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On an Einstein structure
on the tangent bundle of a space form

By N. PAPAGHIUC (Iaşi)

Abstract. It is studied the existence of an Einstein structure on the tangent
bundle of a space form, endowed with a certain Riemannian metric G which is no
longer a metric of Sasaki type. It is obtained that, if (M, g) is an n-dimensional space
form, then (TM, G) is an Einstein manifold if and only if n = 2 and the almost Kaehler
structure naturally defined on TM , is a Kaehler structure (see [15]). Moreover, the
obtained Einstein manifold (TM, G) is Ricci flat.

Introduction

It is known (see [2], [7], [18]) that the tangent bundle TM of an n-
dimensional Riemannian manifold (M, g) can be organized as an almost
Kaehlerian manifold by using the Sasaki metric and an almost complex
structure defined by the splitting of the tangent bundle to TM into the
vertical and horizontal distributions V TM, HTM (the last one being de-
termined by the Levi Civita connection on M) (see also [16], [17]). How-
ever, this structure is Kaehler only in the case where the base manifold is
locally Euclidean.

In [14] V. Oproiu and the present author, inspired by an idea of Ca-

labi (see [1]) to define a hyper-Kaehler structure on the cotangent bundle
of a Kaehler manifold of positive constant holomorphic sectional curvature,
have considered a Lagrangian on a Riemannian manifold (M, g), defined by
a real valued smooth function depending on the energy density only. They
have shown that the nonlinear connection defined by the Euler–Lagrange
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equations associated to the considered Lagrangian does coincide with the
nonlinear connection defined by the Levi Civita connection of g and have
obtained a Riemannian metric G and an almost complex structure J , de-
fined on TM , such that (TM, J,G) is an almost Kaehler manifold (like
in the case of the Sasaki metric). Further, if (M, g) has positive constant
curvature, then there exists a Lagrangian defined on the bundle of nonzero
tangent vectors T0M , such that (T0M, J,G) is Kaehlerian. Remark that
(T0M, J,G) cannot be an Einstein manifold.

In [11], V. Oproiu is interested in finding a Kaehler Einstein structure
on the tangent bundle of a space form. In this purpose, he has changed
the metric G on the tangent bundle (so that it is no longer obtained from
a Lagrangian) in the following way. Let t be the energy density defined
on TM by the Riemannian metric g on M :

t =
1
2
gij(x)yiyj .

Then V. Oproiu considers the symmetric M -tensor field of type (0, 2)
on TM defined by the components

G̃ij = u(t) gij + v(t) g0ig0j ,

where g0i = gkiy
k and u, v : [0,∞) −→ R are smooth real valued functions

depending on t only such that u(t) > 0, u(t) + 2tv(t) > 0 for all t ∈
[0,∞). The matrix (G̃ij) is symmetric and positive definite and has the
inverse with the entries H̃kl = 1

ugkl − v
u(u+2tv)y

kyl, where gkl are the
components of the inverse of the matrix (gij). Next, V. Oproiu considers
the Riemannian metric G̃ on TM defined by

G̃ = G̃ijdxidxj + H̃ij∇̇yi∇̇yj ,

where H̃ij = gikH̃klglj and ∇̇yi = dyi + Γi
j0dxj is the absolute differential

of yi with respect to the Levi Civita connection ∇̇ of g. He defines also
an almost complex structure J on TM , related to the considered metric G̃

and determines the expressions for the functions u, v in order to obtain a
Kaehler Einstein structure on TM . He obtains in fact, a Kaehler Einstein
structure on TM with constant holomorphic sectional curvature in the
case where (M, g) has constant (negative) sectional curvature.
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Remark that in [11], the author excludes three important cases which
appeared, in a certain sense, as singular cases. One of them is the case
where the metric on TM is obtained from a regular Lagrangian depending
on the energy density (in this case v(t) is the derivative of u(t)). This
case has been studied by V. Oproiu and the present author in [14]. The
second special case is the case where u(t) = 1, obtaining v = −c, where c is
the constant sectional curvature of the Riemannian manifold (M, g). This
case has been studied by V. Oproiu in [10] and he obtains that in this
case the found Kaehler Einstein structure on TM is locally symmetric.

