Publ. Math. Debrecen 55 / 3-4 (1999), 363–383

On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups

By KRZYSZTOF CIEPLIŃSKI (Kraków)

Abstract. In this note the problem of the embeddability of a homeomorphism F of the unit circle in disjoint iteration groups is studied. For F with an irrational rotation number a result concerning embeddability of F in an arbitrary iteration group is proved as a simple consequence of the obtained theorems.

1. Introduction

Let $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle with positive orientation and $F : \mathbb{S}^1 \mapsto \mathbb{S}^1$ be a homeomorphism.

A family $\{F^t, t \in \mathbb{R}\}$ of homeomorphisms $F^t : \mathbb{S}^1 \mapsto \mathbb{S}^1$ such that

$$F^s \circ F^t = F^{s+t}, \quad s, t \in \mathbb{R}$$

is said to be a flow or an iteration group.

A homeomorphism F is said to be embeddable in an iteration group if there exists an iteration group $\{F^t, t \in \mathbb{R}\}$ such that $F^1 = F$. Then we will say that $\{F^t, t \in \mathbb{R}\}$ is an iteration group of F.

An iteration group $\{F^t, t \in \mathbb{R}\}$ is said to be continuous if for every $z \in \mathbb{S}^1$ the mapping $t \mapsto F^t(z)$ is continuous.

An iteration group $\{F^t, t \in \mathbb{R}\}$ such that for every $t \in \mathbb{R}$ the following condition holds: if F^t has a fixed point, then $F^t = id$ is said to be disjoint (see [1] and also [4]).

Mathematics Subject Classification: Primary 39B12; Secondary 58F25. Key words and phrases: iteration group.

According to Corollary 1 in [3], we get

Remark 1. Every continuous iteration group $\{F^t, t \in \mathbb{R}\}$ such that at least one F^t has not fixed points is disjoint. Thus, if a homeomorphism Fwithout fixed points is embeddable in a continuous iteration group, then it is embeddable in a disjoint iteration group.

In [3] M. C. ZDUN has proved a necessary and sufficient condition for the embeddability of a homeomorphism F of the unit circle in a continuous iteration group and he has given the general construction of all continuous iteration groups $\{F^t, t \in \mathbb{R}\}$ such that $F^1 = F$. This note deals with disjoint iteration groups.

Theorem 1 states that a homeomorphism $F : \mathbb{S}^1 \to \mathbb{S}^1$ can always be embedded in such an iteration group whenever the rotation number of Fis rational and one of its iterates equals identity. For F with an irrational rotation number two cases are considered. The required embedding of Fis always possible if the limit set of F, which will be denoted by L_F , is equal to the whole circle \mathbb{S}^1 . In this case the general form of all disjoint iteration groups of F is also obtained (Theorem 2). Theorem 3 shows that the embeddability of F with a nowhere dense limit set is equivalent to the existence of a sequence of non-negative integers satisfying some additional conditions. The proof of the theorem contains the general construction of all disjoint iteration groups of F. The paper is concluded with Theorem 4 which states that a homeomorphism F with an irrational rotation number is embeddable in an iteration group if and only if F is embeddable in a disjoint iteration group.

Throughout the paper the closure of the set A will be denoted by cl A and we write A^d for the set of all cluster points of A. $\sim p$ stands for the negation of p.

2. Preliminaries

Following [1] we introduce some notations and definitions.

Let $\tilde{\pi} : \mathbb{R} \ni t \mapsto e^{2\pi i t} \in \mathbb{S}^1$ and $\pi := \tilde{\pi}_{|[0,1]}$. The function π is a continuous bijection. Thus, if $v, w, z \in \mathbb{S}^1$, then there exist unique $t_1, t_2 \in [0,1)$ such that $w\pi(t_1) = z$ and $w\pi(t_2) = v$. Define

$$v \prec w \prec z$$
 if and only if $0 < t_1 < t_2$

and

$$w \leq w \leq z$$
 if and only if $t_1 \leq t_2$ or $t_2 = 0$

Now we give some useful characterizations and properties of " \prec " and " \preceq ".

Remark 2. Let $v, w, z \in \mathbb{S}^1$. If $v \prec w \prec z$, then $v \neq w, w \neq z, v \neq z$.

If $v, z \in \mathbb{S}^1$, $v \neq z$, then there exist $t_v, t_z \in \mathbb{R}$ such that $t_v < t_z < t_v + 1$ and $v = \tilde{\pi}(t_v), z = \tilde{\pi}(t_z)$. Put

$$\overrightarrow{(v,z)} := \{ \tilde{\pi}(t), \ t \in (t_v, t_z) \}$$

It is clear that $\overrightarrow{(v,z)}$ does not depend on the choice of t_v and t_z .

The straightforward proofs of the following three lemmas are omitted.

Lemma 1. Let
$$v, w, z \in \mathbb{S}^1$$
. $v \prec w \prec z$ if and only if $w \in (v, z)$.

Lemma 2. For every $v, w, z \in \mathbb{S}^1$ the following conditions are equivalent:

- (i) $v \prec w \prec z$,
- (ii) $w \prec z \prec v$,
- (iii) $z \prec v \prec w$.

Lemma 3. For every $v, w, z \in \mathbb{S}^1$ the following conditions are equivalent:

- (i) $\sim (v \prec w \prec z),$
- (ii) v = w or w = z or v = z or $z \prec w \prec v$,
- (iii) $z \leq w \leq v$.

As an immediate consequence of Lemmas 3 and 2 we have

Remark 3. For every $v, w, z \in \mathbb{S}^1$ the following conditions are equivalent:

- (i) $v \leq w \leq z$,
- (ii) $w \leq z \leq v$,
- (iii) $z \leq v \leq w$.

Let $A \subset \mathbb{S}^1$ be such that card $A \geq 3$. We say that the function $\varphi : A \mapsto \mathbb{S}^1$ is increasing (respectively, strictly increasing) if for every v, w, z belonging to A such that $v \prec w \prec z$ we have $\varphi(v) \preceq \varphi(w) \preceq \varphi(z)$ (respectively, $\varphi(v) \prec \varphi(w) \prec \varphi(z)$). According to Lemma 1, the map φ is strictly increasing if $w \in (v, z)$ yields $\varphi(w) \in (\varphi(v), \varphi(z))$.

By Remark 2 we get

Remark 4. Every strictly increasing mapping is an injection.

A subset $A \subseteq \mathbb{S}^1$ is said to be an open arc if there exist $v, z \in \mathbb{S}^1$, $v \neq z$ such that $A = \overbrace{(v, z)}^{\sim} = \{\tilde{\pi}(t), t \in (t_v, t_z)\}$, where $\tilde{\pi}(t_v) = v, \tilde{\pi}(t_z) = z$ and $0 < t_z - t_v < 1$, that is, in the notation of " \prec ", $A = \{w \in \mathbb{S}^1 : v \prec w \prec z\}$. Let us note that such a subset is non-empty, different from \mathbb{S}^1 , open and connected.

