg0k.

Our task is to find a positive function u(t) such that Diff XXjk =
Diff Y Yjk = 0. It was hopeless to try to find directly a general common
solution of the system of third order ordinary differential equations ob-
tained by imposing the conditions Diff XXjk = Diff Y Yjk = 0. However,
it is quite obvious that the function u = constant is a solution of the ob-
tained system. The case where u = 1 has been discussed by the author in
[12] and will be presented later on. The obtained Kähler Einstein structure
on TM in the case where c < 0 or on a tube around the zero section in TM

in the case where c > 0 is even locally symmetric. Another case which can
be considered is that where u2 = 2ct. Remark that, in this case we have
also u−2tu′ = 0. It is a singular case and it has been studied separately by
the author and N. Papaghiuc in [16]. It will be presented later. Remark
that the obtained Kähler is neither Einstein nor locally symmetric.

If we try to find another function u for which Diff XXjk=Diff Y Yjk=0
and which does not depend on the dimension n of M , then we have to find
the positive solutions of the second order differential equation

(22) u2u′′ − 2tu′3 + 2uu′2 = 0.

Remark that if u is a solution of this equation then −u is a solution
too.

We succeeded to find the general solution of the equation (22), then we
studied the conditions under which the symmetric matrix (Gjk) is positive,
obtaining the following cases

1. c < 0, A > 0 and we have

(23) u= A +
√

A2− 2ct > 0, v =
1
2t

(
A− 4ct

A
−

√
A2− 2ct

)
> 0, t ≥ 0.
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2. c > 0, A > 0 and we have

(24) u = A±
√

A2 − 2ct, v=
1
2t

(
A−4ct

A
∓

√
A2−2ct

)
, 0 ≤ t <

A2

2c
.

The solution u = A−√A2 − 2ct has the property u(0) = 0 and it should
be excluded. However this solution can be studied as a singular case.

Remark that we may have u > 0, v ≤ 0 but the matrix (Gjk) is still
positive since, for z, y ∈ TM , τ(z) = τ(y) = x ∈ M , we have

G(x,y)(z, z) = u‖z‖2 + v〈y, z〉2 ≥ ‖z‖2(u + 2tv),

where ‖z‖2 = gx(z, z), 2t = gx(y, y) = ‖y‖2. Hence it is enough to have
u + 2tv > 0.

Hence, we may state our main result

Theorem 4. 1. Assume that (M, g) has constant negative sectional

curvature c and let A > 0. Then (TM, G, J), with u, v given by (23) is a

Kähler Einstein manifold.

2. Assume that (M, g) has constant positive sectional curvature c and

let A > 0. Then the tube around the zero section in TM , defined by the

condition

gjkyjyk = 2t <
A2

c

has a structure of Kähler Einstein manifold, if the functions u, v are given

by (24).

Remark. The case c = 0 is not considered since (M, g) is flat and we
obtain just the flat Kähler structure on TM defined in [3].

4. The holomorphic sectional curvature of (TM, G, J)

In this section we shall obtain the components of the curvature tensor
field K of ∇ in the case where u, v are given by (23), with c < 0, A > 0.
Similar computations may be done in the remaining cases. Replacing in
the formulas (20) P,Q, S with their expressions (17), (18), (19), where u,
u′, u′′, u(3), v, v′, v′′, w, w′, w′′ are computed by using (23), we obtain the
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following quite simple expressions of the components (of course, we have
used RICCI to do the corresponding tensor calculations)

(25)





XXXh
kij=

c

2A
(δh

i Gjk − δh
j Gik), XXY h

kij=
c

2A
(gjkGh

i − gikGh
j ),

Y Y Xh
kij=

c

2A
(gjkHh

i − gikHh
j ), Y Y Y h

kij=
c

2A
(δh

i Hjk − δh
j Hik),

Y XXh
kij=

c

2A
(δh

i Gjk + gikGh
j + 2gijG

h
k),

Y XY h
kij=− c

2A
(δh

j Hik + gjkHh
i + 2gijH

h
k ).

