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Operators obeying a-Weyl’s theorem

By DRAGAN S. DJORDJEVIĆ (Nǐs)

Abstract. This article treatises several problems relevant to a-Weyl’s theorem
for bounded operators on Banach spaces. There are presented sufficient conditions for
an operator T , such that a-Weyl’s theorem holds for T . If a-Weyl’s theorem holds for an
a-isoloid operator T , and F is a finite rank operator commuting with T , then a-Weyl’s
theorem holds for T +F . The algebraic view point for a-Weyl’s theorem is considered in
the sense of the spectral mapping theorem for a special part of the spectrum. If T ∗ is a
quasihyponormal operator on a Hilbert space, f is a regular function in a neighbourhood
of the spectrum of T and f is not constant on the connected components of its domain,
we prove that a-Weyl’s theorem holds for f(T ). The article also contains some related
results.

1. Introduction

In this article we only consider bounded operators on a complex
infinite-dimensional Banach space X. We use I to denote the identity
operator on X, and K(X) to denote the ideal of all compact operators on
X. For an arbitrary operator T on X, N (T ) denotes its kernel and R(T )
denotes its image. We set α(T ) = dimN (T ) and β(T ) = dim X/R(T ).
Also, Φ(X), Φ+(X) and Φ−(X) denote the sets of Fredholm and semi-
Fredholm operators on X respectively. For a semi-Fredholm operator T

we define the index i(T ) = α(T ) − β(T ). Let us consider two classes of
operators: Φ0(T ) = {T ∈ Φ(X) : i(T ) = 0} is the set of Weyl operators
on X, and Φ−+(X) = {T ∈ Φ+(X) : i(T ) ≤ 0} which is introduced in [11].
It is well-known that the sets Φ(X), Φ+(X), Φ−(X), Φ0(X) and Φ−+(X)
form multiplicative semigroups in B(X).
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For a subset V of an arbitrary topological space, V denotes the closure
of V . Let C denotes the complex plane. If S is a subset of C, then iso S

denotes the set of all isolated points of S and acc S denotes the set of all
points of accumulation of S.

We use σ(T ) and σa(T ) to denote the spectrum and the approximate
point spectrum of T respectively. The Weyl spectrum of T is

σw(T ) =
⋂

K∈K(X)

σ(T + K) = {λ ∈ C : T − λI /∈ Φ0(X)}.

The essential approximate point spectrum of T is (see [11]):

σea(T ) =
⋂

K∈K(X)

σa(T + K) = {λ ∈ C : T − λI /∈ Φ−+(X)}.

Recall that all of these spectra are compact non-empty subsets of C.
Also, we use the following notation: π00(T ) = {λ ∈ C : λ ∈ iso σ(T )
and 0 < α(T − λI) < ∞}, πa0(T ) = {λ ∈ C : λ ∈ isoσa(T ) and 0 <

α(T − λI) < ∞}. The set π00(T ) (respectively πa0(T )), consists of all
isolated eigenvalues of σ(T ) (σa(T )) of finite geometric multiplicity.

A complex function f belongs to the set Hol(T ), if f is regular in a
neighbourhood of σ(T ) and f is not constant on the connected components
of its domain of definition.

The following terminology may be found in [8], [9], [10], [11] and
[13]. We say that Weyl’s theorem holds for T provided that σw(T ) =
σ(T )\π00(T ), and a-Weyl’s theorem holds for T provided that σea(T ) =
σa(T )\πa0(T ). If T obeys a-Weyl’s theorem, then it obeys Weyl’s theorem
and the converse is not true [13].

The paper is organized as follows.
In Section 2 we set Ω(T ) = {λ ∈ C : R(T − λI) is closed} and find

sufficient conditions for an operator T such that the next equality holds:

(σa(T )\σea(T )) ∩ Ω(T ) = πa0(T ) ∩ Ω(T ).

In Section 3 we prove a perturbation theorem for a-Weyl’s theorem.
Namely, if a-Weyl’s theorem holds for an a-isoloid operator T , and if F

is a finite rank operator commuting with T , then we prove that a-Weyl’s
theorem holds for T + F .
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In Section 4 we consider primitive Banach algebras and the R-spec-
trum σR(t) in the sense of Kordula and Müler [7]. We prove the spec-
tral mapping theorem for the set σR(t)\πR(t), where πR(t) consists of
all isolated points of σR(t) which are eigenvalues of t of finite geometric
multiplicity.