It is a simple matter to show that strictly increasing mappings have the following property

Lemma 4. Every strictly increasing function $G : \mathbb{S}^1 \to \mathbb{S}^1$ such that the image of G is a dense subset of \mathbb{S}^1 is continuous.

Let $A := \overrightarrow{(v,z)}$, where $v = \widetilde{\pi}(t_v)$, $z = \widetilde{\pi}(t_z)$, $0 < t_z - t_v < 1$, be an open arc. The mapping $F : A \mapsto \mathbb{S}^1$ is said to be linear if $F(e^{2\pi i x}) = e^{2\pi i (ax+b)}$ for some a > 0, $b \in \mathbb{R}$ and every $x \in (t_v, t_z)$.

It is known (see for instance [2]) that for every homeomorphism $F : \mathbb{S}^1 \mapsto \mathbb{S}^1$ there exists a homeomorphism $f : \mathbb{R} \mapsto \mathbb{R}$ such that

$$F \circ \tilde{\pi} = \tilde{\pi} \circ f$$

and

$$f(x+1) = f(x) + 1$$
, if f is strictly increasing

and

$$f(x+1) = f(x) - 1$$
, if f is strictly decreasing.

We will say that the function f represents the homeomorphism F. If f_1 and f_2 represent the same homeomorphism, then $f_1 = f_2 + k$ for a $k \in \mathbb{Z}$. If f is strictly increasing we will say that the homeomorphism F preserves orientation.

M. BAJGER has proved that every orientation-preserving homeomorphism is strictly increasing (see [1]). It is easy to check that the converse statement is also true, so we have

Remark 5. A homeomorphism $F : \mathbb{S}^1 \to \mathbb{S}^1$ preserves orientation if and only if F is strictly increasing.

It is easily seen that for every homeomorphism $F : A \mapsto B$, where A and B are open arcs, say $A = \{\tilde{\pi}(t), t \in (a, b)\}, B = \{\tilde{\pi}(t), t \in (a, b)\}$

(c, d) there exists a unique homeomorphism $f : (a, b) \mapsto (c, d)$ such that $(F \circ \tilde{\pi})(x) = (\tilde{\pi} \circ f)(x)$ for $x \in (a, b)$. We will say that the function f represents the homeomorphism F and if f is strictly increasing, then we will say that F preserves orientation.

The following lemma is easy to check

Lemma 5 (see also Lemma 4 in [3]). Suppose that either A, B, C are open arcs or $A = B = C = \mathbb{S}^1$. If f represents a homeomorphism $F: A \mapsto B$ and g represents a homeomorphism $G: B \mapsto C$, then

- (i) $g \circ f$ represents $G \circ F$,
- (ii) f^{-1} represents F^{-1} .

Let us note that if $\{F^t, t \in \mathbb{R}\}$ is an iteration group, then for every $t \in \mathbb{R}$, $F^t = F^{\frac{t}{2}} \circ F^{\frac{t}{2}}$, so every homeomorphism F^t preserves orientation. Thus, if F is embeddable in an iteration group, then it preserves orientation.

If $F : \mathbb{S}^1 \to \mathbb{S}^1$ is an orientation-preserving homeomorphism represented by a function f then the number $\alpha(F) \in [0, 1)$ defined by

$$\alpha(F) := \lim_{n \to \infty} \frac{f^n(x)}{n} \pmod{1}, \quad x \in \mathbb{R}$$

is said to be the rotation number of F. This limit always exists and does not depend on x and f. Moreover, $\alpha(F)$ is rational if and only if $F^n(z_0) = z_0$ for a $z_0 \in \mathbb{S}^1$ and an $n \in \mathbb{Z} \setminus \{0\}$ (see [2]).

3. Main results

We begin with the case when F is an orientation-preserving homeomorphism such that $\alpha(F) \in \mathbb{Q}$. Let us note that if such an F is embeddable in a disjoint iteration group, then

(1)
$$F^n(z) = z$$
 for an $n \in \mathbb{Z} \setminus \{0\}$ and every $z \in \mathbb{S}^1$

Theorem 1. Every orientation-preserving homeomorphism F fulfilling (1) is embeddable in a disjoint iteration group.

PROOF. Let $n \in \mathbb{N}$, which we may assume, be the smallest number satisfying (1). If n = 1, then putting $F^t = id$, $t \in \mathbb{R}$ we get the desired iteration group. Suppose now that n > 1. Set g(x) := x + 1, $x \in \mathbb{R}$ and let Krzysztof Ciepliński

a homeomorphism $f: \mathbb{R} \to \mathbb{R}$ representing F be such that 0 < f(0) < 1. Note that $f \circ g = g \circ f$ and f and g have no fixed points. By Lemma 6 in [3], $g^0 < f < g^1$ and there exists an $m \in \mathbb{N}$ such that $f^n = g^m$. In [4] it is proved that for such homeomorphisms there exist infinitely many disjoint iteration groups $\{f^t, t \in \mathbb{R}\}$ of homeomorphisms $f^t: \mathbb{R} \to \mathbb{R}$ such that $f^1 = f$ and $g = f^s$ for an $s \in \mathbb{R}$. Since $g \in \{f^t, t \in \mathbb{R}\}$, $f^t \circ g = g \circ f^t$ for all $t \in \mathbb{R}$ and the functions $F^t(\tilde{\pi}(x)) := \tilde{\pi}(f^t(x)),$ $t, x \in \mathbb{R}$ are homeomorphisms. Obviously, $\{F^t, t \in \mathbb{R}\}$ is an iteration group such that $F^1 = F$. What is left is to show that this iteration group is disjoint. Let $t \in \mathbb{R}$ and $z_0 = \tilde{\pi}(x_0) \in \mathbb{S}^1$ be such that $F^t(z_0) = z_0$, that is $\tilde{\pi}(x_0) = F^t(\tilde{\pi}(x_0)) = \tilde{\pi}(f^t(x_0))$. Hence there exists a $k \in \mathbb{Z}$ such that $f^t(x_0) = x_0 + k = g^k(x_0)$. Thus $f^t = g^k$, since f^t, g^k belong to the iteration group $\{f^t, t \in \mathbb{R}\}$, which is disjoint. This clearly forces $F^t = id$.

From now on we assume that F is an orientation-preserving homeomorphism with the irrational rotation number $\alpha(F)$.

Let

$$C_F(z) := \{ F^n(z), \ n \in \mathbb{Z} \}, \quad z \in \mathbb{S}^1$$

The set $L_F := C_F(z)^d$ does not depend on z, is invariant with respect to F (that is $F[L_F] = L_F$) and either $L_F = \mathbb{S}^1$ or L_F is a perfect nowhere dense subset of \mathbb{S}^1 (see for instance [2]). In the second case we have the following unique decomposition

(2)
$$\mathbb{S}^1 \setminus L_F = \bigcup_{q \in M} L_q,$$

where L_q for $q \in M$ are open pairwise disjoint arcs and card $M = \aleph_0$.

Lemma 6. If $\alpha(F) \notin \mathbb{Q}$, then for every $z \in L_F$, $L_F = \operatorname{cl} C_F(z)$.