Recall that a Kähler manifold (M, g, J) has holomorphic constant sectional
curvature k if its curvature tensor field R is given by

R(X, Y )Z =
k

4
{g(Y, Z)X−g(X,Z)Y +g(JY, Z)JX

− g(JX, Z)JY + 2g(X, JY )JZ}, X, Y, Z ∈ χ(M).(26)

Comparing the expressions (25) of the components of K with those
obtained from (26), when we take M → TM , g → G and for the vector
fields X, Y , Z involved in (28) we take the elements of the local frame
( δ

δxi ,
∂

∂yi ), i = 1, . . . , n, we obtain a quite interesting result

Theorem 5. If A > 0, c < 0 and (TM,G, J) has the Kähler Einstein

structure defined by the expression (23) of u and v, then (TM, G, J) is a

complex space form with negative constant holomorphic sectional curva-

ture 2c
A .

Similar results are obtained in the cases where u, v are given by (24).
The components of the Ricci tensor field Ric of ∇ are

RicXXjk =
(n + 1)c

A
Gjk, Ric Y Yjk =

(n + 1)c
A

Hjk,

RicXYjk = Ric Y Xjk = 0,

thus

Ric =
(n + 1)c

A
G.
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Remark. The equation (22) has also the singular solution u = At,
A > 0, which is not a particular solution from (23) or (24). We have
u(0) = 0. This solution has been studied in [17]. The result is that the
tube (T 0

AM, G, J) is a locally symmetric Kähler Einstein manifold, in the
case where (M, g) is a space form with c > 0, where T 0

AM = {y ∈ TM,
0 < t < 2c

A }.

5. The case where u = 1

In this section we shall study separately the case where u = constant.
In fact, we shall take u = 1.

Theorem 6. If u = 1, then the almost complex structure J on TM is
integrable if and only if (M, g) has constant sectional curvature c and we
have

(27) v = −c.

If c < 0 we obtain a Kähler Einstein structure on whole TM . In the
case where the constant c is positive we have a Kähler structure in the
tube around the zero section in TM defined by

(28) t <
1
2c

.

Then the components Gij , Hij of the M -tensor fields on TM , defining
the Riemannian metric G are given by

(29) Gij = gij − c g0ig0j , Hij = gij +
c

1− 2ct
g0ig0j .

From the expression of Gij it follows that the symmetric matrix (Gij)
is positive if c < 0 and from the expression of Hij it follows that we have
a Kähler structure even when c > 0 but only in the region of TM where
gijy

iyj = 2t < 1
c .

The Levi Civita connection of the metric G may be obtained easily.

Theorem 7. The Levi Civita connection ∇ of the Kähler manifold
(TM, G, J) is given by the formulas

(30)





∇ ∂
∂yi

∂

∂yj
= Qh

ij

∂

∂yh
, ∇ δ

δxi

∂

∂yj
= Γh

ij

∂

∂yh
+ Ph

ji

δ

δxh
,

∇ ∂
∂yi

δ

δxj
= Ph

ij

δ

δxh
, ∇ δ

δxi

δ

δxj
= Γh

ij

δ

δxh
+ Sh

ij

∂

∂yh
,
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where the M -tensor fields Ph
ij , Qh

ij , Sh
ij are given by

(31)





Ph
ij = −cδh

i g0j − c2

1− 2ct
g0ig0jy

h = −cg0jH
h
i ,

Qh
ij = cgijy

h +
c2

1− 2ct
g0ig0jy

h = cyhHij ,

Sh
ij = cδh

j g0i − c2g0ig0jy
h = cg0iG

h
j .

