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On the embeddability of a homeomorphism
of the unit circle
in disjoint iteration groups

By KRZYSZTOF CIEPLINSKI (Krakéw)

Abstract. In this note the problem of the embeddability of a homeomorphism
F' of the unit circle in disjoint iteration groups is studied. For F' with an irrational
rotation number a result concerning embeddability of F' in an arbitrary iteration group
is proved as a simple consequence of the obtained theorems.

1. Introduction

Let S' = {2z € C: |z| = 1} be the unit circle with positive orientation
and F : S' — S!' be a homeomorphism.
A family {F* t € R} of homeomorphisms F* : S! — S! such that

FéoF'=Ftt  steR

is said to be a flow or an iteration group.

A homeomorphism F' is said to be embeddable in an iteration group
if there exists an iteration group {F*, ¢t € R} such that F'' = F. Then we
will say that {F* ¢t € R} is an iteration group of F.

An iteration group {F',t € R} is said to be continuous if for every
z € St the mapping t — F(2) is continuous.

An iteration group {F*,t € R} such that for every ¢t € R the following
condition holds: if F'* has a fixed point, then F = id is said to be disjoint
(see [1] and also [4]).

Mathematics Subject Classification: Primary 39B12; Secondary 58F25.
Key words and phrases: iteration group.
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According to Corollary 1 in [3], we get

Remark 1. Every continuous iteration group {F*,t € R} such that at
least one F* has not fixed points is disjoint. Thus, if a homeomorphism F
without fixed points is embeddable in a continuous iteration group, then
it is embeddable in a disjoint iteration group.

In [3] M. C. ZDUN has proved a necessary and sufficient condition for
the embeddability of a homeomorphism F' of the unit circle in a continuous
iteration group and he has given the general construction of all continuous
iteration groups {F?,¢ € R} such that F! = F. This note deals with
disjoint iteration groups.

Theorem 1 states that a homeomorphism F : S' — S! can always be
embedded in such an iteration group whenever the rotation number of F
is rational and one of its iterates equals identity. For F' with an irrational
rotation number two cases are considered. The required embedding of F'
is always possible if the limit set of F, which will be denoted by Lpg, is
equal to the whole circle S!. In this case the general form of all disjoint
iteration groups of F' is also obtained (Theorem 2). Theorem 3 shows that
the embeddability of F' with a nowhere dense limit set is equivalent to the
existence of a sequence of non-negative integers satisfying some additional
conditions. The proof of the theorem contains the general construction of
all disjoint iteration groups of F'. The paper is concluded with Theorem 4
which states that a homeomorphism F' with an irrational rotation number
is embeddable in an iteration group if and only if F' is embeddable in a
disjoint iteration group.

Throughout the paper the closure of the set A will be denoted by cl A
and we write A? for the set of all cluster points of A. ~ p stands for the
negation of p.

2. Preliminaries

Following [1] we introduce some notations and definitions.

Let # : Rt +— 2™ ¢ St and 7 := T|jo,1)- The function 7 is a
continuous bijection. Thus, if v,w, z € S!, then there exist unique t;,t5 €
[0,1) such that wn(t;) = z and wn(t2) = v. Define

v<w=<z ifandonlyif 0 <t <to
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and
v=w =Xz ifand onlyift; <ty or ts = 0.

Now we give some useful characterizations and properties of “<”
and “j”.
Remark 2. Let v,w,z € S'. If v < w < z, then v # w, w # 2, v # 2.
If v,z € S', v # 2z, then there exist t,, t, € Rsuch that ¢, <t, < t,+1
and v = 7(t,), z = 7(t,). Put
—_—

(v,2) :=A{7(t), t € (ty,t.)}-

—_—
It is clear that (v, z) does not depend on the choice of ¢, and t,.
The straightforward proofs of the following three lemmas are omitted.

Lemma 1. Let v,w,z € S'. v < w < z if and only if w € m
Lemma 2. For every v, w,z € S the following conditions are equiva-
lent:
i) v<w=<z,
(i) w=<z=<w,
(ili) z <v < w.
Lemma 3. For every v, w,z € S the following conditions are equiva-
lent:
(i) ~(v<w < 2),
(i) v=worw=zorv=zorz=<w=uv,
(iii)) z 2w < v.
As an immediate consequence of Lemmas 3 and 2 we have

Remark 3. For every v, w,z € S! the following conditions are equiva-
lent:

(i) v 2w =< z,
(il) w2z 2 v,
(iii)) z 2 v 2 w.
Let A C S! be such that card A > 3. We say that the function
¢ : A+ Sl is increasing (respectively, strictly increasing) if for every v,

w, z belonging to A such that v < w < z we have ¢(v) < p(w) = p(2)
(respectively, ¢(v) < p(w) < ¢(z)). According to Lemma 1, the map ¢ is
e

-
strictly increasing if w € (v, 2) yields p(w) € (v(v), p(2)).
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By Remark 2 we get
Remark 4. Every strictly increasing mapping is an injection.