In Section 5 we consider quasihyponormal operators on a Hilbert
space. If T ∗ is a quasihyponormal operator, we prove that a-Weyl’ theorem
holds for f(T ), provided that f is a regular function in a neighbourhood
of σ(T ) and f is not constant on the connected components of its domain.

2. Sufficient conditions for a-Weyl’s theorem

We begin with the following useful statement.

Lemma 2.1. If λ ∈ πa0(T ) and R(T − λ) is closed, then

λ ∈ σa(T )\σea(T ).

Proof. If λ ∈ πa0(T ), then λ ∈ isoσa(T ) and 0 < α(T − λI) < ∞.
Since R(T−λI) is closed, we get that T−λI ∈ Φ+(X). Also, there exists a
number ε > 0, such that for all µ ∈ C, if 0 < |λ−µ| < ε then α(T−µI) = 0
and R(T − µI) is closed, so T − µI ∈ Φ−+(X). By the continuity of the
index, we get that T − λI ∈ Φ−+(X) and λ ∈ σa(T )\σea(T ). ¤

The next important result will be also used in the proof of our main
theorem.

Theorem 2.2. If X = N (T ) ⊕ R(T ), then for all complex numbers

λ 6= 0 we have: λ ∈ σa(T ) if and only if λ ∈ σa(T1), where T1 is the

restriction of T to its invariant subspace R(T ).

Proof. Since X = N (T ) ⊕R(T ), then it follows from [6, Satz 72.4
and Satz 101.2] that 0 is the pole of the resolvent of T of order equal to 1
or 0 /∈ σ(T ). Furthermore, if P is the spectral projection corresponding to
{0}, then

N (T ) = R(P ) and R(T ) = N (P ),

hence R(T ) is closed.
If I0 and I1 are the identity operators on N (T ) and R(T ) respectively,

we can write T−λI = (−λI0)⊕(T1−λI1) with respect to the decomposition
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X = N (T ) ⊕ R(T ). We see that N (T − λI) = N (T1 − λI1), so T − λI
is one-to-one if and only if T1 − λI1 is one-to-one. Also, R(T − λI) =
N (T )⊕R(T1 − λI1). We shall prove that R(T − λI) is closed if and only
if R(T1 − λI1) is closed.

Suppose that R(T1 − λI1) is closed and x ∈ R(T − λI). Then there
exists a sequence (xn), xn ∈ X, such that lim(T − λI)xn = x. Now,
x = u + v, xn = un + vn, where u, un ∈ N (T ) and v, vn ∈ R(T ). Let P be
a bounded projection of X onto N (T ), such that N (P ) = R(T ). We get

u = Px = P lim(T − λI)xn = −λ lim un.

Now,

v = x− u = lim(T − λI)xn + lim(λun)
= lim(T − λI)vn = lim(T1 − λI1)vn.

It follows that there exists a vector z ∈ R(T ), such that (T − λI)z =
(T1−λI1)z = v. Now, (T −λI)

(− 1
λu⊕ z

)
= x and we get that R(T −λI)

is closed.
Suppose that R(T−λI) is closed and x ∈ R(T1 − λI1) ⊂ R(T ). Then

there exists a sequence (xn) in R(T ), such that lim(T1 − λI1)xn = x. It
follows that lim(T − λI)xn = x, so there exists a vector z ∈ X such that
(T − λI)z = x = 0 ⊕ x. We can find u ∈ N (T ) and v ∈ R(T ) such that
z = u + v. Now, 0 ⊕ x = (T − λI)z = −λu ⊕ (T1 − λI1)v. Consequently,
0 = −λu and (T1 − λI1)v = x.

The previous consideration shows that λ ∈ σa(T ) if and only if λ ∈
σa(T1). ¤

We say that an operator T is regular (or g-invertible), provided that
there exists an operator S, such that T = TST . It is well-known that T is
regular if and only ifR(T ) is closed andN (T ) andR(T ) are complemented
subspaces of X. An operator T is simply polar, provided that X = N (T )⊕
R(T ) [5]. If T is simply polar, as in the proof of Theorem 2.2 it follows
that R(T ) is closed. Obviously, if T is simply polar, then T is regular.

In the proof of the main Theorem 2.3 we shall also use the essential
Browder approximate point spectrum of T (see [12]), defined as follows:

(1) σab(T ) =
⋂

K∈K(X)
TK=KT

σa(T + K) = σea(T ) ∪ acc σa(T ).

