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A general stability result
in the class of Lipschitz functions

By JACEK TABOR (Kraków)

Abstract. We prove that a large class of functional equations in the class of
functions with bounded Lipschitz constant is stable in the Hyers–Ulam sense. However,
we do not obtain uniqueness and bounds on approximation as the method we use is not
constructive.

As a direct corollary we obtain stability of the isometry equation on compact met-
ric spaces and a stability-type result of the Hosszú functional equation on the interval
[0, 1].

1. Introduction

It is well known (cf. [2]) that every function h : R→ R satisfying the
Hosszú’s equation, that is the equation

h(x + y − xy) + h(xy)− h(x)− h(y) = 0 for x, y ∈ R

is a sum of an additive function and a constant.
Since the interval [0, 1] is closed under operations operations (x, y) →

xy, (x, y) → x + y − xy one can study the Hosszú’s equation on [0, 1].
K. Lajkó proved in [3] that if a function h satisfies the Hosszú’s equation
on the unit interval then h is a sum of an additive function and a constant
on (0, 1).

After characterisation of the solutions of the Hosszú functional equa-
tion was given there naturally appeared the question of its stability. L. Lo-

sonczi proved in [4] that the Hosszú’s equation on R is stable in the
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Hyers–Ulam sense, i.e. he obtained the following:

Theorem L. If X is a Banach space and f : R → X satisfies the
functional inequality

‖f(x + y − xy) + f(xy)− f(x)− f(y)‖ ≤ ε for x, y ∈ R

with an ε ≥ 0, then there exists a unique function h : R → X satisfying
the Hosszú’s equation such that

‖f(x)− h(x)‖ ≤ 20ε for x ∈ R.

We mention that the constant 20 appearing in the above Theorem
was improved to 4 by P. Volkmann
(www.mathematik.uni-karlsruhe.de/∼semlv).

What is surprising, the Hosszú functional equation occured not to be
stable on the interval [0, 1] (cf. [6]):

Theorem T. Let ε > 0 be arbitrary. Then for every δ > 0 there
exists a continuous bounded function hδ : [0, 1] → R which satisfies the
inequality

|hδ(x + y − xy) + hδ(xy)− hδ(x)− hd(y)| ≤ δ for x, y ∈ [0, 1],

but such that for every solution H : [0, 1] → R of the Hosszú’s functional
equation

sup
x∈X

|hδ(x)−H(x)| ≥ ε.

By examining the construction of the functions hδ one can easily no-
tice that with δ decreasing to zero the Lipschitz constant of the function
hδ increases to ∞.

The main motivation behind the present paper was to check whether
this behaviour is really essential. In other words, can the functions hδ in
Theorem T be constructed in such a way that their Lipschitz constants
are uniformly bounded from above?

We show in Corollary 3, that the answer is negative. What is even
more interesting, Theorem 1 and Theorem 2 prove that analogous situa-
tion (that is Hyers–Ulam stability in the class of Lipschitz functions with
Lipschitz constant bounded from above by a given real number) appears
for quite a large family of functional equations. In particular as a corollary
we obtain the stability of isometry equation and of Lipschitz functions on
the compact sets.
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2. Stability results

The following definition formalizes the notion of approximately double
Lipschitz functions.

Definition 1. Let δ ≥ 0 and let K, L ∈ R+. Let X, Y be metric spaces
and let f : X → Y . We write that f ∈ Lip(δ; K, L) iff

Kd(x, y)− δ ≤ d(f(x), f(y)) ≤ Ld(x, y) + δ for x, y ∈ X.

One can easily notice that a 0-Lipschitz function is simply a Lipschitz
function.

If X is a set, and Y a metric space then for functions f, g : X → Y

we define the distance

dsup(f, g) := sup
x∈X

d(f(x), g(x)).

Notice that dsup(f,g) can equal +∞.

Proposition 1. Let X, Y be a compact metric spaces. Let {δn}n∈N ⊂
R+ be a sequence such that

lim
n→∞

δn = 0.

Let K, L ∈ R and let fn : X → Y be a sequence of functions such that

fn ∈ Lip(δn; K, L). Then there exists an increasing sequence {nk}k∈N of

integers and a function F : X → Y , F ∈ Lip(0; K, L) such that

(1) lim
k→∞

dsup(fnk
, F ) = 0.

Proof. Let D be a dense countable subset of X. As Y is compact,
applying the Cantor’s diagonal procedure we can find an increasing se-
quence {nk}k∈N of integers such that {fnk

(d)}k∈N is convergent for every
d ∈ D. We define

FD(d) := lim
k→∞

fnk
(d) for d ∈ D.
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We show that FD : D → Y is Lipschitz with constant L. Let c, d ∈ D be
arbitrary. Then

d(FD(c), FD(d)) = lim
k→∞

d(fnk
(c), fnk

(d))

≤ lim
k→∞

(Ld(c, d) + δnk
) = Ld(c, d).