A subset A C S! is said to be an open arc if there exist v, z € S*, v # 2
such that A = (v,—zi = {7(t), t € (tv, t,)}, where 7(t,) = v, 7(t,) = z and
0 <t,—t, <1, that is, in the notation of “<”, A ={w e S : v < w < z}.
Let us note that such a subset is non-empty, different from S', open and
connected.

It is a simple matter to show that strictly increasing mappings have
the following property

Lemma 4. Every strictly increasing function G : S' + S! such that
the image of G is a dense subset of S is continuous.

Let A := (Tz)), where v = 7(t,), z = 7(t.), 0 < t,—t, < 1, be an open
arc. The mapping F : A — S! is said to be linear if F(e>™%) = ¢2mi(aw+b)
for some a > 0, b € R and every = € (t,,t,).

It is known (see for instance [2]) that for every homeomorphism F' :
S! +— S! there exists a homeomorphism f : R +— R such that

For=fof
and
flx+1)= f(x)+1, if fis strictly increasing
and

flx+1)= f(x) —1, if f is strictly decreasing.

We will say that the function f represents the homeomorphism F. If f;
and fy represent the same homeomorphism, then f; = fo + k for a k € Z.
If f is strictly increasing we will say that the homeomorphism F' preserves
orientation.

M. BAJGER has proved that every orientation-preserving homeomor-
phism is strictly increasing (see [1]). It is easy to check that the converse
statement is also true, so we have

Remark 5. A homeomorphism F : S! — S! preserves orientation if
and only if F' is strictly increasing.

It is easily seen that for every homeomorphism F : A — B, where
A and B are open arcs, say A = {7w(t), t € (a,b)}, B = {7(t), t €
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(c,d)} there exists a unique homeomorphism f : (a,b) — (c,d) such that
(Fom)(x) = (7o f)(z) for x € (a,b). We will say that the function f
represents the homeomorphism F' and if f is strictly increasing, then we
will say that F' preserves orientation.

The following lemma is easy to check

Lemma 5 (see also Lemma 4 in [3]). Suppose that either A, B, C
are open arcs or A = B = C = S'. If f represents a homeomorphism
F: A~ B and g represents a homeomorphism G : B — C', then

(i) go f represents G o F,
(ii) f~! represents F~1.

Let us note that if {F*, ¢t € R} is an iteration group, then for every
t € R, Ft = F3 o Fz, so every homeomorphism F?' preserves orienta-
tion. Thus, if F' is embeddable in an iteration group, then it preserves
orientation.

If F:S' '+ S!is an orientation-preserving homeomorphism repre-
sented by a function f then the number a(F') € [0,1) defined by

a(F):= lim f"qu) (mod 1), z€eR

n—oo

is said to be the rotation number of F. This limit always exists and
does not depend on x and f. Moreover, «(F') is rational if and only if
F™(29) = 2o for a zg € St and an n € Z\ {0} (see [2]).

3. Main results

We begin with the case when F'is an orientation-preserving homeo-
morphism such that a(F") € Q. Let us note that if such an F is embeddable
in a disjoint iteration group, then

(1) F'(z) =z forannecZ\ {0} andevery z € S
Theorem 1. Every orientation-preserving homeomorphism F' fulfill-
ing (1) is embeddable in a disjoint iteration group.

PrROOF. Let n € N, which we may assume, be the smallest number
satisfying (1). If n = 1, then putting F* = id, t € R we get the desired
iteration group. Suppose now that n > 1. Set g(z) :=x+1, x € R and let
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a homeomorphism f : R — R representing F' be such that 0 < f(0) < 1.
Note that fog = go f and f and g have no fixed points. By Lemma 6
in [3], ¢° < f < g' and there exists an m € N such that f* = g™. In
[4] it is proved that for such homeomorphisms there exist infinitely many
disjoint iteration groups {f*,t € R} of homeomorphisms f' : R — R
such that f!' = f and g = f* for an s € R. Since g € {ff, t € R},
ftog = go ftforallt € R and the functions F'(7(x)) = 7(f*(x)),
t,x € R are homeomorphisms. Obviously, {F?, ¢t € R} is an iteration
group such that F'! = F'. What is left is to show that this iteration group
is disjoint. Let ¢t € R and zg = 7(zg) € S! be such that F'(z) = 2o,
that is 7(zg) = F'(7(x0)) = 7(f*(x)). Hence there exists a k € Z such
that fi(x¢) = mo + k = g¥(x0). Thus f* = g*, since f*, g* belong to the
iteration group {f* ¢t € R}, which is disjoint. This clearly forces F* = id.