If K is the curvature tensor field of the connection ∇, then we obtain
by a straightforward computation

(32)





K

(
δ

δxi
,

δ

δxj

)
δ

δxk
= c

(
δh
i Gjk − δh

j Gik

) δ

δxh
,

K

(
δ

δxi
,

δ

δxj

)
∂

∂yk
= c

(
gjkGh

i − gikGh
j

) ∂

∂yh
,

K

(
∂

∂yi
,

∂

∂yj

)
δ

δxk
= c

(
gjkHh

i − gikHh
j

) δ

δxh
,

K

(
∂

∂yi
,

∂

∂yj

)
∂

∂yk
= c

(
δh
i Hjk − δh

j Hik

) ∂

∂yh
,

K

(
∂

∂yi
,

δ

δxj

)
δ

δxk
= cgijG

h
k

∂

∂yh
,

K

(
∂

∂yi
,

δ

δxj

)
∂

∂yk
= −cgijH

h
k

δ

δxh
.

Finally, we obtain the Ricci tensor field of ∇, defined as Ric(Y, Z) =
trace(X → K(X,Y )Z), X, Y, Z ∈ Γ(TM). It follows

(33)

Ric
(

δ

δxi
,

δ

δxj

)
= cnGjk, Ric

(
∂

∂yi
,

∂

∂yj

)
= cnHjk,

Ric
(

∂

∂yi
,

δ

δxj

)
= 0.

It follows that Ric = c n G.
By using the the expression (32) of K, we computed its the covariant

derivatives with respect to the connection ∇, by using the vector fields δ
δxh

and ∂
∂yh , and and we obtained that in all twelve cases the result is zero.

Thus we may state
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Theorem 8. If (M, g) has constant negative sectional curvature and
the components of the metric G are given by (29) then (TM, G) is a locally
symmetric space. If (M, g) has constant positive sectional curvature and
the components of the metric G are given by (29) then the tube around
the zero section in TM defined by the condition (28), endowed with the
metric G, is a locally symmetric Riemannian manifold.

Remark. It is well known that an irreducible locally symmetric Rie-
mannian manifold is automatically Einstein, thus our result Ric = c n
G is a consequence of the Theorem 8. However, it seemed to us that it
is simpler to compute the traces of K in order to obtain Ric than to to
compute the components of ∇K.

6. The case where v = u′

In this section we shall present the results obtained by the author and
N. Papaghiuc in [16] in the case where v = u′.

First of all we obtained the following integrability condition for the
almost complex structure J on TM .

Theorem 9. The almost complex structure J on TM is integrable
if and only if (M, g) has positive constant sectional curvature c and the
function u(t) satisfies the ordinary differential equation

(34) 2t(u′)2 = c.

The general solution of the differential equation (34) may be obtained
easily. Since we look for a solution u defined for t > 0, for which u > 0,
u′ > 0, we may take

(35) u′ =
√

c

2t
, u =

√
2ct, w = − 1

4t
√

2ct
.

Remark that the functions u, u′, w are smooth only on the nonzero tangent
vectors of M . Hence we obtain, in fact, a Kähler structure only on the
manifold T0M=the bundle of nonzero tangent vectors to M .

In order to obtain the expression of the Levi Civita connection ∇ on
TM , determined by the metric G we shall introduce, for convenience, the
following M -tensor fields on T0M

(36) aij = gij − 1
2t

g0ig0j , ak
i = δk

i −
1
2t

g0iy
k.
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Remark that we have

ai0 = a0i = aijy
j = 0, aij = ak

i gkj = ak
i akj .

Then we obtain

(37)





Gij =
√

2ctgij +
√

c

2t
g0i g0j =

√
2ct

(
aij +

1
t
g0ig0j

)
,

Hij =
1√
2ct

gij − 1
4t
√

2ct
g0ig0j =

1√
2ct

(
aij +

1
4t

g0ig0j

)
,

Hjk =
1√
2ct

gjk − 1
4t
√

2ct
yjyk, Gjk =

√
2ctgjk +

√
c

2t
yjyk.

