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On the embeddability of a homeomorphism
of the unit circle

in disjoint iteration groups

By KRZYSZTOF CIEPLIŃSKI (Kraków)

Abstract. In this note the problem of the embeddability of a homeomorphism
F of the unit circle in disjoint iteration groups is studied. For F with an irrational
rotation number a result concerning embeddability of F in an arbitrary iteration group
is proved as a simple consequence of the obtained theorems.

1. Introduction

Let S1 = {z ∈ C : |z| = 1} be the unit circle with positive orientation
and F : S1 7→ S1 be a homeomorphism.

A family {F t, t ∈ R} of homeomorphisms F t : S1 7→ S1 such that

F s ◦ F t = F s+t, s, t ∈ R

is said to be a flow or an iteration group.
A homeomorphism F is said to be embeddable in an iteration group

if there exists an iteration group {F t, t ∈ R} such that F 1 = F . Then we
will say that {F t, t ∈ R} is an iteration group of F .

An iteration group {F t, t ∈ R} is said to be continuous if for every
z ∈ S1 the mapping t 7→ F t(z) is continuous.

An iteration group {F t, t ∈ R} such that for every t ∈ R the following
condition holds: if F t has a fixed point, then F t = id is said to be disjoint
(see [1] and also [4]).
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According to Corollary 1 in [3], we get

Remark 1. Every continuous iteration group {F t, t ∈ R} such that at
least one F t has not fixed points is disjoint. Thus, if a homeomorphism F

without fixed points is embeddable in a continuous iteration group, then
it is embeddable in a disjoint iteration group.

In [3] M. C. Zdun has proved a necessary and sufficient condition for
the embeddability of a homeomorphism F of the unit circle in a continuous
iteration group and he has given the general construction of all continuous
iteration groups {F t, t ∈ R} such that F 1 = F . This note deals with
disjoint iteration groups.

Theorem 1 states that a homeomorphism F : S1 7→ S1 can always be
embedded in such an iteration group whenever the rotation number of F

is rational and one of its iterates equals identity. For F with an irrational
rotation number two cases are considered. The required embedding of F

is always possible if the limit set of F , which will be denoted by LF , is
equal to the whole circle S1. In this case the general form of all disjoint
iteration groups of F is also obtained (Theorem 2). Theorem 3 shows that
the embeddability of F with a nowhere dense limit set is equivalent to the
existence of a sequence of non-negative integers satisfying some additional
conditions. The proof of the theorem contains the general construction of
all disjoint iteration groups of F . The paper is concluded with Theorem 4
which states that a homeomorphism F with an irrational rotation number
is embeddable in an iteration group if and only if F is embeddable in a
disjoint iteration group.

Throughout the paper the closure of the set A will be denoted by cl A
and we write Ad for the set of all cluster points of A. ∼ p stands for the
negation of p.

2. Preliminaries

Following [1] we introduce some notations and definitions.
Let π̃ : R 3 t 7→ e2πit ∈ S1 and π := π̃|[0,1). The function π is a

continuous bijection. Thus, if v, w, z ∈ S1, then there exist unique t1, t2 ∈
[0, 1) such that wπ(t1) = z and wπ(t2) = v. Define

v ≺ w ≺ z if and only if 0 < t1 < t2
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and
v ¹ w ¹ z if and only if t1 ≤ t2 or t2 = 0.

Now we give some useful characterizations and properties of “≺”
and “¹”.

Remark 2. Let v, w, z ∈ S1. If v ≺ w ≺ z, then v 6= w, w 6= z, v 6= z.

If v, z ∈ S1, v 6= z, then there exist tv, tz ∈ R such that tv < tz < tv+1
and v = π̃(tv), z = π̃(tz). Put

−−−→
(v, z) := {π̃(t), t ∈ (tv, tz)}.

It is clear that
−−−→
(v, z) does not depend on the choice of tv and tz.

The straightforward proofs of the following three lemmas are omitted.

Lemma 1. Let v, w, z ∈ S1. v ≺ w ≺ z if and only if w ∈ −−−→(v, z).

Lemma 2. For every v, w, z ∈ S1 the following conditions are equiva-
lent:

(i) v ≺ w ≺ z,

(ii) w ≺ z ≺ v,

(iii) z ≺ v ≺ w.

Lemma 3. For every v, w, z ∈ S1 the following conditions are equiva-
lent:

(i) ∼ (v ≺ w ≺ z),
(ii) v = w or w = z or v = z or z ≺ w ≺ v,

(iii) z ¹ w ¹ v.

As an immediate consequence of Lemmas 3 and 2 we have

Remark 3. For every v, w, z ∈ S1 the following conditions are equiva-
lent:

(i) v ¹ w ¹ z,
(ii) w ¹ z ¹ v,
(iii) z ¹ v ¹ w.

Let A ⊂ S1 be such that card A ≥ 3. We say that the function
ϕ : A 7→ S1 is increasing (respectively, strictly increasing) if for every v,
w, z belonging to A such that v ≺ w ≺ z we have ϕ(v) ¹ ϕ(w) ¹ ϕ(z)
(respectively, ϕ(v) ≺ ϕ(w) ≺ ϕ(z)). According to Lemma 1, the map ϕ is
strictly increasing if w ∈ −−−→(v, z) yields ϕ(w) ∈ −−−−−−−−→(ϕ(v), ϕ(z)).
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By Remark 2 we get

Remark 4. Every strictly increasing mapping is an injection.