In [15] we have studied the third singular case which appeared in [11],
namely, the case where u(t) is a smooth real valued function such that
u(t) > 0 for all t ∈ [0,∞) and v(t) = 0. We have obtained a Kaehler
structure on the tangent bundle TM if and only if (M, g) has positive
constant sectional curvature c and the function u(t) is given by u(t) =√

2ct + A, where A is an arbitrary positive real constant. This Kaehler
structure is Ricci flat if n = 2 but, generally, it is not an Einstein structure.

The purpose of the present paper is to obtain the necessary and suf-
ficient conditions in order to the Riemannian manifold (TM, G) to be an
Einstein manifold, where G is defined as in above third singular case. The
main result is given by: If (M, g) is a space form, then (TM,G) is an
Einstein manifold if and only if n = 2, M has positive sectional curva-
ture c and the function u(t) is defined by u(t) =

√
2ct + A, where A is an

arbitrary positive real constant, i.e., if and only if n = 2 and the almost
Kaehler manifold (TM, J,G) is a Kaehler manifold, where the almost com-
plex structure J , related to the considered metric G, is naturally defined
on TM . Moreover, in this case, the Einstein manifold (TM, G) is Ricci
flat. Similar results are also obtained for some tubes in TM defined in the
situations c < 0, A > 0 and respectively c > 0, A ≤ 0.

The manifolds, tensor fields and geometric objects we consider in this
paper, are assumed to be differentiable of class C∞ (i.e. smooth). We
use the computations in local coordinates in a fixed local chart, but many
results from this paper may be expressed in an invariant form. The well
known summation convention is used throughout this paper, the range for
the indices i, j, k, l, h, s, r being always{1, . . . , n} (see [4], [3], [12], [13]).
We shall denote by Γ(TM) the module of smooth vector fields on TM .
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1. A Kaehler structure on the tangent bundle

Let (M, g) be a smooth n-dimensional Riemannian manifold, n > 1,
and denote its tangent bundle by τ : TM−→M . Recall that TM has
a structure of 2n-dimensional smooth manifold induced from the smooth
manifold structure of M . A local chart (U,ϕ) = (U, x1, . . . , xn) on M in-
duces a local chart (τ−1(U), Φ) = (τ−1(U), x1, . . . , xn, y1, . . . , yn) on TM

where the local coordinates xi, yi; i = 1, . . . , n are defined as follows. The
first n local coordinates xi = xi◦τ ; i = 1, . . . , n on TM are the local coor-
dinates in the local chart (U,ϕ) of the base point of a tangent vector from
τ−1(U). The last n local coordinates yi; i = 1, . . . , n are the vector space
coordinates of the same tangent vector, with respect to the natural local
basis in the corresponding tangent space, defined by the local chart (U,ϕ).

This special structure of TM allows us to introduce the notion of
M -tensor field on it (see [5]). An M -tensor field of type (p, q) on TM is
defined by sets of functions

T
i1...ip

j1...jq
(x, y); i1, . . . , ip, j1, . . . , jq = 1, . . . , n

assigned to any induced local chart (τ−1(U), Φ) on TM , such that the
change rule is that of the components of a tensor field of type (p, q) on
the base manifold, when a change of local charts on the base manifold is
performed. Remark that any M -tensor field on TM may be thought of as
an ordinary tensor field T with the expression

T = T
i1...ip

j1...jq

∂

∂yi1
⊗ · · ·⊗ ∂

∂yip
⊗dxj1⊗ · · ·⊗dxjq .

Remark also that any ordinary tensor field on the base manifold may be
thought of as an M -tensor field on TM , having the same type and with
the components in the induced local chart on TM , equal to the local
coordinate components of the given tensor field in the chosen local chart
on the base manifold. In the case of a covariant tensor field on the base
manifold M the corresponding M -tensor field on the tangent bundle TM

may be thought of as the pullback of the initial tensor field defined on the
base manifold, by the smooth submersion τ : TM−→M .