Recall that σab(T ) is non-empty compact subset of C for all bounded
operators T on X [12].
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Theorem 2.3. Suppose that T is simply polar and suppose that for an

arbitrary finite dimensional T -invariant subspace M of R(T ) there exists

a closed T -invariant subspace N of R(T ), such that M⊕N = R(T ). Then

σa(T )\σea(T ) ⊂ πa0(T ).

Proof. Suppose that λ ∈ σa(T )\σea(T ). We consider two cases:
Case I. If λ = 0, then T ∈ Φ−+(X) and 0 < α(T ) < ∞. We have to

prove that 0 is an isolated point of σa(T ). By (1) it is enough to prove
that 0 /∈ σab(T ). Let P be a continuous projection of X onto N (T ),
such that N (P ) = R(T ). It follows that P ∈ K(X) and we shall prove
that TP = PT and 0 /∈ σa(T + P ). Let x = u + v, where u ∈ N (T )
and v ∈ R(T ). Then TPx = TPu = 0 = PTx, so P and T mutually
commute. If (T + P )x = 0, then u = Pu = −Tv, where u ∈ N (T ) and
−Tv ∈ R(T ), so we get that u = 0 and v = 0. Since T ∈ Φ−+(X), it follows
that T +P ∈ Φ−+(X), so R(T +P ) is closed. Consequently, 0 /∈ σa(T +P ),
0 /∈ σab(T ) and 0 ∈ iso σa(T ). It follows that 0 ∈ πa0(T ).

Case II. Now, suppose that λ 6= 0. We get that T = 0⊕T1 with respect
to the decomposition X = N (T ) ⊕ R(T ), where T1 is the restriction of
T to R(T ). Since λ ∈ σa(T )\σea(T ), we get that T − λI ∈ Φ−+(X), so
R(T − λI) is closed and 0 < α(T − λI) < ∞. By Theorem 2.2 and its
proof we get that λ ∈ σa(T1), R(T1 − λI1) is closed, 0 < α(T1 − λI1) < ∞
and i(T1 − λI1) = i(T − λI) ≤ 0, so T1 − λI1 ∈ Φ−+(R(T )). There is
a neighbourhood U(λ) of λ, such that 0 /∈ U(λ). So for all µ ∈ U(λ),
using Theorem 2.2 we get that µ ∈ σa(T ) if and only if µ ∈ σa(T1), so
λ ∈ accσa(T ) if and only if λ ∈ accσa(T1). To prove that λ ∈ πa0(T ), it
is enough to prove that λ ∈ isoσa(T ), or λ ∈ iso σa(T1). To prove that
λ ∈ iso σa(T1), it is enough to prove that λ /∈ σab(T1).

We shall use the similar method as the one in the Case I. Since N (T1−
λI1) is the finite dimensional eigenspace of T1, there exists a closed T1-
invariant subspace M , such that R(T ) = N (T1 − λI1)⊕M . Let Q be the
continuous projection of R(T ) onto N (T1 − λI1), such that N (Q) = M .
It is obvious that Q ∈ K(R(T )). We have to prove that QT1 = T1Q and
λ /∈ σa(T1 + Q).

Suppose that x = u+ v, such that u ∈ N (T1−λI1) and v ∈ M . Then

QT1x = QT1u + QT1v = QT1u = −λu = T1Qu + T1Qv = T1Qx.
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The second equality follows from T1v ∈ M = N (Q), and the fourth equal-
ity follows from v ∈ M = N (Q). Since T1 − λI1 ∈ Φ−+(R(T )), it is
well-known that T1 + Q − λI1 ∈ Φ−+(R(T )), so R(T1 + Q − λI1) must be
closed in R(T ). We only have to prove that T1 − λI1 + Q is one-to-one.
Suppose that x = u+v, u ∈ N (T1−λI1), v ∈ M and (T1−λI1 +Q)x = 0.
Since (T1−λI1)u = 0, Qu = u and Qv = 0, we get that u = −(T1−λI1)v.
Since u ∈ N (T1 − λI1) and −(T1 − λI1)v ∈ M , we get that u = 0, so
v ∈ M ∩ N (T1 − λI1), v = 0 and x = 0. Consequently λ /∈ σa(T1 + Q),
λ /∈ σab(T1), so λ ∈ isoσa(T1), λ ∈ isoσa(T ) and λ ∈ πa0(T ). ¤

Now, following [8], we introduce the next notation: Ω(T ) = {λ ∈ C :
R(T − λI) is closed}. Note that T − λI is assumed to be regular in [8],
which is much stronger condition in Banach spaces. The next corollary
follows from Lemma 2.1 and Theorem 2.3.