U

From now on we assume that F' is an orientation-preserving homeo-
morphism with the irrational rotation number a(F).
Let
Cp(z) :={F"(2), ncZ}, zecS.

The set Lr := Cr(2)¢ does not depend on z, is invariant with respect to
F (that is F[Lr] = Lr) and either Ly = S! or L is a perfect nowhere
dense subset of S (see for instance [2]). In the second case we have the
following unique decomposition

(2) st \Lp = U Lyq,
€M
where L, for ¢ € M are open pairwise disjoint arcs and card M = Ry.

Lemma 6. If a(F) ¢ Q, then for every z € Lp, Lp = clCp(2).

PROOF. It is evident that for every z € Ly we have Lp = C’F(z)d C
clCp(z). Let z € Lp. Then F™(z) € L for n € Z since F|[Lp] = Lp.
Thus, Cr(z) C L and consequently clCp(z) C clLp = Lp. O

Lemma 7. Ifa(F') ¢ Q, then there exists a unique up to a multiplica-
tive constant continuous mapping ¢ from S* onto S' such that

3) p(F(2)) = m(a(F))p(z), z€Sh
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This map is increasing. Moreover, ¢ is a homeomorphism if and only if
Ly =S'.
PROOF. It is well-known (see for instance [2]) that there exists a con-

tinuous function ¢ : S — St fulfilling (3), which is a homeomorphism if
and only if Lr = S'. This map is defined by

o(2) = #(u([l,2])), ze8,

where 4 is a probability Borel measure on S' invariant with respect to F
and [17] = (—L—z_)) U {1, z}. To prove that ¢ is increasing, take v, w, z € S
such that v < w < z. In view of Lemmas 1, 2 and Remark 3 we may
assume that [1,v] C [1,w] C [1,z]. This gives 0 < p([1,v]) < p([1,w]) <
u([l,—z])) < 1 and, in consequence, ¢(v) < ¢(w) = ¢(z), which is our claim.
Assume now that 1, s : St +— S! are continuous solutions of (3) and set

)= %. Obviously, 9 is continuous and (F(z)) = ¥(z), z € S!. Hence,

(4) Y(F™(2)) =¢(2), z€S' neZ

Fix z9 € Lp, z € S'. By the definition of Ly there exists a sequence
{nk}ren C Z such that limg_,o F™ (z) = zp. Since v is continuous we
have ¥(z9) = limg_oo ¥(F™(z)) and by (4), ¥(z0) = ©¥(z). Thus ¢ is
constant and consequently ¢ = cps for ¢ = 1)(z). O

For the convenience of the reader we quote, slightly modified, four
lemmas from [1].

Lemma 8 (see [1]). Let {F',t € R} be an iteration group of F and
a(F) ¢ Q. Then there exist a continuous increasing function ¢ : St +— S!
and a function ¢ : R — S! such that

(5) ¢ (F'(2)) = c(t)p(z), z€S', teR,
(6) c(s+1t) =c(s)c(t), s,tER,

(7) plLp] =S

and

(8) c(1) = m(a(F)).

The solution ¢ of (5) is a homeomorphism if and only if Lp = S'.
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Lemma 9 (see [1]). Let {F', ¢ € R} be an iteration group of F,
a(F) ¢ Q and Ly # St. If p : St + St is a continuous increasing solution

of (5) satisfying (7) with c : R+ S, then:
a) for every ¢ € M, ¢ is constant on Ly,
)

(

(b) if V. .C S' is an open arc and ¢ is constant on V, then V C L, for
some q € M,

(c) if p # q, then [Ly) N[L,] = 0,

(d) for every ¢ € M and every t € R, there exists a p € M such that
F [Lq] = Ly,

(e) the sets Ime, p[S'\ L] are countable,

(f) ¢[S'\ Lp]-Tmc= p[S'\ LF],
where L,, ¢ € M are open arcs defined by (2).

Put
9) ®(q) :==p[Lyg], geM
and
(10) T(q,t) := ® (®(q)c(t)), g€ M, teR,

where ¢ : S — S! is a continuous solution of (5) with ¢: R +— S!.