PROOF. It is evident that for every $z \in L_F$ we have $L_F = C_F(z)^d \subset$ $\operatorname{cl} C_F(z)$. Let $z \in L_F$. Then $F^n(z) \in L_F$ for $n \in \mathbb{Z}$ since $F[L_F] = L_F$. Thus, $C_F(z) \subset L_F$ and consequently $\operatorname{cl} C_F(z) \subset \operatorname{cl} L_F = L_F$.

Lemma 7. If $\alpha(F) \notin \mathbb{Q}$, then there exists a unique up to a multiplicative constant continuous mapping φ from \mathbb{S}^1 onto \mathbb{S}^1 such that

(3)
$$\varphi(F(z)) = \pi(\alpha(F))\varphi(z), \quad z \in \mathbb{S}^1.$$

This map is increasing. Moreover, φ is a homeomorphism if and only if $L_F = \mathbb{S}^1$.

PROOF. It is well-known (see for instance [2]) that there exists a continuous function $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ fulfilling (3), which is a homeomorphism if and only if $L_F = \mathbb{S}^1$. This map is defined by

$$\varphi(z) := \tilde{\pi}(\mu(\overrightarrow{[1,z]})), \quad z \in \mathbb{S}^1,$$

where μ is a probability Borel measure on \mathbb{S}^1 invariant with respect to Fand $\overline{[1,z]} := \overrightarrow{(1,z)} \cup \{1,z\}$. To prove that φ is increasing, take $v, w, z \in \mathbb{S}^1$ such that $v \prec w \prec z$. In view of Lemmas 1, 2 and Remark 3 we may assume that $\overline{[1,v]} \subset \overline{[1,w]} \subset \overline{[1,z]}$. This gives $0 \leq \mu(\overline{[1,v]}) \leq \mu(\overline{[1,w]}) \leq \mu(\overline{[1,w]}) \leq \mu(\overline{[1,z]}) \leq 1$ and, in consequence, $\varphi(v) \preceq \varphi(w) \preceq \varphi(z)$, which is our claim. Assume now that $\varphi_1, \varphi_2 : \mathbb{S}^1 \mapsto \mathbb{S}^1$ are continuous solutions of (3) and set $\psi := \frac{\varphi_1}{\varphi_2}$. Obviously, ψ is continuous and $\psi(F(z)) = \psi(z), z \in \mathbb{S}^1$. Hence,

(4)
$$\psi(F^n(z)) = \psi(z), \quad z \in \mathbb{S}^1, \ n \in \mathbb{Z}.$$

Fix $z_0 \in L_F$, $z \in \mathbb{S}^1$. By the definition of L_F there exists a sequence $\{n_k\}_{k\in\mathbb{N}} \subset \mathbb{Z}$ such that $\lim_{k\to\infty} F^{n_k}(z) = z_0$. Since ψ is continuous we have $\psi(z_0) = \lim_{k\to\infty} \psi(F^{n_k}(z))$ and by (4), $\psi(z_0) = \psi(z)$. Thus ψ is constant and consequently $\varphi_1 = c\varphi_2$ for $c = \psi(z_0)$.

For the convenience of the reader we quote, slightly modified, four lemmas from [1].

Lemma 8 (see [1]). Let $\{F^t, t \in \mathbb{R}\}$ be an iteration group of F and $\alpha(F) \notin \mathbb{Q}$. Then there exist a continuous increasing function $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ and a function $c : \mathbb{R} \mapsto \mathbb{S}^1$ such that

(5)
$$\varphi\left(F^{t}(z)\right) = c(t)\varphi(z), \quad z \in \mathbb{S}^{1}, \ t \in \mathbb{R},$$

(6)
$$c(s+t) = c(s)c(t), \quad s, t \in \mathbb{R}$$

(7)
$$\varphi[L_F] = \mathbb{S}^1$$

and

(8)
$$c(1) = \pi(\alpha(F)).$$

The solution φ of (5) is a homeomorphism if and only if $L_F = \mathbb{S}^1$.

Lemma 9 (see [1]). Let $\{F^t, t \in \mathbb{R}\}$ be an iteration group of F, $\alpha(F) \notin \mathbb{Q}$ and $L_F \neq \mathbb{S}^1$. If $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is a continuous increasing solution of (5) satisfying (7) with $c : \mathbb{R} \mapsto \mathbb{S}^1$, then:

- (a) for every $q \in M$, φ is constant on L_q ,
- (b) if $V \subset \mathbb{S}^1$ is an open arc and φ is constant on V, then $V \subset L_q$ for some $q \in M$,
- (c) if $p \neq q$, then $\varphi[L_p] \cap \varphi[L_q] = \emptyset$,
- (d) for every $q \in M$ and every $t \in \mathbb{R}$, there exists a $p \in M$ such that $F^t[L_q] = L_p$,
- (e) the sets $\operatorname{Im} c, \varphi[\mathbb{S}^1 \setminus L_F]$ are countable,

(f)
$$\varphi[\mathbb{S}^1 \setminus L_F] \cdot \operatorname{Im} c = \varphi[\mathbb{S}^1 \setminus L_F],$$

where $L_q, q \in M$ are open arcs defined by (2).

Put

(9)
$$\Phi(q) := \varphi[L_q], \quad q \in M$$

and

(10)
$$T(q,t) := \Phi^{-1}(\Phi(q)c(t)), \quad q \in M, \ t \in \mathbb{R},$$

where $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is a continuous solution of (5) with $c : \mathbb{R} \mapsto \mathbb{S}^1$.

Lemma 10 (see [1]). Assume that $\{F^t, t \in \mathbb{R}\}$ is an iteration group of F, $\alpha(F) \notin \mathbb{Q}$ and $L_F \neq \mathbb{S}^1$. Then there exists a unique disjoint iteration group $\{R^t, t \in \mathbb{R}\}$ on \mathbb{S}^1 such that

$$R^{t} \text{ is linear on } L_{q}, \qquad q \in M, \ t \in \mathbb{R},$$
$$R^{t}[L_{q}] = L_{T(q,t)}, \qquad q \in M, \ t \in \mathbb{R},$$
$$\varphi\left(R^{t}(z)\right) = c(t)\varphi(z), \quad z \in \mathbb{S}^{1}, \ t \in \mathbb{R},$$

where $\varphi : \mathbb{S}^1 \to \mathbb{S}^1$, $c : \mathbb{R} \to \mathbb{S}^1$ are solutions of (5) such that φ is a continuous increasing function.

The iteration group $\{R^t, t \in \mathbb{R}\}$ determined above is said to be the generating iteration group of $\{F^t, t \in \mathbb{R}\}$.

Lemma 11 (see [1]). Let $\{F^t, t \in \mathbb{R}\}$ be a disjoint iteration group of $F, \alpha(F) \notin \mathbb{Q}, L_F \neq \mathbb{S}^1$ and $\{R^t, t \in \mathbb{R}\}$ be its generating iteration group. Then there exists an orientation-preserving homeomorphism $\Gamma : \mathbb{S}^1 \mapsto \mathbb{S}^1$ such that

$$\Gamma \circ F^t = R^t \circ \Gamma, \quad t \in \mathbb{R}$$

and $\Gamma(z) = z$, for all $z \in L_F$.