Corollary 2.4. Suppose that the conditions from Theorem 2.3 are
valid for T . Then

(σa(T )\σea(T )) ∩ Ω(T ) = πa0(T ) ∩ Ω(T ).

3. Perturbations by a commuting finite rank operator

If a-Weyl’s theorem holds for T , T is a-isoloid and F is a finite rank
operator commuting with T , then we prove that a-Weyl’s theorem holds
for T +F . This problem for Weyl’s theorem is proposed in [10] and solved
in [9]. It is convenient to give the proof of the next statement.

Lemma 3.1. If α(T ) = n and dimR(F ) = m, then

α(T + F ) ≤ n + m,

where m and n are nonnegative integers.

Proof. We have that X = N (T ) ⊕ M for a closed subspace M of
X. Notice that the restriction T |M is one-to-one. Let W = {v ∈ M :
Tv ∈ R(F )}. Since T |M is one-to-one, we get that dim W ≤ m, and
dim(N (T ) ⊕ W ) ≤ n + m. Now, suppose that x ∈ N (T + F ). Then
x = u + v, where u ∈ N (T ), v ∈ M and

0 = (T + F )(u + v) = Tv + Fx.

It follows that Tv = −Fx ∈ R(F ) and v ∈ W . We get that if x ∈
N (T + F ), then x ∈ N (T )⊕W , so α(T + F ) ≤ n + m. ¤

The next result is very useful.
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Theorem 3.2. If F is an arbitrary finite rank operator on X, such

that FT = TF , then for all µ ∈ C:

µ ∈ accσa(T ) if and only if µ ∈ acc σa(T + F ).

Proof. Firstly, we prove that if T is one-to-one and TF = FT ,
then R(F ) ⊂ R(T ). Since F is a finite rank operator, there exist two
systems: a system of linearly independent vectors (yi)n

i=1, and a system of
non-zero bounded linear functionals (gi)n

i=1 on X, such that for all x ∈ X:
F (x) =

∑n
i=1 gi(x)yi. Now, we get that TFx =

∑n
i=1 gi(x)Tyi and FTx =∑n

i=1 gi(Tx)yi. Since T is one-to-one, we get that Ty1, . . . ,Tyn are linearly
independent, so we get that {∑n

i=1 gi(x)Tyi : x ∈ X} = span{y1, . . . , yn}=
span{Ty1, . . . , T yn}, and R(F ) ⊂ R(T ). Similarly, if T − λI is one-to-one
for a number λ ∈ C, then R(F ) ⊂ R(T − λI).

Now, suppose that µ /∈ accσa(T ). There exists a number ε > 0, such
that for all λ ∈ C, if 0 < |λ− µ| < ε then α(T − λI) = 0 and R(T − λI) is
closed. Also, there exists a bounded operator T1 : R(T − λI) → X, such
that (λI − T )T1 = IR(T−λI) and T1(λI − T ) = IX . Notice that R(F ) is a
finite dimensional subspace of a Banach space R(T − λI), so we may find
a closed subspace M , such that R(F )⊕M = R(T − λI).

Suppose that λ ∈ σa(T + F ). Then there exists a sequence (xn)n,
xn ∈ X and ‖xn‖ = 1 for all n ≥ 1, such that lim(T + F − λI)xn = 0. We
can assume that lim Fxn = x ∈ R(F ). Now,

0 = lim T1(T + F − λI)xn = lim(xn + T1Fxn).

Since the limit lim T1Fxn = T1x exists, we get lim xn = −T1x. Since
‖xn‖ = 1, it follows that x 6= 0. We verify that x = lim Fxn = −FT1x ∈
R(F ). Also, (T −λI)x = −(T −λI)FT1x = −Fx and (T + F −λI)x = 0.
We get that if λ ∈ σa(T +F ), then λ is an eigenvalue of T +F . It is known
that eigenvectors corresponding to distinct eigenvalues of T +F are linearly
independent. But, we get that all such eigenvectors are contained in the
finite dimensional subspace R(F ). It follows that σa(T + F ) may contain
only finitely many points λ, such that 0 < |λ − µ| < ε. We get that
µ /∈ acc σa(T + F ). The opposite implication is analogous. ¤
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Definition 3.3. We say that an operator T is a-isoloid, if all isolated
points of σa(T ) are eigenvalues of T .

Recall that an operator T is isoloid, provided that all isolated points
of σ(T ) are eigenvalues of T . Now, σa(T ) contains all isolated points of
σ(T ), so if T is a-isoloid then it is also isoloid.

The next theorem is the main result in this section.