Lemma 10 (see [1]). Assume that {F',t € R} is an iteration group
of F, a(F) ¢ Q and Ly # S'. Then there exists a unique disjoint iteration
group {R!,t € R} on S' such that

R' is linear on Ly, geM, teR,
R'[Lg) = Lr(g.1), ge M, teR,
o (R'(2)) = c(t)p(z), z€S', teR,

where ¢ : St — S!, ¢ : R — S! are solutions of (5) such that ¢ is a
continuous increasing function.

The iteration group {R’, ¢ € R} determined above is said to be the
generating iteration group of {F*, t € R}.
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Lemma 11 (see [1]). Let {F',t € R} be a disjoint iteration group of
F,a(F) ¢ Q, Lr #S! and {R!,t € R} be its generating iteration group.
Then there exists an orientation-preserving homeomorphism I' : S' +— S!
such that

FoFt=R!'ol, teR

and I'(z) = z, for all z € Lp.
First, consider the case Ly = S!.

Theorem 2. Every homeomorphism F : S* + S! such that a(F) ¢ Q
and Ly = S! is embeddable in a disjoint iteration group. The general form
of all disjoint iteration groups {F*,t € R} such that F! = F is given by
the formula

(11) F'(2) = o e(t)p(z), ze€Sh teR,

where ¢ : St — S! is a homeomorphism fulfilling (6) and ¢ : R — S! is a
function satisfying conditions (6) and (8).

PROOF. It is easy to check that formula (11) with the above-men-
tioned functions ¢ and c defines the desired iteration group. On the
other hand, from Lemma 8 we conclude that every disjoint iteration group
{F* t € R} such that F! = F is of this form. O

We now turn to the case Lp # S
Proceeding analogously to the proof of Proposition 2 in [1] we obtain

Lemma 12. Let o(F) ¢ Q, Ly # S and ¢ : S* — S! be a continuous
increasing solution of (3). Then conditions (a), (b), (¢) hold and
(d’) for every q € M there exists a p € M such that F|Ly| = L,
(e’) the set
KF =@ [Sl \LF]

is countable.

It follows by Lemma 7 that for every homeomorphism F' with irra-
tional rotation number the set K is determined uniquely up to a multi-
plicative constant.

Lemmas 8 and 9 show that if a homeomorphism F' such that a(F') ¢ Q
is embeddable in an iteration group, then the set Kz has the following

property
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(C) there exists a function ¢ : R + S! satisfying conditions (6) and (8)
such that card Im ¢ = ¥y and

Assuming further that K has this property we define a function ®
by (9). It follows from Lemma 12 that ® is a bijection of M onto Kp.
According to (12) we may define a map T': M xR — M by (10). An easy
computation shows that T satisfies the translation equation

(13) T(T(q,s),t)=T(q,s+t), qe€ M, s,teR.
At present we will construct some special disjoint iteration group
{P', t € R}.

Lemma 13. Assume that o(F) ¢ Q, Lr # S* and ¢ : St +— St is a
continuous solution of (3). Moreover, let Kp has property (C). Then there
exists the unique family {P*',t € R} of continuous functions such that

(14) P! is linecaron L, q€ M, t€R
and
(15) P' Ly =Lrgs, q€M, teR.

This family is a disjoint iteration group of homeomorphisms.

PROOF. Let z¢ € [0,1) be such that w(xg) =: z0 € Lp. Put v(z) :=
7(z)z0, that is v(z) = T(x + x0), z € [0,1). Setting L' := v=[Lg] N (0,1)
we have the following decomposition

on\L =[] L,

qeEM

where L} := v~ ![Ly], ¢ € M. Since 2o ¢ Lq, ¢ € M, L], are open intervals.
Moreover, L; are pairwise disjoint. Let [, for ¢ € M, t € R be the unique
strictly increasing linear function such that

(16) lq.t [L;] = L.F(q,t)-
Define

(17) Bi(z) == (V olgio Vﬁj}) (2), z€lLy tekR.
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Hence, by (16), we have
(18) Bi[Ly| = Lrge, qe€M,teR
and, taking in (18) ¢ := T'(p, —t) and using (13),
(19) B, [S'"\Lr] =S"\Lp, teR

We first prove that By : S' \ Lp + S\ Lp, t € R is strictly increasing.
Indeed, fix t € R, v,w, 2z € S'\ Ly such that v < w < z (that is, w € (vfzj)
and consider three cases.