A subset A ⊂ S1 is said to be an open arc if there exist v, z ∈ S1, v 6= z

such that A =
−−−→
(v, z) = {π̃(t), t ∈ (tv, tz)}, where π̃(tv) = v, π̃(tz) = z and

0 < tz− tv < 1, that is, in the notation of “≺”, A = {w ∈ S1 : v ≺ w ≺ z}.
Let us note that such a subset is non-empty, different from S1, open and
connected.

It is a simple matter to show that strictly increasing mappings have
the following property

Lemma 4. Every strictly increasing function G : S1 7→ S1 such that

the image of G is a dense subset of S1 is continuous.

Let A :=
−−−→
(v, z), where v = π̃(tv), z = π̃(tz), 0 < tz−tv < 1, be an open

arc. The mapping F : A 7→ S1 is said to be linear if F (e2πix) = e2πi(ax+b)

for some a > 0, b ∈ R and every x ∈ (tv, tz).
It is known (see for instance [2]) that for every homeomorphism F :

S1 7→ S1 there exists a homeomorphism f : R 7→ R such that

F ◦ π̃ = π̃ ◦ f

and

f(x + 1) = f(x) + 1, if f is strictly increasing

and

f(x + 1) = f(x)− 1, if f is strictly decreasing.

We will say that the function f represents the homeomorphism F . If f1

and f2 represent the same homeomorphism, then f1 = f2 + k for a k ∈ Z.
If f is strictly increasing we will say that the homeomorphism F preserves
orientation.

M. Bajger has proved that every orientation-preserving homeomor-
phism is strictly increasing (see [1]). It is easy to check that the converse
statement is also true, so we have

Remark 5. A homeomorphism F : S1 7→ S1 preserves orientation if
and only if F is strictly increasing.

It is easily seen that for every homeomorphism F : A 7→ B, where
A and B are open arcs, say A = {π̃(t), t ∈ (a, b)}, B = {π̃(t), t ∈
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(c, d)} there exists a unique homeomorphism f : (a, b) 7→ (c, d) such that
(F ◦ π̃)(x) = (π̃ ◦ f)(x) for x ∈ (a, b). We will say that the function f

represents the homeomorphism F and if f is strictly increasing, then we
will say that F preserves orientation.

The following lemma is easy to check

Lemma 5 (see also Lemma 4 in [3]). Suppose that either A, B, C

are open arcs or A = B = C = S1. If f represents a homeomorphism

F : A 7→ B and g represents a homeomorphism G : B 7→ C, then

(i) g ◦ f represents G ◦ F ,

(ii) f−1 represents F−1.

Let us note that if {F t, t ∈ R} is an iteration group, then for every
t ∈ R, F t = F

t
2 ◦ F

t
2 , so every homeomorphism F t preserves orienta-

tion. Thus, if F is embeddable in an iteration group, then it preserves
orientation.

If F : S1 7→ S1 is an orientation-preserving homeomorphism repre-
sented by a function f then the number α(F ) ∈ [0, 1) defined by

α(F ) := lim
n→∞

fn(x)
n

(mod 1), x ∈ R

is said to be the rotation number of F . This limit always exists and
does not depend on x and f . Moreover, α(F ) is rational if and only if
Fn(z0) = z0 for a z0 ∈ S1 and an n ∈ Z \ {0} (see [2]).

3. Main results

We begin with the case when F is an orientation-preserving homeo-
morphism such that α(F ) ∈ Q. Let us note that if such an F is embeddable
in a disjoint iteration group, then

(1) Fn(z) = z for an n ∈ Z \ {0} and every z ∈ S1.

Theorem 1. Every orientation-preserving homeomorphism F fulfill-

ing (1) is embeddable in a disjoint iteration group.

Proof. Let n ∈ N, which we may assume, be the smallest number
satisfying (1). If n = 1, then putting F t = id, t ∈ R we get the desired
iteration group. Suppose now that n > 1. Set g(x) := x+1, x ∈ R and let
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a homeomorphism f : R 7→ R representing F be such that 0 < f(0) < 1.
Note that f ◦ g = g ◦ f and f and g have no fixed points. By Lemma 6
in [3], g0 < f < g1 and there exists an m ∈ N such that fn = gm. In
[4] it is proved that for such homeomorphisms there exist infinitely many
disjoint iteration groups {f t, t ∈ R} of homeomorphisms f t : R 7→ R
such that f1 = f and g = fs for an s ∈ R. Since g ∈ {f t, t ∈ R},
f t ◦ g = g ◦ f t for all t ∈ R and the functions F t(π̃(x)) := π̃(f t(x)),
t, x ∈ R are homeomorphisms. Obviously, {F t, t ∈ R} is an iteration
group such that F 1 = F . What is left is to show that this iteration group
is disjoint. Let t ∈ R and z0 = π̃(x0) ∈ S1 be such that F t(z0) = z0,
that is π̃(x0) = F t(π̃(x0)) = π̃(f t(x0)). Hence there exists a k ∈ Z such
that f t(x0) = x0 + k = gk(x0). Thus f t = gk, since f t, gk belong to the
iteration group {f t, t ∈ R}, which is disjoint. This clearly forces F t = id.

¤

From now on we assume that F is an orientation-preserving homeo-
morphism with the irrational rotation number α(F ).

Let
CF (z) := {Fn(z), n ∈ Z}, z ∈ S1.