Theorem 3.4. Suppose that F is an arbitrary finite rank operator

and TF = FT . If T is a-isoloid and a-Weyl’s theorem holds for T , then

a-Weyl’s theorem holds for T + F .

Proof. It is enough to prove that 0 ∈ σa(T + F )\σea(T + F ) if and
only if 0 ∈ πa0(T + F ). Firstly we prove the implication =⇒ . Now, if
0 ∈ σa(T + F )\σea(T + F ), then T + F ∈ Φ−+(X) and 0 < α(T + F ) < ∞.
We need to prove that 0 ∈ iso σa(T + F ). It follows that T ∈ Φ−+(X), so
0 /∈ σea(T ). It is possible that 0 /∈ σa(T ). In this case we get 0 /∈ acc σa(T )
and by Theorem 3.2 it follows that 0 /∈ accσa(T + F ), so 0 ∈ πa0(T + F ).
The second possibility is that 0 ∈ σa(T ). Since a-Weyl’s theorem holds for
T , we get that 0 /∈ accσa(T ) and again 0 ∈ πa0(T + F ).

To prove the opposite implication ⇐= , suppose that 0 ∈ πa0(T +F ).
Then 0 ∈ isoσa(T + F ) and 0 < α(T + F ) < ∞. By Theorem 3.2 we get
0 /∈ acc σa(T ) and by Lemma 3.1 it follows that 0 ≤ α(T ) < ∞. Again,
we distinguish two cases. Firstly, if 0 /∈ σa(T ), then T ∈ Φ−+(X) and
T + F ∈ Φ−+(X), so 0 ∈ σa(T + F )\σea(T + F ). On the other hand, if
0 ∈ σa(T ) then 0 ∈ isoσa(T ). Since T is a-isoloid, we get that 0 < α(T ) <

∞ and 0 /∈ σea(T ). Now, we have T ∈ Φ−+(X), T + F ∈ Φ−+(X) and
0 ∈ σa(T + F )\σea(T + F ). ¤

4. Spectral mapping theorems in Banach algebras

In this section we shall prove a spectral mapping theorem for a part
of the spectrum, which is relevant to Weyl’s theorems. Also, we shall use
the partial case of Theorem 4.4 to prove an important result in Section 5
(Theorem 5.6). Let A be a primitive Banach algebra with the identity 1,
and let Min(A) be the set of all minimal idempotents in A. If t ∈ A and
e ∈ Min(A) then t∧ denotes the element in B(Ae) defined as t∧(ae) = tae

for all ae ∈ Ae. Notice that we use B(X) to denote the set of all bounded
operators on the Banach space X. The mapping t → t∧ is called the left
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regular representation of the primitive Banach algebra A on the Banach
space Ae. It is well-known that the rank, nullity and defect of t∧ do not
depend on the choice of e ∈ Min(A) (see [1]), so we write α(t) = α(t∧).
Notice that (ts)∧ = t∧s∧ and (t − λ)∧ = t∧ − λI, where I denotes the
identity operator on Ae. Let A−1 denote the set of all invertible elements
in A.

We restate a result which enable us to define the point spectrum of
an element in a primitive Banach algebra A.

Lemma 4.1 ([1, Example F.2.2]). Let X be a Banach space and T ∈
B(X). Then

σp(T ) = σp(T∧).

Definition 4.2. If t ∈ A and e ∈ Min(A), then the point spectrum of
t is defined by σp(t) = σp(t∧), where t∧ ∈ B(Ae).

By [1], Definition 4.2 does not depend on the choice of e ∈ A and by
Lemma 4.1 it coincides with the usual definition of the point spectrum of
a bounded operator on a Banach space. We say that the set σp(t) consists
of eigenvalues of t.

Let R 6= ∅ be a regularity of A (see [7]), i.e. R satisfies the following
conditions:

(a) if a ∈ A and n ∈ N, then a ∈ R ⇐⇒ an ∈ R;

(b) if a, b, c, d are mutually commuting elements of A and ac + bd = 1,
then ab ∈ R ⇐⇒ a ∈ R and b ∈ R.

The R-spectrum of t ∈ A is defined as follows:

σR(t) = {λ ∈ C : t− λ /∈ R}.

It is well known that if a ∈ A−1 and ab = ba, then ab ∈ R if and only
if b ∈ R, and A−1 ⊂ R. Also, the spectral mapping theorem f(σR(t)) =
σR(f(t)) holds for all t ∈ A and f ∈ Hol(t). We shall always assume that
R is an open regularity of A, so σR(t) is (possibly empty) compact subset
of σ(t) [7].