First, consider the case $L_F = \mathbb{S}^1$.

Theorem 2. Every homeomorphism $F : \mathbb{S}^1 \mapsto \mathbb{S}^1$ such that $\alpha(F) \notin \mathbb{Q}$ and $L_F = \mathbb{S}^1$ is embeddable in a disjoint iteration group. The general form of all disjoint iteration groups $\{F^t, t \in \mathbb{R}\}$ such that $F^1 = F$ is given by the formula

(11)
$$F^{t}(z) = \varphi^{-1}(c(t)\varphi(z)), \quad z \in \mathbb{S}^{1}, \ t \in \mathbb{R},$$

where $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is a homeomorphism fulfilling (6) and $c : \mathbb{R} \mapsto \mathbb{S}^1$ is a function satisfying conditions (6) and (8).

PROOF. It is easy to check that formula (11) with the above-mentioned functions φ and c defines the desired iteration group. On the other hand, from Lemma 8 we conclude that every disjoint iteration group $\{F^t, t \in \mathbb{R}\}$ such that $F^1 = F$ is of this form. \Box

We now turn to the case $L_F \neq \mathbb{S}^1$.

Proceeding analogously to the proof of Proposition 2 in [1] we obtain

Lemma 12. Let $\alpha(F) \notin \mathbb{Q}$, $L_F \neq \mathbb{S}^1$ and $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ be a continuous increasing solution of (3). Then conditions (a), (b), (c) hold and (d') for every $q \in M$ there exists a $p \in M$ such that $F[L_q] = L_p$, (e') the set

$$K_F := \varphi \left[\mathbb{S}^1 \setminus L_F \right]$$

is countable.

It follows by Lemma 7 that for every homeomorphism F with irrational rotation number the set K_F is determined uniquely up to a multiplicative constant.

Lemmas 8 and 9 show that if a homeomorphism F such that $\alpha(F) \notin \mathbb{Q}$ is embeddable in an iteration group, then the set K_F has the following property

(C) there exists a function $c : \mathbb{R} \mapsto \mathbb{S}^1$ satisfying conditions (6) and (8) such that card Im $c = \aleph_0$ and

(12)
$$K_F \cdot \operatorname{Im} c = K_F$$

Assuming further that K_F has this property we define a function Φ by (9). It follows from Lemma 12 that Φ is a bijection of M onto K_F . According to (12) we may define a map $T: M \times \mathbb{R} \to M$ by (10). An easy computation shows that T satisfies the translation equation

(13)
$$T(T(q,s),t) = T(q,s+t), \quad q \in M, \ s,t \in \mathbb{R}$$

At present we will construct some special disjoint iteration group $\{P^t, t \in \mathbb{R}\}.$

Lemma 13. Assume that $\alpha(F) \notin \mathbb{Q}$, $L_F \neq \mathbb{S}^1$ and $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is a continuous solution of (3). Moreover, let K_F has property (C). Then there exists the unique family $\{P^t, t \in \mathbb{R}\}$ of continuous functions such that

(14)
$$P^t$$
 is linear on L_q , $q \in M$, $t \in \mathbb{R}$

and

(15)
$$P^t[L_q] = L_{T(q,t)}, \quad q \in M, \ t \in \mathbb{R}.$$

This family is a disjoint iteration group of homeomorphisms.

PROOF. Let $x_0 \in [0,1)$ be such that $\pi(x_0) =: z_0 \in L_F$. Put $\nu(x) := \pi(x)z_0$, that is $\nu(x) = \tilde{\pi}(x+x_0), x \in [0,1)$. Setting $L' := \nu^{-1}[L_F] \cap (0,1)$ we have the following decomposition

$$(0,1) \setminus L' = \bigcup_{q \in M} L'_q,$$

where $L'_q := \nu^{-1}[L_q]$, $q \in M$. Since $z_0 \notin L_q$, $q \in M$, L'_q are open intervals. Moreover, L'_q are pairwise disjoint. Let $l_{q,t}$ for $q \in M$, $t \in \mathbb{R}$ be the unique strictly increasing linear function such that

(16)
$$l_{q,t} \left[L'_q \right] = L'_{T(q,t)}.$$

Define

(17)
$$B_t(z) := \left(\nu \circ l_{q,t} \circ \nu_{|L_q}^{-1}\right)(z), \quad z \in L_q, \ t \in \mathbb{R}.$$

On the embeddability of a homeomorphism of the unit circle ...

Hence, by (16), we have

(18)
$$B_t[L_q] = L_{T(q,t)}, \quad q \in M, \ t \in \mathbb{R}$$

and, taking in (18) q := T(p, -t) and using (13),

(19)
$$B_t \left[\mathbb{S}^1 \setminus L_F \right] = \mathbb{S}^1 \setminus L_F, \quad t \in \mathbb{R}.$$

We first prove that $B_t : \mathbb{S}^1 \setminus L_F \mapsto \mathbb{S}^1 \setminus L_F$, $t \in \mathbb{R}$ is strictly increasing. Indeed, fix $t \in \mathbb{R}$, $v, w, z \in \mathbb{S}^1 \setminus L_F$ such that $v \prec w \prec z$ (that is, $w \in (v, z)$) and consider three cases.

(i) $\{v, w, z\} \subset L_q$ for a $q \in M$. Let $v = \nu(t_v), w = \nu(t_w), z = \nu(t_z)$. We can certainly assume that $t_v, t_w, t_z \in (0, 1)$, because $z_0 \notin L_q$. Hence,

$$\nu^{-1}(v) < \nu^{-1}(w) < \nu^{-1}(z),$$

and consequently by the fact that $l_{q,t}$ is strictly increasing and (17) we obtain

$$B_t(v) \prec B_t(w) \prec B_t(z).$$

(ii) $\operatorname{card}(\{v, w, z\} \cap L_q) = 2$ for a $q \in M$. Using Lemma 2 assume, for example, that $v, w \in L_q, z \in L_p$ for a $p \in M$, $p \neq q$. Take $u \in L_q$ such that $w \in \overrightarrow{(v, u)}$. By (i) we get

(20)
$$B_t(w) \in \overrightarrow{(B_t(v), B_t(u))}.$$

From (18), $B_t(u), B_t(v), B_t(w) \in L_{T(q,t)}, B_t(z) \in L_{T(p,t)}$. Moreover, $T(q,t) \neq T(p,t)$. Hence and by (20) we obtain

$$B_t(w) \in \overline{(B_t(v), B_t(z))}$$

(iii) $\operatorname{card}(\{v, w, z\} \cap L_q) \leq 1$ for every $q \in M$.