Theorem 10. The Levi Civita connection of the Kähler manifold

(T0M, G, J) is given by

∇ ∂
∂yi

∂

∂yj
=

(
− 1

4t
g0iδ

h
j −

1
4t

g0jδ
h
i +

1
8t2

g0ig0jy
h

)
∂

∂yh
,

∇ δ
δxi

∂

∂yj
= Γh

ij

∂

∂yh
+

(
1
4t

gijy
h +

1
4t

g0jδ
h
i −

1
8t2

g0ig0jy
h

)
δ

δxh

= Γh
ij

∂

∂yh
+

(
1
4t

aijy
h +

1
4t

δh
i g0j

)
δ

δxh
,

∇ ∂
∂yi

δ

δxj
=

(
1
4t

gijy
h +

1
4t

g0iδ
h
j −

1
8t2

g0ig0jy
h

)
δ

δxh

=
(

1
4t

aijy
h +

1
4t

δh
j g0i

)
δ

δxh
,

∇ δ

δxi

δ

δxj
= Γh

ij

δ

δxh
− c(gijy

h + δh
i g0j)

∂

∂yh
.

Then the expression of the operator J is given by

J
δ

δxi
=

(√
2ctδk

i +
√

c

2t
g0iy

k

)
∂

∂yk

J
∂

∂yi
=

(
− 1√

2ct
δk
i +

1
4t
√

2ct
g0iy

k

)
δ

δxk
,

and it can be checked easily that ∇J = 0.
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The expression of the curvature tensor field K of the Levi Civita
connection ∇ on T0M is obtained easily by a straightforward computation.

Theorem 11. The local coordinate expression of the curvature tensor

field K of the Kähler manifold (T0M, G, J) is given in the adapted local

frame ( ∂
∂yi ,

δ
δxi ) by

(38)





K

(
∂

∂yi
,

∂

∂yj

)
∂

∂yk
=

1
4t

Kh
kij

∂

∂yh
, K

(
∂

∂yi
,

∂

∂yj

)
δ

δxk
=

1
4t

Kh
kij

δ

δxh
,

K

(
∂

∂yi
,

δ

δxj

)
∂

∂yk
=

1
4t

Sh
kij

δ

δxh
, K

(
∂

∂yi
,

δ

δxj

)
δ

δxk
=− c

2
Sh

kij

∂

∂yh
,

K

(
δ

δxi
,

δ

δxj

)
∂

∂yk
=

c

2
Kh

kij

∂

∂yh
, K

(
δ

δxi
,

δ

δxj

)
δ

δxk
=

c

2
Kh

kij

δ

δxh
,

where we have denoted

Kh
kij =

1
c

{
Rh

kij −
1
2t

g0kRh
0ij +

1
2t

glkRl
0ijy

h

}
= ah

i ajk − ah
j aik

and

Sh
kij = gikδh

j + gjkδh
i +

1
2t2

g0ig0jg0kyh(40)

− 1
2t

[
g0igjkyh + g0jgikyh + g0ig0kδh

j + g0jg0kδh
i

]

= ah
i ajk + ah

j aik.

From the above formulas, we get by a straightforward computation
that the local coordinate expression of the Ricci tensor S(Y, Z) =
trace(X → K(X,Y )Z) in the local frame adapted to the direct sum de-
composition (1) is given by

(41)





S

(
∂

∂yi
,

∂

∂yj

)
= − 1

2t

[
gij − 1

2t
g0ig0j

]
= − 1

2t
aij ,

S

(
δ

δxi
,

δ

δxj

)
= −c

[
gij − 1

2t
g0ig0j

]
= −caij ,

S

(
∂

∂yi
,

δ

δxj

)
= 0.
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Comparing the obtained expressions with the expressions (37) of the
components of G we obtain

Proposition 12. The Kählerian manifold (T0M, G, J) cannot be an

Einstein manifold.

From the expression (38) of K it follows also

Proposition 13. The Kählerian manifold (T0M,G, J) cannot have

constant holomorphic sectional curvature.

Finally, by computing the covariant derivative of K with respect to ∇,
we obtain

Proposition 14. The Kählerian manifold (T0M,G, J) cannot be lo-

cally symmetric.
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