Consider the set πR(t) = {λ ∈ C : λ ∈ isoσR(t) and 0 < α(t − λ)
< ∞}. The set πR(t) consists of all isolated points of σR(t) which are
eigenvalues of t of finite geometric multiplicity. Now, we introduce a gen-
eral definition inspired by Definition 3.3.
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Definition 4.3. We say that t ∈ A is R-isoloid, provided that
iso σR(t) ⊂ σp(t), i.e. all isolated points of σR(t) are eigenvalues of t.

We shall prove the spectral mapping theorem for the set σR(t)\πR(t).
If T is a bounded operator on a Banach space, the analogous problem for
the set σ(T )\π00(T ) and polynomials is considered in [10].

Theorem 4.4. Let R be an open regularity of A, such that σR(t) 6= ∅
for all t ∈ A. If t ∈ A is R-isoloid and f ∈ Hol(t) is arbitrary, then

σR(f(t))\πR(f(t)) = f(σR(t)\πR(t)).

Proof. To prove the inclusion ⊂, let us take λ ∈ σR(f(t))\πR(f(t))⊂
f(σR(t)) and distinguish three cases.

Case I. If λ is a limit point of σR(f(t)), then λ is also a limit point
of f(σR(t)), so there is a sequence (µn) in σR(t), such that f(µn) → λ.
Now, σR(t) is compact, so we can take that µn → µ ∈ σR(t). We get that
λ = f(µ) ∈ f(σR(t)\πR(t)).

Case II. Now, let λ be an isolated point of t, but α(t − λ) = 0. We
have that

(2) f(t)− λ = (t− µ1) · · · (t− µn)g(t),

where µ1, . . . , µn ∈ σ(t), elements on the right side of (2) mutually com-
mute and g(t) is invertible. Since λ ∈ f(σR(t)), we know that some µi0

belongs to σR(t). Since λ is not an eigenvalue of f(t)∧, it follows that
non of µ1, . . . , µn can be an eigenvalue of t∧. Therefore λ = f(µi0) ∈
f(σR(t)\πR(t)).

Case III. Let λ be an isolated eigenvalue of f(t) of infinite geometric
multiplicity. Notice that (2) also holds. Since λ is an eigenvalue of f(t)∧

of infinite multiplicity, there exists an µi0 , such that µi0 is an eigenvalue
of t∧ of infinite multiplicity. We get that λ = f(µi0) ∈ f(σR(t)\πR(t)).

To prove the inclusion ⊃, let us take λ ∈ f(σR(t)\πR(t)) ⊂ σR(f(t)).
Suppose that λ ∈ πR(f(t)). Then λ is isolated in σR(f(t)) and (2) holds.
If some µi is in σR(t), then µi is isolated in σR(t) and it must be an
eigenvalue of t, since t is R-isoloid. Now, λ is an eigenvalue of f(t) of finite
multiplicity, so all µi ∈ σR(t) are eigenvalues of t of finite multiplicities.
We get that all µi ∈ σR(t) are also in πR(t). This is in contradiction with
the assumption λ ∈ f(σR(t)\πR(t)). ¤
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Remark 4.4. Notice that we can prove the inclusion ⊂ in Theorem 4.3
assuming that R is an open subset of A, which satisfies the following:

(c) A−1 ⊂ R;

(d) if a, b ∈ R and ab = ba, then ab ∈ R.

Namely, if R satisfies (c) and (d), then the inclusion σR(f(t)) ⊂ f(σR(t))
holds for all t ∈ A and f ∈ Hol(t). In this partial case t need not to be
R-isoloid.

In the rest of this section we shall consider a generalization of the
Browder spectrum. This part of the paper is not the main object of our
investigation, but Theorem 4.7 plays an important role in the Fredholm
theory. Till the end of this section we can assume that A is an arbitrary
complex Banach algebra with the identity 1.

Let J be any closed two-sided ideal of A. If t ∈ A and λ ∈ isoσ(t), let
p = p(λ, t) denote the spectral idempotent of t, corresponding to λ. Define
the set of all isolated points of finite algebraic multiplicity (with respect
to J) as:

π0(t) = {λ ∈ C : λ ∈ iso σ(t) and p(λ, t) ∈ J}.
We shall prove the spectral mapping theorem for the set σ(t)\π0(t).