Suppose that $v \in L_q, w \in L_p, z \in L_r$ for $p, q, r \in M, p \neq q, q \neq r, p \neq r$. Let us note that $L_q \prec L_p \prec L_r$ (that is for every $v \in L_q, w \in L_p, z \in L_r$ we have $v \prec w \prec z$). Using the monotonicity of φ and Lemma 12 we get $\varphi[L_q] \prec \varphi[L_p] \prec \varphi[L_r]$. Thus by (9) and (10) we have

(21)
$$\varphi[L_{T(q,t)}] \prec \varphi[L_{T(p,t)}] \prec \varphi[L_{T(r,t)}].$$

Suppose that $L_{T(r,t)} \leq L_{T(p,t)} \leq L_{T(q,t)}$, that is, by Remark 3, $L_{T(q,t)} \leq L_{T(r,t)} \leq L_{T(p,t)}$. Then

$$\varphi[L_{T(q,t)}] \preceq \varphi[L_{T(r,t)}] \preceq \varphi[L_{T(p,t)}],$$

which, by Lemma 3 and Remark 3, contradicts (21). Hence, again by Lemma 3 we have $L_{T(q,t)} \prec L_{T(p,t)} \prec L_{T(r,t)}$. Our next goal is to extent B_t to the monotonic function P^t of the

Our next goal is to extent B_t to the monotonic function P^t of the entire circle \mathbb{S}^1 . For this purpose, fix $t \in \mathbb{R}$, $w \in L_F$ and choose a sequence $\{w_n\}_{n \in \mathbb{N}} \subset \mathbb{S}^1 \setminus L_F$ such that

$$\overrightarrow{(w_0, w_n)} \subset \overrightarrow{(w_0, w)}, \ \overrightarrow{(w_0, w_n)} \subset \overrightarrow{(w_0, w_{n+1})}, \quad \text{for } n \in \mathbb{N} \setminus \{0\}$$

and

$$\bigcup_{n=1}^{\infty} \overrightarrow{(w_0, w_n)} = \overrightarrow{(w_0, w)}$$

Since $B_t : \mathbb{S}^1 \setminus L_F \mapsto \mathbb{S}^1 \setminus L_F$ is strictly increasing, $\bigcup_{n=1}^{\infty} \overline{(B_t(w_0), B_t(w_n))}$ is an open arc, say $\overline{(B_t(w_0), a)}$. It is easily seen that a does not depend on the choice of the sequence $\{w_n\}_{n \in \mathbb{N}}$. Define $P^t(w) := a$ and

(22)
$$P^{t}(z) := B_{t}(z), \quad z \in \mathbb{S}^{1} \setminus L_{F}, \ t \in \mathbb{R}.$$

We will prove that

$$(23) P^t[L_F] \subset L_F.$$

Suppose, contrary to our claim, that there exists a $w \in L_F$ such that $P^t(w) \in \mathbb{S}^1 \setminus L_F$. Then by (19), $B_t(z) = P^t(w)$ for a $z \in \mathbb{S}^1 \setminus L_F$. Take $v \in \mathbb{S}^1 \setminus L_F$ such that $w \notin \overrightarrow{(v,z)}$ and let $\{w_n\}_{n \in \mathbb{N}}$ be the above-described sequence. Hence

$$m := \operatorname{card}(\overrightarrow{(v,z)} \cap \{w_n\}_{n \in \mathbb{N}}) < \aleph_0$$

and

$$\operatorname{card}\left(\overrightarrow{(B_t(v), B_t(z))} \cap \{B_t(w_n)\}_{n \in \mathbb{N}}\right) = m,$$

since B_t is strictly increasing. This contradicts the fact that

$$\bigcup_{n=1}^{\infty} \overrightarrow{(B_t(w_0), B_t(w_n))} = \overrightarrow{(B_t(w_0), P^t(w))} = \overrightarrow{(B_t(w_0), B_t(z))}.$$

Now we shall show that P^t are strictly increasing. To do this, take $v, w, z \in \mathbb{S}^1$ such that $v \prec z \prec w$ and consider three cases:

(i) $card(\{v, w, z\} \cap L_F) = 1.$

In view of Lemma 2 we may assume that $w \in L_F$. From (22), Remark 4, (19) and (23) we have

(24)
$$P^t(v) \neq P^t(z), P^t(v) \neq P^t(w) \text{ and } P^t(z) \neq P^t(w),$$

since $v, z \in \mathbb{S}^1 \setminus L_F$, $w \in L_F$. Suppose that $P^t(w) \prec P^t(z) \prec P^t(v)$, that is by Lemmas 2 and 1, $P^t(w) \in (P^t(v), P^t(z))$. Let $n \in \mathbb{N} \setminus \{0\}$ be such that $z \in (v, w_n)$ and $P^t(w_n) \in (P^t(v), P^t(w))$. Hence, by the fact that $(P^t(v), P^t(w)) \subset (P^t(v), P^t(z))$ we get $P^t(w_n) \in (P^t(v), P^t(z))$. On the other hand, $P^t(z) \in (P^t(v), P^t(w_n))$, since $z, v, w_n \in \mathbb{S}^1 \setminus L_F$ and P^t is strictly increasing on $\mathbb{S}^1 \setminus L_F$. But, in view of Lemmas 1 and 2, this is impossible. Thus, using Lemma 3 and (24), we infer that $P^t(v) \prec P^t(z) \prec$ $P^t(w)$.

(ii) $\operatorname{card}(\{v, w, z\} \cap L_F) = 2.$

According to Lemma 2 we can assume that $z, w \in L_F$. Choose $x, y \in \mathbb{S}^1 \setminus L_F$ such that $v \in (w, z) \subset (x, y)$. Hence, $w \in (x, v), z \in (v, y)$ and, by the monotonicity of P^t on $\mathbb{S}^1 \setminus L_F$, $P^t(v) \in (P^t(x), P^t(y))$. By proved case (i), we obtain $P^t(w) \in (P^t(x), P^t(v))$ and $P^t(z) \in (P^t(v), P^t(y))$. Consequently, $P^t(v) \in (P^t(w), P^t(z))$, which, by Lemmas 1 and 2, is our claim.

(iii) $\{v, w, z\} \subset L_F$.

As in case (ii), choose $x, y \in \mathbb{S}^1 \setminus L_F$ such that $v \in (w, z) \subset (x, y)$. Hence, using proved case (i), $P^t(v) \in (P^t(x), P^t(y))$ and, by (ii), $P^t(w) \in (P^t(x), P^t(v))$ and $P^t(z) \in (P^t(v), P^t(y))$. Therefore $P^t(v) \in (P^t(w), P^t(z))$, which, by Lemmas 1 and 2, is our assertion.

Thus, we have shown that P^t is strictly increasing.

Note that by (22) and (18) we get (15). Moreover, (22) and (19) give

$$\mathbb{S}^1 \setminus L_F = P^t \left[\mathbb{S}^1 \setminus L_F \right] \subset P^t \left[\mathbb{S}^1 \right], \quad t \in \mathbb{R}.$$

Since L_F is a perfect nowhere dense subset of \mathbb{S}^1 , the set $P^t[\mathbb{S}^1]$ is dense in \mathbb{S}^1 and Lemma 4 shows that every P^t is continuous.