The tangent bundle TM of a Riemannian manifold (M, g) can be
organized as a Riemannian or a pseudo-Riemannian manifold in many
ways. The most known such structures are given by the Sasaki metric
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on TM defined by g (see [16], [2]) and the complete lift type pseudo-
Riemannian metric defined by g (see [17], [18], [8], [9]). Recall that the
Levi Civita connection ∇̇ of g defines a direct sum decomposition

(1) TTM = V TM⊕HTM

of the tangent bundle to TM into the vertical distribution V TM = Ker τ∗
and the horizontal distribution HTM . The vector fields ( ∂

∂y1 , . . . , ∂
∂yn )

define a local frame field for V TM and for HTM we have the local frame
field ( δ

δx1 , . . . , δ
δxn ) where

δ

δxi
=

∂

∂xi
− Γh

i0

∂

∂yh
; Γh

i0 = Γh
ikyk

and Γh
ik(x) are the Christoffel symbols defined by the Riemannian metric g.

The distributions V TM and HTM are isomorphic each other and it is
possible to derive an almost complex structure on TM which, together with
the Sasaki metric, determines a structure of almost Kaehlerian manifold
on TM (see [2]).

Consider now the energy density:

(2) t =
1
2
gik(x)yiyk

defined on TM by the Riemannian metric g of M , where gik are the
components of g in the local chart (U,ϕ). Let u : [0,∞) −→ R be a
real smooth function such that u(t) > 0 for all t ∈ [0,∞). Then we
may consider the following symmetric M -tensor field of type (0,2) on TM ,
defined by the components (see [15]):

Gij = u(t)gij .

The matrix (Gij) is symmetric and positive definite and has the inverse
with the entries

Gkl =
1
u

gkl,

where gkl are the componets of the inverse of the matrix (gij). The com-
ponents Gkl(x, y) define a symmetric M -tensor field of type (2, 0) on TM .
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We shall use also the components Hij(x, y) of a symmetric M -tensor field
of type (0, 2) on TM defined by the components:

Hij = gikGklglj =
1
u

gij .

The following Riemannian metric may be considered on TM :

(3) G = Gijdxidxj + Hij∇̇yi∇̇yj = ugijdxidxj +
1
u

gij∇̇yi∇̇yj ,

where ∇̇yi = dyi + Γi
j0dxj is the absolute differential of yi with respect to

the Levi Civita connection ∇̇ of g. Equivalently, we have

G

(
δ

δxi
,

δ

δxj

)
= ugij , G

(
∂

∂yi
,

∂

∂yj

)
=

1
u

gij ,

G

(
∂

∂yi
,

δ

δxj

)
= G

(
δ

δxj
,

∂

∂yi

)
= 0.

Remark that HTM, V TM are orthogonal each other with respect to G but
the Riemannian metrics induced from G on HTM, V TM are not the same,
so the considered metric G on TM is no longer a metric of Sasaki type. Re-
mark also that the system of 1-forms (dx1, . . . , dxn, ∇̇y1, . . . , ∇̇yn) defines
a local frame of T ∗TM , dual to the local frame ( δ

δx1 , . . . , δ
δxn , ∂

∂y1 , . . . , ∂
∂yn )

adapted to the direct sum decomposition (1).
An almost complex structure J may be defined on TM by:

(4) J
δ

δxi
= u(t)

∂

∂yi
; J

∂

∂yi
= − 1

u(t)
δ

δxi
.

In [15] we obtain the following results:

Theorem 1. (TM, J,G) is an almost Kaehlerian manifold.

Theorem 2. The almost complex structure J on TM is integrable if
and only if the base manifold (M, g) has constant sectional curvature c
and the function u(t) satisfies the ordinary differential equation

(5) uu′ = c.