The set LF := CF (z)d does not depend on z, is invariant with respect to
F (that is F [LF ] = LF ) and either LF = S1 or LF is a perfect nowhere
dense subset of S1 (see for instance [2]). In the second case we have the
following unique decomposition

(2) S1 \ LF =
⋃

q∈M

Lq,

where Lq for q ∈ M are open pairwise disjoint arcs and card M = ℵ0.

Lemma 6. If α(F ) /∈ Q, then for every z ∈ LF , LF = cl CF (z).

Proof. It is evident that for every z ∈ LF we have LF = CF (z)d ⊂
clCF (z). Let z ∈ LF . Then Fn(z) ∈ LF for n ∈ Z since F [LF ] = LF .
Thus, CF (z) ⊂ LF and consequently cl CF (z) ⊂ cl LF = LF . ¤

Lemma 7. If α(F ) /∈ Q, then there exists a unique up to a multiplica-

tive constant continuous mapping ϕ from S1 onto S1 such that

(3) ϕ(F (z)) = π(α(F ))ϕ(z), z ∈ S1.
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This map is increasing. Moreover, ϕ is a homeomorphism if and only if
LF = S1.

Proof. It is well-known (see for instance [2]) that there exists a con-
tinuous function ϕ : S1 7→ S1 fulfilling (3), which is a homeomorphism if
and only if LF = S1. This map is defined by

ϕ(z) := π̃(µ(
−−→
[1, z])), z ∈ S1,

where µ is a probability Borel measure on S1 invariant with respect to F

and
−−→
[1, z] :=

−−−→
(1, z)∪ {1, z}. To prove that ϕ is increasing, take v, w, z ∈ S1

such that v ≺ w ≺ z. In view of Lemmas 1, 2 and Remark 3 we may
assume that

−−→
[1, v] ⊂ −−−→

[1, w] ⊂ −−→
[1, z]. This gives 0 ≤ µ(

−−→
[1, v]) ≤ µ(

−−−→
[1, w]) ≤

µ(
−−→
[1, z]) ≤ 1 and, in consequence, ϕ(v) ¹ ϕ(w) ¹ ϕ(z), which is our claim.

Assume now that ϕ1, ϕ2 : S1 7→ S1 are continuous solutions of (3) and set
ψ := ϕ1

ϕ2
. Obviously, ψ is continuous and ψ(F (z)) = ψ(z), z ∈ S1. Hence,

(4) ψ(Fn(z)) = ψ(z), z ∈ S1, n ∈ Z.

Fix z0 ∈ LF , z ∈ S1. By the definition of LF there exists a sequence
{nk}k∈N ⊂ Z such that limk→∞ Fnk(z) = z0. Since ψ is continuous we
have ψ(z0) = limk→∞ ψ(Fnk(z)) and by (4), ψ(z0) = ψ(z). Thus ψ is
constant and consequently ϕ1 = cϕ2 for c = ψ(z0). ¤

For the convenience of the reader we quote, slightly modified, four
lemmas from [1].

Lemma 8 (see [1]). Let {F t, t ∈ R} be an iteration group of F and
α(F ) /∈ Q. Then there exist a continuous increasing function ϕ : S1 7→ S1

and a function c : R 7→ S1 such that

ϕ
(
F t(z)

)
= c(t)ϕ(z), z ∈ S1, t ∈ R,(5)

c(s + t) = c(s)c(t), s, t ∈ R,(6)

ϕ[LF ] = S1(7)

and

(8) c(1) = π(α(F )).

The solution ϕ of (5) is a homeomorphism if and only if LF = S1.
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Lemma 9 (see [1]). Let {F t, t ∈ R} be an iteration group of F ,

α(F ) /∈ Q and LF 6= S1. If ϕ : S1 7→ S1 is a continuous increasing solution

of (5) satisfying (7) with c : R 7→ S1, then:

(a) for every q ∈ M , ϕ is constant on Lq,

(b) if V ⊂ S1 is an open arc and ϕ is constant on V , then V ⊂ Lq for

some q ∈ M ,

(c) if p 6= q, then ϕ[Lp] ∩ ϕ[Lq] = ∅,
(d) for every q ∈ M and every t ∈ R, there exists a p ∈ M such that

F t[Lq] = Lp,

(e) the sets Im c, ϕ[S1 \ LF ] are countable,

(f) ϕ[S1 \ LF ] · Im c = ϕ[S1 \ LF ],
where Lq, q ∈ M are open arcs defined by (2).

Put

Φ(q) := ϕ[Lq], q ∈ M(9)

and

T (q, t) := Φ−1(Φ(q)c(t)), q ∈ M, t ∈ R,(10)

where ϕ : S1 7→ S1 is a continuous solution of (5) with c : R 7→ S1.

Lemma 10 (see [1]). Assume that {F t, t ∈ R} is an iteration group

of F , α(F ) /∈ Q and LF 6= S1. Then there exists a unique disjoint iteration

group {Rt, t ∈ R} on S1 such that

Rt is linear on Lq, q ∈ M, t ∈ R,

Rt[Lq] = LT (q,t), q ∈ M, t ∈ R,

ϕ
(
Rt(z)

)
= c(t)ϕ(z), z ∈ S1, t ∈ R,

where ϕ : S1 7→ S1, c : R 7→ S1 are solutions of (5) such that ϕ is a

continuous increasing function.