Fix now $q \in M$, $t \in \mathbb{R}$. Let $L_q = \overrightarrow{(v, z)}$, where $v = \widetilde{\pi}(t_v)$, $z = \widetilde{\pi}(t_z)$, $0 < t_z - t_v < 1$ and let $l_{q,t}(x) = ax + b$, $x \in L'_q$, where a > 0. Using (22) and (17) we have

$$P^t(\nu(x)) = \nu(l_{q,t}(x)), \quad x \in L'_q.$$

Putting $y := x + x_0$, we have

$$P^{t}(e^{2\pi iy}) = e^{2\pi i(ay - ax_0 + b + x_0)}, \quad y \in (t_v, \ t_z),$$

and (14) is proved.

Suppose now that P^t, R^t are continuous functions fulfilling (14) and (15). Then $P^t(e^{2\pi ix}) = e^{2\pi i p_{q,t}(x)}$ and $R^t(e^{2\pi ix}) = e^{2\pi i r_{q,t}(x)}$, where $p_{q,t}, r_{q,t} : (t_v, t_z) \mapsto \mathbb{R}$ are strictly increasing linear functions. Hence, by (15), $p_{q,t} = r_{q,t} + k$ for a $k \in \mathbb{Z}$ and consequently $P_{|L_q}^t = R_{|L_q}^t$. As P^t , R^t are continuous functions and $\mathbb{S}^1 \setminus L_F$ is a dense subset of \mathbb{S}^1 we have $P^t = R^t$.

Let us note that

(25)
$$l_{T(q,s),t} \circ l_{q,s} = l_{q,t+s}, \quad q \in M, \ s, t \in \mathbb{R}.$$

In fact, by (16) and (13),

$$\left(l_{T(q,s),t} \circ l_{q,s}\right) \left[L'_{q}\right] = l_{q,t+s} \left[L'_{q}\right], \quad q \in M, \ s, t \in \mathbb{R}$$

and (25) follows, since $l_{T(q,s),t} \circ l_{q,s}$ and $l_{q,t+s}$ are strictly increasing linear functions. Fix $q \in M$, $z \in L_q$, $s, t \in \mathbb{R}$. Using (22), (17), the fact that $P^s(z) \in L_{T(q,s)}$ and (25) we obtain

$$(P^{t} \circ P^{s})(z) = (B_{t} \circ (\nu \circ l_{q,s} \circ \nu^{-1}))(z)$$

= $(\nu \circ l_{T(q,s),t} \circ l_{q,s} \circ \nu^{-1})(z) = (\nu \circ l_{q,s+t} \circ \nu^{-1})(z) = P^{s+t}(z)$

Hence,

(26)
$$P^t \circ P^s = P^{s+t}, \quad s, t \in \mathbb{R},$$

since every P^t is continuous and $\mathbb{S}^1 \setminus L_F$ is dense in \mathbb{S}^1 .

Let φ be a continuous solution of (3) and $z \in \mathbb{S}^1 \setminus L_F$. Then $z \in L_q$ for a $q \in M$ and, by (15), $P^t(z) \in L_{T(q,t)}$. Hence, by Lemma 12, (9) and (10), we get

$$\varphi(z) = \varphi[L_q] = \Phi(q)$$

and

$$\varphi\left(P^t(z)\right) = \varphi\left[L_{T(q,t)}\right] = \Phi(T(q,t)) = \Phi(q)c(t).$$

Consequently, by the continuity of φ , P^t and the density of $\mathbb{S}^1 \setminus L_F$ in \mathbb{S}^1 ,

(27)
$$\varphi\left(P^{t}(z)\right) = \varphi(z)c(t), \quad z \in \mathbb{S}^{1}, \ t \in \mathbb{R}.$$

The proof is completed by showing that the family $\{P^t, t \in \mathbb{R}\}$ is a disjoint iteration group. To do this suppose that $P^t(v_0) = v_0$ for a $v_0 \in \mathbb{S}^1$ and a $t \in \mathbb{R}$. Then from (27), c(t) = 1 and by (10), $T(q,t) = q, q \in M$. Consequently, by (15), $P^t[L_q] = L_q, q \in M$. Hence, by the linearity of P^t on L_q , $P^t(z) = z$ for $z \in \mathbb{S}^1 \setminus L_F$ and further by the continuity of $P^t, P^t(z) \equiv z$ for $z \in \mathbb{S}^1$. Finally, P^t are homeomorphisms, since $\mathbb{S}^1 = P^t[P^{-t}[\mathbb{S}^1]] \subset P^t[\mathbb{S}^1] \subset \mathbb{S}^1, (P^t)^{-1} = P^{-t}$ and P^t are continuous for $t \in \mathbb{R}$.

For every sequence $\{a_n\}_{n \in \mathbb{N} \setminus \{0\}}$ such that

(28)
$$a_n \in \{0, \dots, n-1\}, a_{kn} = a_n \pmod{n}, k, n \in \mathbb{N} \setminus \{0\}$$

define

$$A_s(\{a_k\}) := \left\{ \tilde{\pi} \left(\frac{m}{n} s + \frac{m}{n} a_n \right), \ n \in \mathbb{N} \setminus \{0\}, \ m \in \mathbb{Z} \right\}, \quad s \in \mathbb{R}.$$

With the notation $\mathbb{N}! := \{n!, n \in \mathbb{N}\},\$ we have

Lemma 14. The general form of all sequences $\{a_n\}_{n \in \mathbb{N} \setminus \{0\}}$ fulfilling (28) is given by taking

$$a_1 := 0,$$

choosing inductively

$$a_{n!} := a_{(n-1)!} + (n-1)!k_n, \ k_n \in \{0, \dots, n-1\} \text{ for } n > 1$$

and defining

 a_n as the rest from the division $a_{n!}$ by n, for $n \notin \mathbb{N}!$.

The simple proof is omitted.

Krzysztof Ciepliński

Lemma 15. For every $s \in \mathbb{R}$ and every sequence $\{a_n\}_{n \in \mathbb{N} \setminus \{0\}}$ satisfying (28) there exists a function $c : \mathbb{R} \mapsto \mathbb{S}^1$ such that condition (6) holds, $c(1) = \tilde{\pi}(s)$ and

$$\operatorname{Im} c = A_s(\{a_k\}).$$

PROOF. Let $\{a_n\}_{n\in\mathbb{N}\setminus\{0\}}$ be an arbitrary sequence fulfilling (28). Denote by H a Hamel basis such that $1\in H$. Then every real number t can be expressed in the form

$$t = \sum_{h \in H} r_h(t)h,$$

where $r_h(t) \in \mathbb{Q}$ and almost every $r_h(t) = 0$. It is evident that the function $r_1 : \mathbb{R} \mapsto \mathbb{Q}$ is additive and $r_1(1) = 1$.