From (5) it follows

(6) u(t) =
√

2ct + A,

where A is an arbitrary real constant.
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Theorem 3. Assume that (M, g) has positive constant sectional cur-
vature c and the function u(t) is given by (6) where A > 0. Then we
have:

(a) (TM, J,G) is a Kaehlerian manifold.

(b) If n 6= 2, then the Kaehlerian manifold (TM, J,G) cannot be an Ein-
stein manifold and cannot have constant holomorphic sectional cur-
vature.

(c) If n = 2, then the Kaehlerian manifold (TM, J,G) is Ricci flat.

In the case when (M, g) has negative constant sectional curvature c
and the function u(t) is given by (6) where A > 0, we denote by T1M the
tube around the zero section in TM defined by the conditions:

0 ≤ t < −A

2c
.

Also, in the case when (M, g) has positive constant sectional curvature c
and the function u(t) is given by (6) where A ≤ 0, we denote by T2M the
tube in TM defined by the condition:

t > −A

2c
.

Then, we may state

Theorem 4. (a) Assume that (M, g) has negative constant sectional
curvature c and the function u(t) is given by (6) where A > 0. Then
(T1M, J,G) has a structure of Kaehler manifold.

(b) Assume that (M, g) has positive constant sectional curvature c
and the function u(t) is given by (6) where A ≤ 0. Then (T2M, J,G) has
a structure of Kaehler manifold.

2. The existence of an Einstein structure on (TM, G)

In this section we shall study the necessary and sufficient conditions
in order to the Riemannian manifold (TM, G) to be an Einstein manifold,
assuming that (M, g) is a space form. To do this we need the following well
known formulas for the brackets of the vector fields ∂

∂yi ,
δ

δxi ; i = 1, . . . , n:

(7)
[

∂

∂yi
,

∂

∂yj

]
= 0;

[
∂

∂yi
,

δ

δxj

]
= −Γh

ij

∂

∂yh
;

[
δ

δxi
,

δ

δxj

]
= −Rh

0ij

∂

∂yh
,
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where Rh
0ij = Rh

kijy
k and Rh

kij are the local coordinate components of the
curvature tensor field of ∇̇ on M . Also, we shall denote δi

0 = δi
jy

j = yi

and Rh
i0j = Rh

ikjy
k.

In the following we determine the Levi Civita connection ∇ of the
Riemannian metric G on TM , where G is defined by (3). Recall that the
Levi Civita connection∇ on the Riemannian manifold (TM, G) is obtained
from the formula

2G(∇XY, Z) = X(G(Y, Z)) + Y (G(X, Z))− Z(G(X,Y ))

+G([X, Y ], Z)−G([X,Z], Y )−G([Y,Z], X); ∀X, Y, Z ∈ Γ(TM).

We shall use this formula in order to obtain the expression of the Levi
Civita connection ∇ on TM , determined by the conditions

∇G = 0, T = 0,

where T is the torsion tensor of ∇ [3].

Proposition 5. The Levi Civita connection ∇ of the Riemannian
manifold (TM, G) has the following expression in the local adapted frame
( ∂

∂yi ,
δ

δxi ):

∇ ∂
∂yi

∂

∂yj
= Qh

ij

∂

∂yh
; ∇ δ

δxi

∂

∂yj
= Γh

ij

∂

∂yh
+ Ph

ji

δ

δxh
;

∇ ∂
∂yi

δ

δxj
= Ph

ij

δ

δxh
; ∇ δ

δxi

δ

δxj
= Γh

ij

δ

δxh
+ Sh

ij

∂

∂yh
,

where the M -tensor fields Ph
ij , Q

h
ij , S

h
ij are given by:

Ph
ij =

1
2u2

(uu′g0iδ
h
j + Rh

j0i);

Qh
ij =

u′

2u
(gijy

h − g0iδ
h
j − g0jδ

h
i );

Sh
ij = −1

2
(Rh

0ij + uu′gijy
h),

and where g0i = gkiy
k.