The iteration group {Rt, t ∈ R} determined above is said to be the
generating iteration group of {F t, t ∈ R}.
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Lemma 11 (see [1]). Let {F t, t ∈ R} be a disjoint iteration group of

F , α(F ) /∈ Q, LF 6= S1 and {Rt, t ∈ R} be its generating iteration group.

Then there exists an orientation-preserving homeomorphism Γ : S1 7→ S1

such that

Γ ◦ F t = Rt ◦ Γ, t ∈ R
and Γ(z) = z, for all z ∈ LF .

First, consider the case LF = S1.

Theorem 2. Every homeomorphism F : S1 7→ S1 such that α(F ) /∈ Q
and LF = S1 is embeddable in a disjoint iteration group. The general form

of all disjoint iteration groups {F t, t ∈ R} such that F 1 = F is given by

the formula

(11) F t(z) = ϕ−1(c(t)ϕ(z)), z ∈ S1, t ∈ R,

where ϕ : S1 7→ S1 is a homeomorphism fulfilling (6) and c : R 7→ S1 is a

function satisfying conditions (6) and (8).

Proof. It is easy to check that formula (11) with the above-men-
tioned functions ϕ and c defines the desired iteration group. On the
other hand, from Lemma 8 we conclude that every disjoint iteration group
{F t, t ∈ R} such that F 1 = F is of this form. ¤

We now turn to the case LF 6= S1.
Proceeding analogously to the proof of Proposition 2 in [1] we obtain

Lemma 12. Let α(F ) /∈ Q, LF 6= S1 and ϕ : S1 7→ S1 be a continuous

increasing solution of (3). Then conditions (a), (b), (c) hold and

(d’) for every q ∈ M there exists a p ∈ M such that F [Lq] = Lp,

(e’) the set

KF := ϕ
[
S1 \ LF

]

is countable.

It follows by Lemma 7 that for every homeomorphism F with irra-
tional rotation number the set KF is determined uniquely up to a multi-
plicative constant.

Lemmas 8 and 9 show that if a homeomorphism F such that α(F ) /∈ Q
is embeddable in an iteration group, then the set KF has the following
property
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(C) there exists a function c : R 7→ S1 satisfying conditions (6) and (8)
such that card Im c = ℵ0 and

(12) KF · Im c = KF .

Assuming further that KF has this property we define a function Φ
by (9). It follows from Lemma 12 that Φ is a bijection of M onto KF .
According to (12) we may define a map T : M ×R 7→ M by (10). An easy
computation shows that T satisfies the translation equation

(13) T (T (q, s), t) = T (q, s + t), q ∈ M, s, t ∈ R.

At present we will construct some special disjoint iteration group
{P t, t ∈ R}.

Lemma 13. Assume that α(F ) /∈ Q, LF 6= S1 and ϕ : S1 7→ S1 is a

continuous solution of (3). Moreover, let KF has property (C). Then there

exists the unique family {P t, t ∈ R} of continuous functions such that

P t is linear on Lq, q ∈ M, t ∈ R(14)

and

P t[Lq] = LT (q,t), q ∈ M, t ∈ R.(15)

This family is a disjoint iteration group of homeomorphisms.

Proof. Let x0 ∈ [0, 1) be such that π(x0) =: z0 ∈ LF . Put ν(x) :=
π(x)z0, that is ν(x) = π̃(x + x0), x ∈ [0, 1). Setting L′ := ν−1[LF ] ∩ (0, 1)
we have the following decomposition

(0, 1) \ L′ =
⋃

q∈M

L′q,

where L′q := ν−1[Lq], q ∈ M . Since z0 /∈ Lq, q ∈ M , L′q are open intervals.
Moreover, L′q are pairwise disjoint. Let lq,t for q ∈ M , t ∈ R be the unique
strictly increasing linear function such that

(16) lq,t

[
L′q

]
= L′T (q,t).

Define

(17) Bt(z) :=
(
ν ◦ lq,t ◦ ν−1

|Lq

)
(z), z ∈ Lq, t ∈ R.
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Hence, by (16), we have

(18) Bt[Lq] = LT (q,t), q ∈ M, t ∈ R

and, taking in (18) q := T (p,−t) and using (13),

(19) Bt

[
S1 \ LF

]
= S1 \ LF , t ∈ R.

We first prove that Bt : S1 \ LF 7→ S1 \ LF , t ∈ R is strictly increasing.
Indeed, fix t ∈ R, v, w, z ∈ S1\LF such that v ≺ w ≺ z (that is, w ∈ −−−→(v, z))
and consider three cases.

(i) {v, w, z} ⊂ Lq for a q ∈ M .
Let v = ν(tv), w = ν(tw), z = ν(tz). We can certainly assume that
tv, tw, tz ∈ (0, 1), because z0 /∈ Lq. Hence,

ν−1(v) < ν−1(w) < ν−1(z),

and consequently by the fact that lq,t is strictly increasing and (17) we
obtain

Bt(v) ≺ Bt(w) ≺ Bt(z).

(ii) card({v, w, z} ∩ Lq) = 2 for a q ∈ M .
Using Lemma 2 assume, for example, that v, w ∈ Lq, z ∈ Lp for a p ∈ M ,
p 6= q. Take u ∈ Lq such that w ∈ −−−→(v, u). By (i) we get

(20) Bt(w) ∈ −−−−−−−−−→(Bt(v), Bt(u)).