Put

$$b\left(\frac{m}{n}\right) := \tilde{\pi}\left(\frac{m}{n}s + \frac{m}{n}a_n\right), \quad n \in \mathbb{N} \setminus \{0\}, \ m \in \mathbb{Z}.$$

Using (28) it is easy to check that

$$b(x+y) = b(x)b(y), \quad x, \ y \in \mathbb{Q}.$$

A trivial verification shows that the function $c: \mathbb{R} \mapsto \mathbb{S}^1$ given by

$$c(t) := b(r_1(t)), \quad t \in \mathbb{R}$$

is such that Im $c = A_s(\{a_k\}), c(1) = \tilde{\pi}(s)$ and condition (6) holds. \Box

Let us recall that for every homeomorphism F such that $\alpha(F) \notin \mathbb{Q}$ and $L_F \neq \mathbb{S}^1$ we have defined the set $K_F = \varphi[\mathbb{S}^1 \setminus L_F]$, where $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is a continuous solution of (3). Since φ is unique up to a multiplicative constant, so is K_F .

Theorem 3. Let $\alpha(F) \notin \mathbb{Q}$ and $L_F \neq \mathbb{S}^1$. Then the homeomorphism F is embeddable in a disjoint iteration group if and only if there exists a sequence $\{a_n\}_{n\in\mathbb{N}\setminus\{0\}}$ satisfying (28) and such that

(29)
$$K_F \cdot A_{\alpha(F)}(\{a_k\}) = K_F$$

PROOF. Necessary condition. Let F be embeddable in a disjoint iteration group $\{F^t, t \in \mathbb{R}\}$. Lemmas 8 and 9 show that K_F has property (C). By (6) we get

(30)
$$c(mt) = c(t)^m, \quad m \in \mathbb{Z}, \ t \in \mathbb{R}.$$

Let $n \in \mathbb{N} \setminus \{0\}$. Using (30) we have $c(1) = c(\frac{1}{n})^n$, hence by (8) there exists an $a_n \in \{0, \ldots, n-1\}$ such that $c(\frac{1}{n}) = \tilde{\pi}(\frac{\alpha(F)}{n} + \frac{a_n}{n})$. Since $c(\frac{1}{n}) = c(\frac{1}{kn})^k = \tilde{\pi}(\frac{\alpha(F)}{n} + \frac{a_{kn}}{n})$, we see that $a_{kn} = a_n \pmod{n}$. Thus, the sequence $\{a_n\}_{n \in \mathbb{N} \setminus \{0\}}$ satisfies (28). Using again (30) we obtain $c(\mathbb{Q}) = A_{\alpha(F)}(\{a_k\})$. Hence, by the fact that $1 \in A_{\alpha(F)}(\{a_k\})$ and (12),

$$K_F \subset K_F \cdot A_{\alpha(F)}(\{a_k\}) \subset K_F \cdot \operatorname{Im} c = K_F,$$

which gives our assertion.

Sufficient condition. We shall construct a disjoint iteration group $\{F^t, t \in \mathbb{R}\}$ such that $F^1 = F$. To do this we give

The general construction of all disjoint iteration groups $\{F^t, t \in \mathbb{R}\}$ such that $F^1 = F$.

1° Let $c : \mathbb{R} \mapsto \mathbb{S}^1$ be a function such that $\operatorname{Im} c$ is a countable set and conditions (6), (8), (12) hold. It follows from our assumption that every function $c : \mathbb{R} \mapsto \mathbb{S}^1$ fulfilling (6), (8) and such that $\operatorname{Im} c = A_{\alpha(F)}(\{a_k\})$ has this property. Let us note that Lemma 15 ensures the existence of such a function c.

2° Define the function $\Phi : M \mapsto K_F$ by (9), where $\varphi : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is a continuous increasing solution of (3) and $L_q, q \in M$ are open pairwise disjoint arcs such that (2) holds. The function $T : M \times \mathbb{R} \mapsto M$ given by (10) satisfies the translation equation (13).

 $\mathbf{3}^{\circ}$ Let $\{P^t, t \in \mathbb{R}\}$ be an iteration group described by Lemma 13. We can apply this lemma because K_F has property (C), which follows from 1°.

 $\mathbf{4}^{\circ}$ Define the following relation on M

$$p \sim q \Leftrightarrow \exists n \in \mathbb{Z} \quad q = T(p, n).$$

It is easy to check that " \sim " is an equivalence relation. Let A be an arbitrary set which has exactly one point in common with every equivalence class. Put

$$\bar{p} := [p] \cap A, \quad p \in M.$$

Fix $n, m \in \mathbb{Z}$, $p \in M$. Let us note that

(31) if
$$T(p, n) = T(p, m)$$
, then $n = m$.

Indeed, let T(p,n) = T(p,m). Then we conclude from (10) that c(n) = c(m), hence using (6) and (8), that $\pi(\alpha(F))^n = \pi(\alpha(F))^m$, and finally,

that n = m, since $\alpha(F) \notin \mathbb{Q}$. By (31), for every $p \in M$ there exists exactly one $n_p \in \mathbb{Z}$ such that

(32)
$$\bar{p} = T(p, n_p).$$

 $\mathbf{5}^{\circ}$ Let $\Gamma_q: L_q \mapsto L_q$ for $q \in A$ be arbitrary orientation-preserving homeomorphisms. Define

(33)
$$\Gamma(z) := \begin{cases} (F^{-n_p} \circ \Gamma_{\bar{p}} \circ P^{n_p})(z), & z \in L_p, \\ z, & z \in L_F. \end{cases}$$

We will show that

(34)
$$F^{n}[L_{p}] = L_{T(p,n)}, \quad n \in \mathbb{Z}, \ p \in M.$$

Fix $p \in M$. According to Lemma 12 there exists a $q \in M$ such that $F[L_p] = L_q$. Consequently by (9), (3) and (8) we have

$$\Phi(q) = \varphi[L_q] = \varphi[F[L_p]] = \pi(\alpha(F))\varphi[L_p] = c(1)\Phi(p)$$

and (10) now yields $F[L_p] = L_{T(p,1)}$. Hence by induction and (13) we get (34). Let us observe that by (15), (32), (34) and (13),

(35)
$$\Gamma[L_p] = L_p \text{ for every } p \in M.$$

 $P_{|L_p}^{n_p}$ is an orientation-preserving homeomorphism, so Lemma 5 makes it obvious that for every $p \in M$, $\Gamma_{|L_p}$ is an orientation-preserving homeomorphism.

We shall prove that Γ is strictly increasing. To do this, take $v, w, z \in \mathbb{S}^1$ such that $w \in \overrightarrow{(v, z)}$ and consider the following cases

(i) $\{v, w, z\} \subset L_q$ for a $q \in M$.