If T is a bounded operator on a Banach space X, A = B(X) is the
Banach algebra of all bounded operators on X, and J = K(X) is the ideal
of all compact operators on X, then σ(T )\π0(T ) is the Browder spectrum
of T . Recall that a projection is a compact operator if and only if it is
a finite rank operator. So, we may call the set σ(t)\π0(t) the Browder
spectrum of an element t in a Banach algebra A. Other generalizations of
the Browder spectrum may be found in [1], [5] and [7].

We shall need the following result of Dunford and Schwartz [3,
Theorem 19, p. 574] (interpreted for elements of an arbitrary Banach al-
gebra).

Theorem 4.5. Let t ∈ A, f is a regular function in neighbourhood

of σ(t), and let κ be a spectral set of σ(f(t)). Then σ(t) ∩ f−1(κ) is a

spectral set of σ(t) and

p(κ, f(t)) = p(f−1(κ), t).

Also, we shall use the next statement.
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Lemma 4.6. Let A be an algebra and let J be a two-sided ideal of
A. If a, b are idempotents in A, such that a + b ∈ J and ab = ba, then
a, b ∈ J .

Proof. Since ab = ba, we get (a + b)2 = a + 2ab + b ∈ J and ab ∈ J .
Now a(a + b) = a + ab ∈ J and a ∈ J . ¤

We prove the spectral mapping theorem for the Browder spectrum.

Theorem 4.7. If a ∈ A and f ∈ Hol(a), then

σ(f(a))\π0(f(a)) = f(σ(a)\π0(a)).

Proof. Let λ ∈ σ(f(a))\π0(f(a)) ⊂ f(σ(a)). We distinguish two
cases.

Case I. Suppose that λ is not an isolated point of σ(f(a)). Then there
exists a sequence (µn), µn ∈ σ(a), such that f(µn) → λ and µn → µ0.
Now λ = f(µ0) ∈ f(σ(a)\π0(a)).

Case II. Suppose that λ is an isolated point of σ(f(a)), but p(λ, f(a)) /∈
J . We have

(3) f(a)− λ = (a− µ1) · · · (a− µn)g(a),

where g(a) is invertible and all µi are isolated points of σ(a). By Theo-
rem 4.5, it follows that

(4) p(λ, f(a)) = p({µ1, . . . , µn}, a) = p(µ1, a) + · · ·+ p(µn, a).

If µ is not a point of accumulation of σ(a), then it is well-known that
p(µ, a) = 0 if and only if µ /∈ σ(a). If all idempotents on the right side of
(4) are in J , then p(λ, f(a)) ∈ J also. So there exists an µi ∈ σ(a), such
that p(µi, a) /∈ J and λ = f(µi) ∈ f(σ(a)\π0(a)).

We prove the opposite inclusion. Let λ ∈ f(σ(a)\π0(a)) ⊂ σ(f(a)).
Suppose that λ ∈ π0(f(a)). Then λ is isolated in σ(f(a)) and we get
again (3) and (4). It is well-known that idempotents on the right side of
(4) are mutually orthogonal. Since p(λ, f(a)) ∈ J , by Lemma 4.6 we get
p(µi, a) ∈ J for all i. So if λ = f(µ) and µ ∈ σ(a), then µ ∈ π0(a). This is
in contradiction with the assumption λ ∈ f(σ(a)\π0(a)). ¤

Remark 4.8. Notice that the spectral mapping theorem for the Brow-
der spectrum holds for bounded operators on Banach spaces. Construc-
tions in [1], [5] and [7] also imply the spectral mapping theorem for the
Browder spectrum.
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5. Quasihyponormal operators

Throughout this section H denotes a complex infinite-dimensional Hil-
bert space and T is always a bounded operator on H. We say that an oper-
ator T on a Hilbert space H is hyponormal, provided that ‖T ∗x‖ ≤ ‖Tx‖
holds for all x ∈ H. T is quasihyponormal, provided that ‖T ∗Tx‖ ≤ ‖T 2x‖
for all x ∈ H. Obviously, if T is hyponormal, then it is quasihyponormal.
If T ∗ is a quasihyponormal operator, we prove that a-Weyl’s theorem holds
for f(T ), provided that f is a regular function in a neighbourhood of σ(T )
and f is not constant on the connected components of its domain. This
problem for Weyl’s theorem and hyponormal operators is partially pro-
posed in [10] and solved in [9]. A general solution for Weyl’s theorem may
be found in [15].

The next lemma is proved in the Erovenko’s paper [4].

Lemma 5.1. Let T be a quasihyponormal operator on H. If λ ∈
C\{0}, then α(T − λI) ≤ α(T − λI)∗. If α(T ) < ∞ or β(T ) < ∞, then
α(T ) ≤ α(T ∗).