(i) {v,w,z} C L, for a ¢ € M.
Let v = v(ty), w = v(tw), 2 = v(t,). We can certainly assume that
ty,ty,t. € (0,1), because zy ¢ L,. Hence,

v i) < v Hw) < vi(2),

and consequently by the fact that [, is strictly increasing and (17) we
obtain
Bt(’U) =< Bt('UJ) =< Bt(Z)

(ii) card({v,w, 2z} N Ly) =2 for a ¢ € M.
Using Lemma 2 assume, for example, that v,w € Ly, 2z € L, for a p € M,
--
p # q. Take u € L, such that w € (v,u). By (i) we get

(20) Bi(w) € (Bi(v), Bi(w))-

From (18), Bi(u), Bt(v), Bi(w) € Ly, Bi(2) € Lppy). Moreover,
T(q,t) # T(p,t). Hence and by (20) we obtain

S

Bi(w) € (B(v), Bi(2)).

(iii) card({v,w, 2z} N Ly) < 1 for every ¢ € M.
Suppose that v € Ly, w € Ly,z € L, for p,q,r € M, p#q,q#r, p#r.
Let us note that L, < L, < L, (that is for every v € Ly, w € Ly, z € L,
we have v < w < z). Using the monotonicity of ¢ and Lemma 12 we get
[Lq) < ¢[Lp] < ¢[L,]. Thus by (9) and (10) we have

(21) L1 < e[Lrpy] < elLrep]-
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Suppose that Lp.¢) = L) = Ly, that is, by Remark 3, Ly, =
LT(nt) j LT(p,t)~ Then

O[Lrgn] 2 elLrey] 2 e[Lrpyl

which, by Lemma 3 and Remark 3, contradicts (21). Hence, again by
Lemma 3 we have Lpg¢) < Lrpt) < Lr(re)-

Our next goal is to extent B; to the monotonic function P! of the
entire circle S'. For this purpose, fix t € R, w € Ly and choose a sequence
{wn }nen C S'\ L such that

(wo, wy,) C (wo,w), (wo,w,) C (wo, wn41), forn e N\ {0}

and

oo
U w07wn - ’LUO, )

Since By : S\ Ly — S\ L is strictly increasing, |J)~; (Bi(wo), Bi(wy,))
—

is an open arc, say (Bi(wg),a). It is easily seen that a does not depend on

the choice of the sequence {wy, }nen. Define P'(w) := a and

(22) P'(2) := Bi(2), z€S'\Lp, teR.
We will prove that
(23) P'Lr] C Lp.

Suppose, contrary to our claim, that there exists a w € Lp such that
Pt(w) € S'\ Lr. Then by (19), B;(z) = P!(w) for a z € S' \ Lp. Take
v € S'\ Lp such that w ¢ (Tz; and let {w,, }en be the above-described
sequence. Hence

—_—
m := card((v, z) N {wy }nen) < Vo

and
card((Bi(v), By(2)) N {Bi(wy) }nen) = m

since By is strictly increasing. This contradicts the fact that

U (Bi(wo), Bi(wn)) = (Bi(wo), P'(w)) = (Bi(wo), By(=)).
n=1



On the embeddability of a homeomorphism of the unit circle ... 375

Now we shall show that P! are strictly increasing. To do this, take
v,w,z € S! such that v < z < w and consider three cases:

(i) card({v,w,z} N Lp) = 1.
In view of Lemma 2 we may assume that w € Lp. From (22), Remark 4,
(19) and (23) we have

(24)  P'(v) # P'(2), P'(0) # P'(w) and P'(z) # P'(w),

since v,z € S'\ Ly, w € Lp. Suppose that P!(w) < P!(z) < P!(v), that
is by Lemmas 2 and 1, P'(w) € (P'(v), P!(z)). Let n € N\ {0} be such
that z € m and P'(w,) € (P'(v), P*(w)). Hence, by the fact that
(Pt(v), Pt(w)) C (P'(v), P!(2)) we get P'(w,) € (P'(v), P!(2)). On the
other hand, P!(z) € (P!(v), P(wy)), since z,v,w, € S\ Ly and P! is
strictly increasing on S!\ Lr. But, in view of Lemmas 1 and 2, this is
impossible. Thus, using Lemma 3 and (24), we infer that P*(v) < P!(z) <
PY(w).
(ii) card({v,w, 2z} N Lp) = 2.
According to Lemma 2 we can assume that z,w € Lgp. Choose x,y €
S\ Lp such that v € (w—,z)) C (Ty)) Hence, w € (x,v),z € (v,y) and,
by the monotonicity of P! on S'\ Lr, P!(v) € (P!(x), P!(y)). By proved
case (i), we obtain P'(w) € (P'(x), P'(v)) and P'(z) € (P'(v), P'(y)).
Consequently, P'(v) € (P'(w), P*(z)), which, by Lemmas 1 and 2, is our
claim.
(iii) {v,w, 2z} C Lp.