If we put $t_v := \pi^{-1}(v)$, $t_w := \pi^{-1}(w)$, $t_z := \pi^{-1}(z)$, then $t_v < t_w < t_z$ or $t_w < t_z < t_v$ or $t_z < t_v < t_w$. Assume, for instance, that $t_v < t_w < t_z$ t_z and let f_q represent $\Gamma_{|L_q}$. Since $\Gamma_{|L_q}$ preserves orientation, $f_q(t_v) < f_q(t_w) < f_q(t_z)$. Moreover, by (35), $f_q(t_v), f_q(t_w), f_q(t_z) \in (t_1, t_2)$ for some t_1, t_2 such that $0 < t_2 - t_1 < 1$. This clearly forces $\tilde{\pi}(f_q(t_w)) \in (\tilde{\pi}(f_q(t_v)), \tilde{\pi}(f_q(t_z)))$ and, in consequence, $\Gamma(w) \in (\Gamma(v), \Gamma(z))$.

(ii) $\operatorname{card}(\{v, w, z\} \cap L_q) = 2$ for a $q \in M$.

By Lemmas 1 and 2 we can assume that $v, w \in L_q$. Choose $u \in L_q$

such that $w \in \overline{(v,u)}$. By (i), (35), (33), $\Gamma(w) \in \overline{(\Gamma(v), \Gamma(u))} \subset L_q$ and $\Gamma(z) \notin L_q$, which gives $\Gamma(w) \in \overline{(\Gamma(v), \Gamma(z))}$.

(iii) $\operatorname{card}(\{v, w, z\} \cap L_q) = \operatorname{card}(\{v, w, z\} \cap L_p) = 1$ for some $p, q \in M$, $p \neq q$.

In view of Lemmas 1 and 2 we may assume that $v \in L_q$, $w \in L_p$ and $v \prec w \prec z$. This clearly gives $L_q \prec L_p \prec L$, where $L := L_r$ if $z \in L_r$ for an $r \in M$ and $L := \{z\}$ if $z \in L_F$. Hence, using (35) and (33), we get $\Gamma[L_q] \prec \Gamma[L_p] \prec \Gamma[L]$ and consequently $\Gamma(v) \prec \Gamma(w) \prec \Gamma(z)$, which is our claim.

(iv) $card(\{v, w, z\} \cap L_F) = 2.$

Using again Lemmas 1 and 2 suppose that $v, z \in L_F$, $w \in L_q$ for a $q \in M$. As L_q is an open arc, $L_q \subset \overrightarrow{(v,z)}$. Hence, in view of (35) and (33), we have $\Gamma[L_q] = L_q \subset \overrightarrow{(v,z)} = \overrightarrow{(\Gamma(v),\Gamma(z))}$. From this we see that $\Gamma(w) \in \overrightarrow{(\Gamma(v),\Gamma(z))}$.

(v) $\{v, w, z\} \subset L_F$.

It is clear, since $\Gamma(v) = v$, $\Gamma(w) = w$ and $\Gamma(z) = z$.

Let us note that $\Gamma : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is a bijection. Hence and by Lemma 4 we conclude that Γ is a homeomorphism. Clearly,

(36)
$$\overline{T(p,1)} = \bar{p}, \quad p \in M.$$

Hence by (32) and (13) we have

$$T(p, n_p) = \bar{p} = \overline{T(p, 1)} = T\left(T(p, 1), \ n_{T(p, 1)}\right) = T\left(p, 1 + n_{T(p, 1)}\right)$$

and, using (31),

(37)
$$n_p = 1 + n_{T(p,1)}$$

Fix $p \in M$, $z \in L_p$. Then by (15), $P^1(z) \in L_{T(p,1)}$, so from (33), (36) and (37) we obtain

$$(\Gamma \circ P^1)(z) = \left(F^{-n_{T(p,1)}} \circ \Gamma_{\overline{T(p,1)}} \circ P^{n_{T(p,1)}+1} \right)(z)$$
$$= \left(F \circ F^{-n_p} \circ \Gamma_{\overline{p}} \circ P^{n_p} \right)(z) = (F \circ \Gamma)(z).$$

As F, P^1 and Γ are continuous and $\mathbb{S}^1 \setminus L_F$ is a dense subset of \mathbb{S}^1 we see that

$$F = \Gamma \circ P^1 \circ \Gamma^{-1}.$$

6° Define

(38)
$$F^t := \Gamma \circ P^t \circ \Gamma^{-1}, \quad t \in \mathbb{R}$$

A trivial verification shows that $\{F^t, t \in \mathbb{R}\}$ is a disjoint iteration group such that $F^1 = F$.

Note that (38) defines the general form of all disjoint iteration groups $\{F^t, t \in \mathbb{R}\}\$ such that $F^1 = F$. Indeed, suppose that $\{F^t, t \in \mathbb{R}\}\$ is such an iteration group. According to Lemmas 11 and 10 there exists an orientation-preserving homeomorphism $\Gamma : \mathbb{S}^1 \mapsto \mathbb{S}^1$ fulfilling (38) and such that $\Gamma(z) = z$ for $z \in L_F$, where $\{P^t, t \in \mathbb{R}\}\$ is an iteration group described by Lemma 13. If we put $\Gamma_q := \Gamma_{|L_q}$ for $q \in M$, then by (38), (15) and (32) we obtain (33). Moreover, it is clear that Γ_q are orientation-preserving homeomorphisms. Thus our assertion is proved.

Finally, we get

Theorem 4. Let $F : \mathbb{S}^1 \mapsto \mathbb{S}^1$ be an orientation-preserving homeomorphism with an irrational rotation number. Then F is embeddable in an iteration group if and only if F is embeddable in a disjoint iteration group.

PROOF. If $L_F = \mathbb{S}^1$, then by Theorem 2 we get our assertion. Let $L_F \neq \mathbb{S}^1$ and $\{F^t, t \in \mathbb{R}\}$ be an iteration group such that $F^1 = F$. By Lemmas 8 and 9 the set K_F has property (C). Further, similarly as in the first part of the proof of Theorem 3, we show that there exists a sequence $\{a_n\}_{n\in\mathbb{N}\setminus\{0\}}$ fulfilling (28) such that (29) holds. Theorem 3 completes the proof.

Acknowledgement. The author wishes to express his thanks to Professor M. C. ZDUN for suggesting the problem and for many stimulating conversations.

On the embeddability of a homeomorphism of the unit circle ...

References

- M. BAJGER, On the structure of some flows on the unit circle, Aequationes Math. 55 (1998), 106–121.
- [2] I. P. CORNFELD, S. V. FOMIN and Y. G. SINAI, Ergodic theory, Grundlehren 245, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [3] M. C. ZDUN, On embedding of homeomorphisms of the circle in a continuous flow, Iteration theory and its functional equations, (Proceedings, Schloss Hofen, 1984), Lecture Notes in Mathematics 1163, Springer-Verlag, Berlin, Heidelberg, New York, 1985, 218–231.
- [4] M. C. ZDUN, On the embeddability of commuting functions in a flow, Selected Topics in Functional Equations and Iteration Theory, Graz, 1991; Grazer Math. Ber. 316 (1992), 201–212.

KRZYSZTOF CIEPLIŃSKI INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY PODCHORĄŻYCH 2 PL-30-084 KRAKÓW POLAND

 ${\it E-mail: smciepli@cyf-kr.edu.pl or kciepli@wsp.krakow.pl}$

(Received January 26, 1998; revised November 3, 1998)