Denote by K the curvature tensor field of the Levi Civita connection∇
of the Riemannian metric G on TM . Then we get by a straightforward
computation
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Proposition 6. The local coordinate expression of the curvature ten-

sor field K of the Riemannian manifold (TM, G) is given in the adapted

local frame ( ∂
∂yi ,

δ
δxi ) by

K

(
∂

∂yi
,

∂

∂yj

)
∂

∂yk
=

[
2uu′ − t(u′)2

2u2
(gjkδh

i − gikδh
j )

+
2uu′′ − (u′)2

4u2
(g0igjkyh − g0jgikyh + g0jg0kδh

i − g0ig0kδh
j )

]
∂

∂yh
;

K

(
∂

∂yi
,

∂

∂yj

)
δ

δxk
=

[
1
u2

Rh
kij +

u′

u3
(g0jR

h
k0i − g0iR

h
k0j)

+
1

4u4
(Rh

l0iR
l
k0j −Rh

l0jR
l
k0i)

]
δ

δxh
;

K

(
∂

∂yi
,

δ

δxj

)
∂

∂yk
=

[
1

2u2
Rh

jik +
uu′ − (u′)2t

2u2
gikδh

j

+
2uu′′ + (u′)2

4u2
g0ig0kδh

j −
u′

2u3
g0iR

h
j0k +

u′

2u3
g0kRh

j0i

+
1

4u4
Rh

l0iR
l
j0k

]
δ

δxh
;

K

(
∂

∂yi
,

δ

δxj

)
δ

δxk
= −1

2

[
Rh

ijk − (t(u′)2 − uu′)gjkδh
i

+
(u′)2 + 2uu′′

2
g0igjkyh +

u′

2u
gilR

l
0jkyh − u′

u
g0iR

h
0jk

− u′

2u
gjlR

l
k0iy

h − 1
2u2

Rh
0jlR

l
k0i

]
∂

∂yh
;

K

(
δ

δxi
,

δ

δxj

)
∂

∂yk
=

[
Rh

kij −
u′

u
g0kRh

0ij +
u′

2u
gklR

l
0ijy

h − u′

4u
gilR

l
j0kyh

+
u′

4u
gjlR

l
i0kyh +

1
4u2

Rh
0jlR

l
i0k −

1
4u2

Rh
0ilR

l
j0k

]
∂

∂yh
;
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K

(
δ

δxi
,

δ

δxj

)
δ

δxk
=

[
Rh

kij +
1

4u2
(2Rh

k0lR
l
0ij −Rh

i0lR
l
0jk + Rh

j0lR
l
0ik)

− t(u′)2

2
(gjkδh

i − gikδh
j )

]
δ

δxh
.

From the above formulas, we get by a straightforward computation
that the local coordinate expression of the Ricci tensor S(Y, Z) = trace
(X −→ K(X, Y )Z) in the local frame adapted to the direct sum decom-
position (1) is given by

S

(
∂

∂yi
,

∂

∂yj

)
=

(n− 2)uu′ + 2tuu′′

2u2
gij − (n− 1)(u′)2 + 2uu′′

2u2
g0ig0j

− 1
4u4

Rk
l0iR

l
k0j ;

S

(
δ

δxi
,

δ

δxj

)
= −nuu′ + 2tuu′′

2
gij + Rij +

1
4u2

(Rk
j0lR

l
0ki + Rk

i0lR
l
0kj);

S

(
∂

∂yi
,

δ

δxj

)
= 0;

where Rij denote the local coordinate components of the Ricci tensor field
on the Riemannian manifold (M, g).

In the following we assume that (M, g) has constant sectional curva-
ture c 6= 0. Then, from the above formulas, we get that the local coordinate
expression of the Ricci tensor S on (TM, G) is given by

S

(
∂

∂yi
,

∂

∂yj

)
=

[
(n− 2)uu′ + 2tuu′′

2u2
+

tc2

u4

]
gij

−
[
(n− 1)(u′)2 + 2uu′′

2u2
+

c2

2u4

]
g0ig0j ;

S

(
δ

δxi
,

δ

δxj

)
=

[
(n− 1)c− nuu′ + 2tuu′′

2
− c2t

u2

]
gij − (n− 2)c2

2u2
g0ig0j ;

S

(
∂

∂yi
,

δ

δxj

)
= 0.