As D is dense in X and FD is Lipschitz with constant L there exists a
unique continuous function F : X → Y such that

F |D = FD.

Moreover, F is Lipschitz with constant L.
Now we are going to prove that F ∈ Lip(0; K, L). Let x, y ∈ X be

arbitrary and let δ > 0. Then there exist xδ, yδ ∈ D such that d(x, xδ) +
d(y, yδ) ≤ δ. Then

d(F (x), F (y)) ≥ d(F (xδ), F (yδ))− d(F (xδ), F (x))− d(F (yδ), F (y))

≥ lim inf
k→∞

d(fnk
(xδ), fnk

(yδ))− Lδ

≥ lim inf
k→∞

(Kd(xδ, yδ)− δnk
)− Lδ ≥ Kd(xδ, yδ)− Lδ

≥ Kd(x, y)−K(d(x, xδ) + d(y, yδ))− Lδ

≥ Kd(x, y)− (K + L)δ.

As δ > 0 was arbitrary and F is Lipschitz with constant L it proves that
F ∈ Lip(0; K, L).

Now we will show that F satisfies (1). Let δ > 0 be arbitrary. We
can find a finite subset Dδ of D which is δ net in X. As Dδ is finite there
exists k0 ∈ N such that

d(fnk
(d), F (d)) ≤ δ for k ≥ k0, d ∈ Dδ.

Obviously there exists k1 ∈ N such that δnk
≤ δ for k ≥ k1. Then

fnk
∈ Lip(δ; 0, L) for k ≥ k1.
Let x ∈ X and let k ≥ max{k0, k1} be arbitrarily chosen. As Dδ is a

δ-net there exists dx ∈ Dδ such that

d(x, dx) ≤ δ.
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Then

d(fnk
(x), F (x)) ≤ d(fnk

(x), fnk
(dx))+d(fnk

(dx), F (dx))+d(F (dx), F (x))

≤ (Ld(x, dx) + δ) + δ + Ld(x, dx) ≤ (2L + 2)δ.

As δ was chosen arbitrarily we obtain (1). ¤

By S(X, Y ) we denote the topological space of all functions from X

to Y with the topology generated by dsup, that is fn → f in S(X,Y ) iff
dsup(fn, f) → 0.

Theorem 1. Let X, Y be compact metric spaces and let S be a closed

subspace of S(X, Y ). Let F : S → [0,∞] be a continuous function.

Let K, L ∈ R+ be arbitrarily fixed. Then for every ε > 0 there exists

δ > 0 such that for every function h ∈ S, h ∈ Lip(δ;K,L) satisfying

(2) F(h) ≤ δ

there exists a function H ∈ S, H ∈ Lip(0; K, L) such that

F(H) = 0

and

(3) dsup(h,H) ≤ ε.

Proof. Suppose, for contradiction, that the assertion of Theorem 1
does not hold. Then there exist ε > 0, a sequence of functions {hn}n∈N ⊂ S

and a sequence {δn}n∈N ⊂ R, lim
n→∞

δn = 0 such that hn ∈ Lip(δn; K, L),

F(hn) ≤ δn

but

(5) dsup(hn,H) ≥ ε

for every n ∈ N and every function H ∈ S, H ∈ Lip(0; K, L) satisfying
F(H) = 0.
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We can apply Proposition 1 to the sequence hn and conclude that
there exists a function H : X → Y , H ∈ Lip(0;K,L) and an increasing
sequence {nk} of integers such that

(6) lim
k→∞

dsup(H, hnk
) = 0.

Since S is closed we obtain that H ∈ S. Moreover, by the continuity of F
and (4) we get

F(H) := lim
k→∞

F(hnk
) = 0.

Now, if k is large enough then

dsup(hnk
,H) < ε (and F(hnk

) ≤ δnk
)

which contradicts to (5), proving Theorem 1. ¤

Theorem 2. Let X be a compact metric space, let Y be a finite

dimensional normed space. Let S be a closed subspace of S(X, Y ) and let

F : S → R be a continuous function. We additionally assume that for

every constant function c : X → Y

(7) h + c ∈ S and F(h + c) = F(h) for h ∈ S.

Let K, L ∈ R+ be arbitrary. Then for every ε > 0 there exists δ > 0
such that for every h ∈ S, h ∈ Lip(δ; K, L) satisfying

(8) F(h) ≤ δ

there exists a function H ∈ S, H ∈ Lip(0; K, L) such that

F(H) = 0

and

(9) dsup(h,H) ≤ ε.