As in case (ii), choose x,y € S'\ Lr such that v € (w—,z)> C (Tys
Hence, using proved case (i), P*(v) € (P'(z), P'(y)) and, by (ii), P*(w) €
(P'(x),P*(v)) and P*(2)e(P!(v),P'(y)). Therefore P!(v)e(P'(w),P!(z)),
which, by Lemmas 1 and 2, is our assertion.

Thus, we have shown that P! is strictly increasing.
Note that by (22) and (18) we get (15). Moreover, (22) and (19) give

S'\Lp=P'[S'\L¢] C P'[S'], teR.

Since Lp is a perfect nowhere dense subset of S, the set P![S!] is dense
in S' and Lemma 4 shows that every P! is continuous.
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Fix now g € M, t € R. Let L, = (v, 2), where v = 7(t,), z = 7(t,),
0<t,—t, <1landletl,(z) =ax+b, v € L, where a > 0. Using (22)
and (17) we have

P (v(z)) = v(lge(@)), w € Ly
Putting y := = 4+ x(, we have
Pt(62ﬂ'iy) — 627r7l(ay—a:ro—‘,—b—‘,-mo)7 y e (tva tz),

and (14) is proved.

Suppose now that P!, R! are continuous functions fulfilling (14) and
(15). Then Pt(e?™®) = e?™Pat(®) and RY(e?™7) = e?™ma.t(®)  where
Pgt:Tqt : (tu,t;) — R are strictly increasing linear functions. Hence,
by (15), pgs = rqs + k for a k € Z and consequently P = Rj, . As P",

R! are continuous functions and S'\ L is a dense subset of S' we have
P! = R'.
Let us note that

(25> lT(q,s),t © lq,s = lq,t-i—s, q€ M, s, teR.
In fact, by (16) and (13),

(lT(q,S)vt © lq,S) [L;} = lg,t+s [L;] , g€ M, s, teR

and (25) follows, since Ip(qs),: ©lg,s and g 14 are strictly increasing linear
functions. Fix ¢ € M, z € L, s,t € R. Using (22), (17), the fact that
P?*(z) € Lp(g,s) and (25) we obtain
(P'o P%)(2) = (Bt o(volyso 1/71)) (2)
= (y 0 lp(g,s),t ©lg,s © y—l) (z) = (l/ 0lg s+t © 1/—1) (2) = P*T(2).
Hence,
(26) PloPs =Pt s teR,

since every P! is continuous and S' \ L is dense in S*.

Let ¢ be a continuous solution of (3) and z € S'\ Lp. Then z € L,
for a ¢ € M and, by (15), P'(z) € Ly(q). Hence, by Lemma 12, (9) and
(10), we get
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and
¢ (P'(2)) = ¢ [Lrgn] = ®(T(g, 1)) = ®(q)c(t).

Consequently, by the continuity of , P! and the density of S*\ Lz in S!,
(27) o (P'(2)) = p(2)c(t), z€S', teR,

The proof is completed by showing that the family { P?, ¢ € R} is a disjoint
iteration group. To do this suppose that Pt(vg) = v for a vg € S' and
at € R. Then from (27), ¢(t) = 1 and by (10), T(q,t) = q, ¢ € M.
Consequently, by (15), P*[L,] = L4, ¢ € M. Hence, by the linearity
of P* on Ly, P'(z) = z for z € S* \ Ly and further by the continuity

of Pt,P!(z) = z for z € S'. Finally, P! are homeomorphisms, since
St = PP~YSY] c P[SY] c St (PY)~! = P~t and P! are continuous for
teR. Il

For every sequence {an }nen {0} such that
(28) an €40,....,n—1}, agn = a, (mod n), k,neN\ {0}
define
. m
As({ax}) == {7r (—s + Ecm) , ne N\ {0}, me Z}, seR.

With the notation N!:= {n!, n € N}, we have

Lemma 14. The general form of all sequences {a, },en\ (o} fulfilling
(28) is given by taking
choosing inductively
ant := Q(p—1y + (0 — D)lky, kp €{0,...,n =1} forn>1
and defining
ay as the rest from the division a, by n, for n ¢ N!.

The simple proof is omitted.
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Lemma 15. For every s € R and every sequence {a, }nen {0} satisfy-
ing (28) there exists a function ¢ : R +— S! such that condition (6) holds,
¢(1) = 7(s) and

Ime = As({ax}).