Comparing the obtained expressions of the Ricci tensor with the expres-
sions of the components of G, we get that the necessary conditions in
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order to the Riemannian manifold (TM,G) to be an Einstein manifold,
assuming that (M, g) has constant sectional curvature c, are given by:

(i) n = 2 and

(ii) the function u(t) satisfies the ordinary differential equation

(8) 2u3u′′ + u2(u′)2 + c2 = 0.

By taking into account of the above conditions (i) and (ii), we obtain that
the local coordinate expression of the Ricci tensor S on (TM,G) becomes:

(9)





S

(
∂

∂yi
,

∂

∂yj

)
=

t(u3u′′ + c2)
u3

G

(
∂

∂yi
,

∂

∂yj

)
,

S

(
δ

δxi
,

δ

δxj

)
=

cu2 − u3u′ − tu3u′′ − c2t

u3
G

(
δ

δxi
,

δ

δxj

)
,

S

(
∂

∂yi
,

δ

δxj

)
= 0.

From (9) it follows that, if n = 2 and (M, g) has constant sectional cur-
vature c, then the Riemannian manifold (TM,G) is an Einstein manifold
if and only if the function u(t) satisfies both the differential equations (8)
and

(10) 2tu3u′′ + u3u′ − cu2 + 2tc2 = 0.

Eliminating 2u3u′′ from (8) and (10), we obtain that, if n = 2 and (M, g)
has constant sectional curvature c, then the Riemannian manifold (TM,G)
is an Einstein manifold only if the function u(t) satisfies the relation

(uu′ − c)(tuu′ − u2 + ct) = 0,

i.e. u(t) is a solution of one from the following two differential equations:

uu′ = c(11)

tuu′ − u2 + ct = 0.(12)

From (11), by imposing the condition u(t) > 0, ∀t ≥ 0, i.e. for G to be a
Riemannian metric on TM , it follows c > 0 and then it can be checked
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easily that the general solution u(t) =
√

2ct + A of the differential equa-
tion (11), where A is an arbitrary positive real constant, satisfies also both
the differential equations (8) and (10).

Next, we get that the general solution of the differential equation (12)
is given by

(13) u(t) =
√

Bt2 + 2ct

where B is an arbitrary real constant. It is easy to check that the function
u(t) defined by (13), where B 6= 0, does not satisfy the differential equa-
tions (8) and (10). Remark that for B = 0, from (13) we have u =

√
2ct,

c > 0, and in this case u(t) is also a particular solution of the differential
equation (11) (obtained for A = 0). In this case it follows that G is a
Riemannian metric only on the manifold T0M = the tangent bundle to
M minus the zero section.

Hence, we state

Theorem 7. Let (M, g) be an n-dimensional space form of sectional

curvature c 6= 0. Then the Riemannian manifold (TM, G) is an Einstein

manifold if and only if the following conditions are satisfied:

(i) n = 2,

(ii) c > 0,

(iii) u(t) =
√

2ct + A, where A is a positive real constant.

Moreover, in this case, the Einstein manifold (TM, G) is Ricci flat.

From Theorem 3 and Theorem 7, we also have

Corollary 8. Let (M, g) be an n-dimensional space form of sectional

curvature c 6= 0. Then the Riemannian manifold (TM, G) is an Einstein

manifold if and only if n = 2 and the almost Kaehler manifold (TM, J,G)
is a Kaehler manifold.

Remark. Similar results are also valid for the Riemannian manifolds
(T1M, G) and (T2M, G) where T1M and T2M are defined at the end of
section 1, analysing the situations when c < 0, A > 0 and respectively
c > 0, A ≤ 0.
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