From (18), Bt(u), Bt(v), Bt(w) ∈ LT (q,t), Bt(z) ∈ LT (p,t). Moreover,
T (q, t) 6= T (p, t). Hence and by (20) we obtain

Bt(w) ∈ −−−−−−−−−→(Bt(v), Bt(z)).

(iii) card({v, w, z} ∩ Lq) ≤ 1 for every q ∈ M .
Suppose that v ∈ Lq, w ∈ Lp, z ∈ Lr for p, q, r ∈ M , p 6= q, q 6= r, p 6= r.
Let us note that Lq ≺ Lp ≺ Lr (that is for every v ∈ Lq, w ∈ Lp, z ∈ Lr

we have v ≺ w ≺ z). Using the monotonicity of ϕ and Lemma 12 we get
ϕ[Lq] ≺ ϕ[Lp] ≺ ϕ[Lr]. Thus by (9) and (10) we have

(21) ϕ[LT (q,t)] ≺ ϕ[LT (p,t)] ≺ ϕ[LT (r,t)].
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Suppose that LT (r,t) ¹ LT (p,t) ¹ LT (q,t), that is, by Remark 3, LT (q,t) ¹
LT (r,t) ¹ LT (p,t). Then

ϕ[LT (q,t)] ¹ ϕ[LT (r,t)] ¹ ϕ[LT (p,t)],

which, by Lemma 3 and Remark 3, contradicts (21). Hence, again by
Lemma 3 we have LT (q,t) ≺ LT (p,t) ≺ LT (r,t).

Our next goal is to extent Bt to the monotonic function P t of the
entire circle S1. For this purpose, fix t ∈ R, w ∈ LF and choose a sequence
{wn}n∈N ⊂ S1 \ LF such that

−−−−−→
(w0, wn) ⊂ −−−−→

(w0, w),
−−−−−→
(w0, wn) ⊂ −−−−−−−→

(w0, wn+1), for n ∈ N \ {0}

and ∞⋃
n=1

−−−−−→
(w0, wn) =

−−−−→
(w0, w).

Since Bt : S1 \LF 7→ S1 \LF is strictly increasing,
⋃∞

n=1

−−−−−−−−−−−→
(Bt(w0), Bt(wn))

is an open arc, say
−−−−−−−→
(Bt(w0), a). It is easily seen that a does not depend on

the choice of the sequence {wn}n∈N. Define P t(w) := a and

(22) P t(z) := Bt(z), z ∈ S1 \ LF , t ∈ R.

We will prove that

(23) P t[LF ] ⊂ LF .

Suppose, contrary to our claim, that there exists a w ∈ LF such that
P t(w) ∈ S1 \ LF . Then by (19), Bt(z) = P t(w) for a z ∈ S1 \ LF . Take
v ∈ S1 \ LF such that w /∈ −−−→(v, z) and let {wn}n∈N be the above-described
sequence. Hence

m := card(
−−−→
(v, z) ∩ {wn}n∈N) < ℵ0

and
card

(−−−−−−−−−→
(Bt(v), Bt(z)) ∩ {Bt(wn)}n∈N

)
= m,

since Bt is strictly increasing. This contradicts the fact that

∞⋃
n=1

−−−−−−−−−−−−→
(Bt(w0), Bt(wn)) =

−−−−−−−−−−−→
(Bt(w0), P t(w)) =

−−−−−−−−−−−→
(Bt(w0), Bt(z)).
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Now we shall show that P t are strictly increasing. To do this, take
v, w, z ∈ S1 such that v ≺ z ≺ w and consider three cases:

(i) card({v, w, z} ∩ LF ) = 1.
In view of Lemma 2 we may assume that w ∈ LF . From (22), Remark 4,
(19) and (23) we have

(24) P t(v) 6= P t(z), P t(v) 6= P t(w) and P t(z) 6= P t(w),

since v, z ∈ S1 \ LF , w ∈ LF . Suppose that P t(w) ≺ P t(z) ≺ P t(v), that
is by Lemmas 2 and 1, P t(w) ∈ −−−−−−−−−→(P t(v), P t(z)). Let n ∈ N \ {0} be such
that z ∈ −−−−→

(v, wn) and P t(wn) ∈ −−−−−−−−−−→
(P t(v), P t(w)). Hence, by the fact that−−−−−−−−−−→

(P t(v), P t(w)) ⊂ −−−−−−−−−→
(P t(v), P t(z)) we get P t(wn) ∈ −−−−−−−−−→(P t(v), P t(z)). On the

other hand, P t(z) ∈ −−−−−−−−−−−→
(P t(v), P t(wn)), since z, v, wn ∈ S1 \ LF and P t is

strictly increasing on S1 \ LF . But, in view of Lemmas 1 and 2, this is
impossible. Thus, using Lemma 3 and (24), we infer that P t(v) ≺ P t(z) ≺
P t(w).

(ii) card({v, w, z} ∩ LF ) = 2.
According to Lemma 2 we can assume that z, w ∈ LF . Choose x, y ∈
S1 \ LF such that v ∈ −−−→(w, z) ⊂ −−−→

(x, y). Hence, w ∈ −−−→(x, v), z ∈ −−−→(v, y) and,
by the monotonicity of P t on S1 \ LF , P t(v) ∈ −−−−−−−−−−→(P t(x), P t(y)). By proved
case (i), we obtain P t(w) ∈ −−−−−−−−−−→

(P t(x), P t(v)) and P t(z) ∈ −−−−−−−−−→
(P t(v), P t(y)).