PROOF. Let {an}nen {0} be an arbitrary sequence fulfilling (28). De-
note by H a Hamel basis such that 1 € H. Then every real number ¢ can
be expressed in the form

t=> ra(t)h,

heH

where 7, (t) € Q and almost every r,(t) = 0. It is evident that the function
r1 : R — Q is additive and (1) = 1.
Put
m m

b(ﬁ) ::fr(gs+%an>, n € N\ {0}, m € Z.

Using (28) it is easy to check that

b(x +y) =b(x)b(y), =, yeQ.

A trivial verification shows that the function c: R — S' given by
c(t) :==b(ri1(t)), teR

is such that Imec = Ag({ax}), ¢(1) = 7(s) and condition (6) holds. O

Let us recall that for every homeomorphism F' such that a(F) ¢ Q
and Lr # S! we have defined the set Kr = ¢[S!\ Lr|, where ¢ : St — S!
is a continuous solution of (3). Since ¢ is unique up to a multiplicative
constant, so is Kp.

Theorem 3. Let a(F) ¢ Q and Lr # S'. Then the homeomorphism
F' is embeddable in a disjoint iteration group if and only if there exists a
sequence {an }nen\ {0} Satisfying (28) and such that

(29) KF . Aa(p)({ak}) = KF

PROOF. Necessary condition. Let F' be embeddable in a disjoint it-
eration group {F?, t € R}. Lemmas 8 and 9 show that Kr has property
(C). By (6) we get

(30) c(mt) =c(t)™, meZ, teR.
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Let n € N\ {0}. Using (30) we have ¢(1) = ¢()™, hence by (8) there
exists an a, € {0,...,n — 1} such that ¢(1) = fr(# + “=). Since
o(2)=c(E)r = ﬁ(@ + ®n) we see that ag, = a, (mod n). Thus, the
sequence {an }nen\ (o} satisfies (28). Using again (30) we obtain ¢(Q) =
Aq(ry({ar}). Hence, by the fact that 1 € A (p)({ar}) and (12),

Kr C KF-AQ(F)({ak}) C KF-Imc:KF,

which gives our assertion.

Sufficient condition. We shall construct a disjoint iteration group
{F*', t € R} such that F'' = F. To do this we give

The general construction of all disjoint iteration groups {F*', t € R}
such that F' = F.

1° Let ¢ : R — S! be a function such that Im ¢ is a countable set and
conditions (6), (8), (12) hold. It follows from our assumption that every
function ¢ : R — S' fulfilling (6), (8) and such that Imc = Ay ) ({ax})
has this property. Let us note that Lemma 15 ensures the existence of
such a function c.

2° Define the function ® : M — Kp by (9), where ¢ : St — S! is
a continuous increasing solution of (3) and Ly,q € M are open pairwise
disjoint arcs such that (2) holds. The function 7" : M x R +— M given by
(10) satisfies the translation equation (13).

3° Let {P',t € R} be an iteration group described by Lemma 13. We
can apply this lemma because K has property (C), which follows from 1°.

4° Define the following relation on M

p~qeIneZ q=T(p,n).

It is easy to check that “~” is an equivalence relation. Let A be an arbi-
trary set which has exactly one point in common with every equivalence
class. Put

p:=[p]NA, peM.

Fix n,m € Z, p € M. Let us note that
(31) if T(p,n) =T(p,m), then n=m.

Indeed, let T'(p,n) = T'(p,m). Then we conclude from (10) that c¢(n) =
c(m), hence using (6) and (8), that m(a(F'))" = 7(a(F))™, and finally,
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that n = m, since a(F) ¢ Q. By (31), for every p € M there exists exactly
one n, € Z such that

(32> p= T<p7np)'

5° Let I'y : Ly — L4 for ¢ € A be arbitrary orientation-preserving
homeomorphisms. Define

(F~" o Tyo P™)(2), z€ Ly,
2, A LF.

(33) ['(z) := {
We will show that
(34) F"[L, = Lrpny, mneZ, peM.

Fix p € M. According to Lemma 12 there exists a ¢ € M such that
F|[L,] = L,. Consequently by (9), (3) and (8) we have

®(q) = ¢lLq] = pF[Lp]] = m(a(F))p[Ly] = c(1)®(p)

and (10) now yields F'[L,] = Ly, 1). Hence by induction and (13) we get
(34). Let us observe that by (15), (32), (34) and (13),

(35) I'[Ly) =L, foreverype M.