If f is an arbitrary regular function in a neighbourhood of σ(T ), then
it is well-known that σea(f(T )) ⊂ f(σea(T )) [12]. This inclusion may be
proper even if f is a polynomial [11]. For the class of quasihyponormal
operators we have the more precise result.

We use the notation Φ+(T ) = {λ ∈ C : λI − T ∈ Φ+(X)}. Recall the
notation [14]

S+(X) = {T ∈ B(X) : i(λI − T ) ≤ 0 for all λ ∈ Φ+(T ),

or i(λI − T ) ≥ 0 for all λ ∈ Φ+(T )}.

Theorem 5.2. If T ∗ is a quasihyponormal operator, f ∈ Hol(T ), then

σea(f(T )) = f(σea(T )).

Proof. If T ∗ is quasihyponormal, λ ∈ C and λI − T ∈ Φ+(X), then
i(λI − T ) ≥ 0, by Lemma 5.1. From [14, Theorem 2] it follows that

σea(f(T )) = f(σea(T ))

for all f ∈ Hol(T ), since T ∈ S+(X). ¤
Also, we shall use the next result (see [2]).
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Theorem 5.3. If T ∗ is quasihyponormal, then a-Weyl’s theorem holds

for T .

The next theorem is a generalization of the Oberai’s theorem [10].

Theorem 5.4. Let T be a-isoloid and let T obey a-Weyl’s theorem. If

f ∈ Hol(T ), then f(T ) obeys a-Weyl’s theorem if and only if f(σea(T )) =
σea(f(T )).

Proof. We shall use Theorem 4.4 assuming that the regularity R is
the set of all operators on H, which are one-to-one with closed range. Now
the proof follows from

f(σa(T )\πa0(T )) = σa(f(T ))\πa0(f(T )). ¤

Now, the next statement is expected.

Theorem 5.5. If T ∗ is quasihyponormal, then T is a-isoloid.

Proof. Suppose that λ ∈ iso σa(T ). Then there exists a number
ε > 0, such that for all µ ∈ C, if 0 < |λ− µ| < ε then α(T − µI) = 0 and
R(T − µI) is closed. By Lemma 5.1 it follows that α(T − µI)∗ = 0, so
T −µI and (T −µI)∗ are invertible. It follows that λ is an isolated point of
σ(T ∗). It is well-known that the quasihyponormal operator T ∗ is isoloid,
i.e. all isolated points of σ(T ∗) are eigenvalues of T ∗ (see the comment in
[4, Teorema 5). We get that 0 < α(T − λI)∗ ≤ α(T − λI), so λ is an
eigenvalue of T . ¤

We are able to prove the following general result.

Theorem 5.6. Let T ∈ B(X) be a-isoloid and let T obey a-Weyl’s

theorem. Then the following assertions are equivalent:

(1) T ∈ S+(X);

(2) for each f ∈ Hol(T ) a-Weyl’s theorem holds for f(T );

(3) for each non-constant polynomial p a-Weyl’s theorem holds for p(T ).

Proof. (1) =⇒ (2) Let T ∈ S+(X). In [14, Theorem 2] it is proved
that σea(f(T )) = f(σea(T )) for all f ∈ Hol(T ). From Theorem 4.4 we
get σa(f(T )) \ πa0(f(T )) = f(σa(T ) \ πa0(T )) for all f ∈ Hol(T ). Since
a-Weyl’s theorem holds for T , it follows that a-Weyl’s theorem holds for
f(T ) for all f ∈ Hol(T ).
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(2) =⇒ (3) Obvious.
(3) =⇒ (1) Suppose that T /∈ S+(X). In [14, Theorem 2] Schmoeger

constructed a non-constant polynomial p, such that σea(p(T )) 6= p(σea(T )).
From Theorem 4.4 we still have σa(p(T )) \πa0(p(T )) = p(σa(T ) \πa0(T )).
Since a-Weyl’s theorem holds for T , it follows that a-Weyl’s theorem does
not hold for p(T ). ¤

The analogous result for Weyl’s theorem is considered in [15, Theo-
rem 1].

Now, the next statement is very general and considered in [9], [10],
[15].

Corollary 5.7. If T ∗ is a quasihyponormal operator, f is a regular

function in a neighbourhood of σ(T ) and f is not constant on the connected

components of its domain, then a-Weyl’s theorem holds for f(T ).

Proof. This proof follows from Theorems 5.2–5.6. ¤
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