Consequently, P t(v) ∈ −−−−−−−−−−→(P t(w), P t(z)), which, by Lemmas 1 and 2, is our
claim.

(iii) {v, w, z} ⊂ LF .
As in case (ii), choose x, y ∈ S1 \ LF such that v ∈ −−−→

(w, z) ⊂ −−−→
(x, y).

Hence, using proved case (i), P t(v) ∈ −−−−−−−−−−→(P t(x), P t(y)) and, by (ii), P t(w) ∈−−−−−−−−−→
(P t(x),P t(v)) and P t(z)∈−−−−−−−−−→(P t(v),P t(y)). Therefore P t(v)∈−−−−−−−−−−→(P t(w),P t(z)),
which, by Lemmas 1 and 2, is our assertion.

Thus, we have shown that P t is strictly increasing.
Note that by (22) and (18) we get (15). Moreover, (22) and (19) give

S1 \ LF = P t
[
S1 \ LF

] ⊂ P t
[
S1

]
, t ∈ R.

Since LF is a perfect nowhere dense subset of S1, the set P t[S1] is dense
in S1 and Lemma 4 shows that every P t is continuous.
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Fix now q ∈ M , t ∈ R. Let Lq =
−−−→
(v, z), where v = π̃(tv), z = π̃(tz),

0 < tz − tv < 1 and let lq,t(x) = ax + b, x ∈ L′q, where a > 0. Using (22)
and (17) we have

P t (ν(x)) = ν(lq,t(x)), x ∈ L′q.

Putting y := x + x0, we have

P t(e2πiy) = e2πi(ay−ax0+b+x0), y ∈ (tv, tz),

and (14) is proved.
Suppose now that P t, Rt are continuous functions fulfilling (14) and

(15). Then P t(e2πix) = e2πipq,t(x) and Rt(e2πix) = e2πirq,t(x), where
pq,t, rq,t : (tv, tz) 7→ R are strictly increasing linear functions. Hence,
by (15), pq,t = rq,t + k for a k ∈ Z and consequently P t

|Lq
= Rt

|Lq
. As P t,

Rt are continuous functions and S1 \ LF is a dense subset of S1 we have
P t = Rt.

Let us note that

(25) lT (q,s),t ◦ lq,s = lq,t+s, q ∈ M, s, t ∈ R.

In fact, by (16) and (13),
(
lT (q,s),t ◦ lq,s

) [
L′q

]
= lq,t+s

[
L′q

]
, q ∈ M, s, t ∈ R

and (25) follows, since lT (q,s),t ◦ lq,s and lq,t+s are strictly increasing linear
functions. Fix q ∈ M , z ∈ Lq, s, t ∈ R. Using (22), (17), the fact that
P s(z) ∈ LT (q,s) and (25) we obtain

(P t ◦ P s)(z) =
(
Bt ◦ (ν ◦ lq,s ◦ ν−1)

)
(z)

=
(
ν ◦ lT (q,s),t ◦ lq,s ◦ ν−1

)
(z) =

(
ν ◦ lq,s+t ◦ ν−1

)
(z) = P s+t(z).

Hence,

(26) P t ◦ P s = P s+t, s, t ∈ R,

since every P t is continuous and S1 \ LF is dense in S1.
Let ϕ be a continuous solution of (3) and z ∈ S1 \ LF . Then z ∈ Lq

for a q ∈ M and, by (15), P t(z) ∈ LT (q,t). Hence, by Lemma 12, (9) and
(10), we get

ϕ(z) = ϕ[Lq] = Φ(q)
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and
ϕ

(
P t(z)

)
= ϕ

[
LT (q,t)

]
= Φ(T (q, t)) = Φ(q)c(t).

Consequently, by the continuity of ϕ,P t and the density of S1 \ LF in S1,

(27) ϕ
(
P t(z)

)
= ϕ(z)c(t), z ∈ S1, t ∈ R.

The proof is completed by showing that the family {P t, t ∈ R} is a disjoint
iteration group. To do this suppose that P t(v0) = v0 for a v0 ∈ S1 and
a t ∈ R. Then from (27), c(t) = 1 and by (10), T (q, t) = q, q ∈ M .
Consequently, by (15), P t[Lq] = Lq, q ∈ M . Hence, by the linearity
of P t on Lq, P t(z) = z for z ∈ S1 \ LF and further by the continuity
of P t, P t(z) ≡ z for z ∈ S1. Finally, P t are homeomorphisms, since
S1 = P t[P−t[S1]] ⊂ P t[S1] ⊂ S1, (P t)−1 = P−t and P t are continuous for
t ∈ R. ¤

For every sequence {an}n∈N\{0} such that

(28) an ∈ {0, . . . , n− 1}, akn = an (mod n), k, n ∈ N \ {0}

define

As({ak}) :=
{

π̃
(m

n
s +

m

n
an

)
, n ∈ N \ {0}, m ∈ Z

}
, s ∈ R.

With the notation N! := {n!, n ∈ N}, we have

Lemma 14. The general form of all sequences {an}n∈N\{0} fulfilling

(28) is given by taking

a1 := 0,

choosing inductively

an! := a(n−1)! + (n− 1)!kn, kn ∈ {0, . . . , n− 1} for n > 1

and defining

an as the rest from the division an! by n, for n /∈ N! .