P‘pr is an orientation-preserving homeomorphism, so Lemma 5 makes it
obvious that for every p € M, I'|z  is an orientation-preserving homeo-
morphism.

We shall prove that I' is strictly increasing. To do this, take v, w, z €

—_—
St such that w € (v, 2) and consider the following cases

(i) {v,w,z} C L, for a g € M.
If we put t, := 7 1(v), ty = 7 Y(w), t. := 7 1(2), then t, < t, < t.
or ty < t, <t,ort, <t, <ty,. Assume, for instance, that t, < t,, <
t. and let f; represent I'|; . Since I'|; preserves orientation, fq(t,) <
fq(tw) < fq(ts). Moreover, by (35), fq(ty), fq(tw), f¢(t:) € (t1,t2) for
some t1, to such that 0 < ¢ —¢; < 1. This clearly forces 7(f,(tw)) €

—_—

(7(fq(ty)), T(fy(t2))) and, in consequence, I'(w) € (I'(v),T'(2)).

(ii) card({v,w, 2z} N Ly) =2 for a ¢ € M.
By Lemmas 1 and 2 we can assume that v,w € L;. Choose u € L,
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- —_—
such that w € (v,u). By (i), (35), (33), I'(w) € (I'(v),I'(u)) C L, and
—_—

I'(z) ¢ Ly, which gives I'(w) € (I'(v),I'(2)).

(iii) card({v,w,z}NLy) = card({v,w, z}NL,) =1 for some p,q € M,

pPFaq

In view of Lemmas 1 and 2 we may assume that v € L,, w € L, and
v < w < z. This clearly gives L, < L, < L, where L := L, if z € L, for
an r € M and L := {z} if = € Lr. Hence, using (35) and (33), we get
I'[L,] < T'[Lp] < I'[L] and consequently I'(v) < I'(w) < I'(z), which is our
claim.

(iv) card({v,w,z} N Lp) = 2.
Using again Lemmas 1 and 2 suppose that v,z € Lp, w € L, for a g € M.

—_—

As L, is an open arc, Ly C (v,z). Hence, in view of (35) and (33), we
have I'[Ly] = Ly C (v,2) = (I'(v),[(2)). From this we see that I'(w) €
_—
(I'(v),I'(2)).

(V) {U,’UJ,Z} C LF-
It is clear, since I'(v) = v, I'(w) = w and T'(2) = z.

Let us note that I : S! — S! is a bijection. Hence and by Lemma 4
we conclude that I is a homeomorphism. Clearly,

(36) T(p,1)=p, peM.

Hence by (32) and (13) we have

T(pa np) =p= T(p7 1) =T (T(pa 1)7 7,LT(;I),I)) =T (p7 1+ nT(p,l))
and, using (31),
(37) np = 1+npp)-

Fix p € M, z € Ly,. Then by (15), P*(z) € Ly(,1, so from (33), (36) and
(37) we obtain

(P © Pl) () = (F_nT(p'” o Pmo PnT(Pvl)‘H) (2)
= (FoF ™" olyoP™)(z) = (Fol)(z).
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As F, P! and T are continuous and S' \ Lr is a dense subset of S* we see
that

F=ToPlol %L
6° Define
(38) F':=ToP'ol'', teR

A trivial verification shows that {F*, ¢t € R} is a disjoint iteration group
such that F! = F.

Note that (38) defines the general form of all disjoint iteration groups
{F!, t € R} such that F! = F. Indeed, suppose that {F* t € R} is
such an iteration group. According to Lemmas 11 and 10 there exists
an orientation-preserving homeomorphism I' : S! — St fulfilling (38) and
such that I'(z) = z for z € L, where {P?, t € R} is an iteration group
described by Lemma 13. If we put I'; := I'|p_ for ¢ € M, then by (38),
(15) and (32) we obtain (33). Moreover, it is clear that I'; are orientation-
preserving homeomorphisms. Thus our assertion is proved. O

Finally, we get

Theorem 4. Let F : S' — S! be an orientation-preserving homeo-
morphism with an irrational rotation number. Then F' is embeddable in
an iteration group if and only if F' is embeddable in a disjoint iteration

group.

PRrROOF. If Lp = S', then by Theorem 2 we get our assertion. Let
Ly # St and {F',t € R} be an iteration group such that F'* = F. By Lem-
mas 8 and 9 the set K has property (C). Further, similarly as in the first
part of the proof of Theorem 3, we show that there exists a sequence
{an}nem {0y fulfilling (28) such that (29) holds. Theorem 3 completes the
proof. O
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