The simple proof is omitted.
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Lemma 15. For every s ∈ R and every sequence {an}n∈N\{0} satisfy-
ing (28) there exists a function c : R 7→ S1 such that condition (6) holds,
c(1) = π̃(s) and

Im c = As({ak}).

Proof. Let {an}n∈N\{0} be an arbitrary sequence fulfilling (28). De-
note by H a Hamel basis such that 1 ∈ H. Then every real number t can
be expressed in the form

t =
∑

h∈H

rh(t)h,

where rh(t) ∈ Q and almost every rh(t) = 0. It is evident that the function
r1 : R 7→ Q is additive and r1(1) = 1.

Put

b
(m

n

)
:= π̃

(m

n
s +

m

n
an

)
, n ∈ N \ {0}, m ∈ Z.

Using (28) it is easy to check that

b(x + y) = b(x)b(y), x, y ∈ Q.

A trivial verification shows that the function c : R 7→ S1 given by

c(t) := b(r1(t)), t ∈ R
is such that Im c = As({ak}), c(1) = π̃(s) and condition (6) holds. ¤

Let us recall that for every homeomorphism F such that α(F ) /∈ Q
and LF 6= S1 we have defined the set KF = ϕ[S1 \LF ], where ϕ : S1 7→ S1

is a continuous solution of (3). Since ϕ is unique up to a multiplicative
constant, so is KF .

Theorem 3. Let α(F ) /∈ Q and LF 6= S1. Then the homeomorphism
F is embeddable in a disjoint iteration group if and only if there exists a
sequence {an}n∈N\{0} satisfying (28) and such that

(29) KF ·Aα(F )({ak}) = KF .

Proof. Necessary condition. Let F be embeddable in a disjoint it-
eration group {F t, t ∈ R}. Lemmas 8 and 9 show that KF has property
(C). By (6) we get

(30) c(mt) = c(t)m, m ∈ Z, t ∈ R.
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Let n ∈ N \ {0}. Using (30) we have c(1) = c( 1
n )n, hence by (8) there

exists an an ∈ {0, . . . , n − 1} such that c( 1
n ) = π̃(α(F )

n + an

n ). Since
c( 1

n ) = c( 1
kn )k = π̃(α(F )

n + akn

n ), we see that akn = an (mod n). Thus, the
sequence {an}n∈N\{0} satisfies (28). Using again (30) we obtain c(Q) =
Aα(F )({ak}). Hence, by the fact that 1 ∈ Aα(F )({ak}) and (12),

KF ⊂ KF ·Aα(F )({ak}) ⊂ KF · Im c = KF ,

which gives our assertion.
Sufficient condition. We shall construct a disjoint iteration group

{F t, t ∈ R} such that F 1 = F . To do this we give
The general construction of all disjoint iteration groups {F t, t ∈ R}

such that F 1 = F .

1◦ Let c : R 7→ S1 be a function such that Im c is a countable set and
conditions (6), (8), (12) hold. It follows from our assumption that every
function c : R 7→ S1 fulfilling (6), (8) and such that Im c = Aα(F )({ak})
has this property. Let us note that Lemma 15 ensures the existence of
such a function c.

2◦ Define the function Φ : M 7→ KF by (9), where ϕ : S1 7→ S1 is
a continuous increasing solution of (3) and Lq, q ∈ M are open pairwise
disjoint arcs such that (2) holds. The function T : M × R 7→ M given by
(10) satisfies the translation equation (13).

3◦ Let {P t, t ∈ R} be an iteration group described by Lemma 13. We
can apply this lemma because KF has property (C), which follows from 1◦.

4◦ Define the following relation on M

p ∼ q ⇔ ∃n ∈ Z q = T (p, n).

It is easy to check that “∼” is an equivalence relation. Let A be an arbi-
trary set which has exactly one point in common with every equivalence
class. Put

p̄ := [p] ∩A, p ∈ M.

Fix n, m ∈ Z, p ∈ M . Let us note that

(31) if T (p, n) = T (p,m), then n = m.

Indeed, let T (p, n) = T (p, m). Then we conclude from (10) that c(n) =
c(m), hence using (6) and (8), that π(α(F ))n = π(α(F ))m, and finally,
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that n = m, since α(F ) /∈ Q. By (31), for every p ∈ M there exists exactly
one np ∈ Z such that

(32) p̄ = T (p, np).

5◦ Let Γq : Lq 7→ Lq for q ∈ A be arbitrary orientation-preserving
homeomorphisms. Define

(33) Γ(z) :=
{

(F−np ◦ Γp̄ ◦ Pnp)(z), z ∈ Lp,

z, z ∈ LF .

We will show that

(34) Fn[Lp] = LT (p,n), n ∈ Z, p ∈ M.

Fix p ∈ M . According to Lemma 12 there exists a q ∈ M such that
F [Lp] = Lq. Consequently by (9), (3) and (8) we have

Φ(q) = ϕ[Lq] = ϕ[F [Lp]] = π(α(F ))ϕ[Lp] = c(1)Φ(p)

and (10) now yields F [Lp] = LT (p,1). Hence by induction and (13) we get
(34). Let us observe that by (15), (32), (34) and (13),

(35) Γ[Lp] = Lp for every p ∈ M.

P
np

|Lp
is an orientation-preserving homeomorphism, so Lemma 5 makes it

obvious that for every p ∈ M , Γ|Lp
is an orientation-preserving homeo-

morphism.
We shall prove that Γ is strictly increasing. To do this, take v, w, z ∈

S1 such that w ∈ −−−→(v, z) and consider the following cases

(i) {v, w, z} ⊂ Lq for a q ∈ M .
If we put tv := π−1(v), tw := π−1(w), tz := π−1(z), then tv < tw < tz
or tw < tz < tv or tz < tv < tw. Assume, for instance, that tv < tw <

tz and let fq represent Γ|Lq
. Since Γ|Lq

preserves orientation, fq(tv) <

fq(tw) < fq(tz). Moreover, by (35), fq(tv), fq(tw), fq(tz) ∈ (t1, t2) for
some t1, t2 such that 0 < t2 − t1 < 1. This clearly forces π̃(fq(tw)) ∈−−−−−−−−−−−−−−−→
(π̃(fq(tv)), π̃(fq(tz))) and, in consequence, Γ(w) ∈ −−−−−−−−→(Γ(v), Γ(z)).

(ii) card({v, w, z} ∩ Lq) = 2 for a q ∈ M .
By Lemmas 1 and 2 we can assume that v, w ∈ Lq. Choose u ∈ Lq
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such that w ∈ −−−→
(v, u). By (i), (35), (33), Γ(w) ∈ −−−−−−−−→

(Γ(v),Γ(u)) ⊂ Lq and
Γ(z) /∈ Lq, which gives Γ(w) ∈ −−−−−−−−→(Γ(v), Γ(z)).

(iii) card({v, w, z}∩Lq) = card({v, w, z}∩Lp) = 1 for some p, q ∈ M ,
p 6= q.

In view of Lemmas 1 and 2 we may assume that v ∈ Lq, w ∈ Lp and
v ≺ w ≺ z. This clearly gives Lq ≺ Lp ≺ L, where L := Lr if z ∈ Lr for
an r ∈ M and L := {z} if z ∈ LF . Hence, using (35) and (33), we get
Γ[Lq] ≺ Γ[Lp] ≺ Γ[L] and consequently Γ(v) ≺ Γ(w) ≺ Γ(z), which is our
claim.

(iv) card({v, w, z} ∩ LF ) = 2.
Using again Lemmas 1 and 2 suppose that v, z ∈ LF , w ∈ Lq for a q ∈ M .
As Lq is an open arc, Lq ⊂

−−−→
(v, z). Hence, in view of (35) and (33), we

have Γ[Lq] = Lq ⊂
−−−→
(v, z) =

−−−−−−−−→
(Γ(v),Γ(z)). From this we see that Γ(w) ∈−−−−−−−−→

(Γ(v), Γ(z)).

(v) {v, w, z} ⊂ LF .
It is clear, since Γ(v) = v, Γ(w) = w and Γ(z) = z.

Let us note that Γ : S1 7→ S1 is a bijection. Hence and by Lemma 4
we conclude that Γ is a homeomorphism. Clearly,

(36) T (p, 1) = p̄, p ∈ M.

Hence by (32) and (13) we have

T (p, np) = p̄ = T (p, 1) = T
(
T (p, 1), nT (p,1)

)
= T

(
p, 1 + nT (p,1)

)

and, using (31),

(37) np = 1 + nT (p,1).

Fix p ∈ M , z ∈ Lp. Then by (15), P 1(z) ∈ LT (p,1), so from (33), (36) and
(37) we obtain

(
Γ ◦ P 1

)
(z) =

(
F−nT (p,1) ◦ Γ

T (p,1)
◦ PnT (p,1)+1

)
(z)

=
(
F ◦ F−np ◦ Γp̄ ◦ Pnp

)
(z) = (F ◦ Γ)(z).
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As F , P 1 and Γ are continuous and S1 \LF is a dense subset of S1 we see
that

F = Γ ◦ P 1 ◦ Γ−1.

6◦ Define

(38) F t := Γ ◦ P t ◦ Γ−1, t ∈ R.

A trivial verification shows that {F t, t ∈ R} is a disjoint iteration group
such that F 1 = F .

Note that (38) defines the general form of all disjoint iteration groups
{F t, t ∈ R} such that F 1 = F . Indeed, suppose that {F t, t ∈ R} is
such an iteration group. According to Lemmas 11 and 10 there exists
an orientation-preserving homeomorphism Γ : S1 7→ S1 fulfilling (38) and
such that Γ(z) = z for z ∈ LF , where {P t, t ∈ R} is an iteration group
described by Lemma 13. If we put Γq := Γ|Lq

for q ∈ M , then by (38),
(15) and (32) we obtain (33). Moreover, it is clear that Γq are orientation-
preserving homeomorphisms. Thus our assertion is proved. ¤

Finally, we get

Theorem 4. Let F : S1 7→ S1 be an orientation-preserving homeo-

morphism with an irrational rotation number. Then F is embeddable in

an iteration group if and only if F is embeddable in a disjoint iteration

group.

Proof. If LF = S1, then by Theorem 2 we get our assertion. Let
LF 6= S1 and {F t, t ∈ R} be an iteration group such that F 1 = F . By Lem-
mas 8 and 9 the set KF has property (C). Further, similarly as in the first
part of the proof of Theorem 3, we show that there exists a sequence
{an}n∈N\{0} fulfilling (28) such that (29) holds. Theorem 3 completes the
proof. ¤
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