Proof. Let ε > 0 be arbitrarily fixed and put
S̃ := S ∩S(X, B(0, L diam(X) + 1)), where B(0, r) denotes the closed ball
with the center 0 and radius r. As Y is a finite dimensional normed vector
space, B(0, L diam(X) + 1) is a compact set, and therefore by Theorem 1
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there exists δ̃ > 0 such that for every function h̃ ∈ S̃, h̃ ∈ Lip(δ̃; K,L)
satisfying

(10) F(h̃) ≤ δ̃

there exists a function H̃ ∈ S̃, H̃ ∈ Lip(0; K, L) such that

(11) F(H̃) = 0

and

(12) dsup(h̃, H̃) ≤ ε.

We put δ := min{1, δ̃}. We show that δ satisfies the assertion of our
Theorem. Let x0 ∈ X be fixed and let h ∈ S, h ∈ Lip(δ; K,L) be arbitrary
function such that

F(h) ≤ δ.

Let h̃ := h− h(x0). Then clearly by the assumptions h̃ ∈ S̃ ⊂ S and

(13) F(h̃) = F(h− h(x0)) = F(h) ≤ δ ≤ δ̃.

Obviously h̃ ∈ Lip(δ,K,L) and therefore for x ∈ X

‖h̃(x)‖ = ‖h(x)− h(x0)‖ ≤ Ld(x, x0) + δ ≤ Ldiam(X) + 1

This implies that h̃ : X → B(0, L diam(X) + 1), and hence h̃ ∈ S̃. Now
by the first part of the proof we obtain that there exists H̃ ∈ S̃, H̃ ∈
Lip(0;K, L) such that H̃ satisfies (11) and (12). We put H := H̃ + h(x0).
Then one can easily check that H satisfies the assertions of the theorem.

¤

3. Applications

At first we will show corollaries of Theorems 1 and 2 dealing with the
stability of the Lipschitz and isometric functions.
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Corollary 1. Let L ∈ R+. Let X be a compact metric space and let
Y be either a compact metric space or a finite dimensional normed vector
space.

Then for every ε > 0 there exists δ > 0 such that for every f : X → Y ,
f ∈ Lip(δ; 0, L) there exists a Lipschitz function F : X → Y with constant
L such that

d(f(x), F (x)) ≤ ε for x ∈ X.

Proof. We put K = 0, L = L and define the function F : S(X, Y ) →
[0,∞] by the formula

F(h) = 0 for h ∈ S(X,Y ).

Theorems 1 and 2 make the proof complete. ¤
Before the next corollary we first have to introduce the definition of

approximately isometric functions (see [1]):

Definition 2. Let X,Y be metric spaces and let ε ≥ 0. We say that
f : X → Y is an ε-isometry if

d(x, y)− ε ≤ d(f(x), f(y)) ≤ d(x, y) + ε for x, y ∈ X.

For some recent results on ε-isometries we refer the reader to [5].
We would like to mention that without the surjectivity assumption the
isometry equation is in general not stable in the Hyers–Ulam sense. In the
following corollary we show that when the domain space is compact it is
not the case.

Corollary 2. Let X be a compact metric space and let Y be either a
compact metric space or a finite dimensional normed vector space.

Then for every ε > 0 there exists δ > 0 such that for every δ-isometric
function i : X → Y there exists an isometry I : X → Y such that

d(i(x), I(x)) ≤ ε for x ∈ X.

Proof. We put K = L = 1 and define the function F as in the
previous corollary. One can easily notice that a function f is δ-isometry
iff f ∈ Lip(δ; 1, 1). Theorem 1 and 2 make the proof complete. ¤

As our results originated from the investigation of the Hosszú func-
tional equation we will now show a corollary dealing with its stability.
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Corollary 3. Let L ∈ R+ be arbitrarily fixed and let Y be a finite
dimensional normed vector space.

Then for every ε > 0 there exists δ > 0 such that for every function
h : [0, 1] → Y , h ∈ Lip(δ; 0, L) satisfying

‖h(x + y − xy) + h(xy)− h(x)− h(y)‖ ≤ δ for x, y ∈ [0, 1],

there exists a Lipschitz with constant L function H : [0, 1] → Rn satisfying
the Hosszú functional equation and such that

‖h−H‖sup ≤ ε.

Proof. We show that Theorem 2 can be applied.
We put X = [0, 1], and define the function F : S(X, Y ) → [0,∞] by

the formula

F(h) := sup
x,y∈[0,1]

‖h(x + y − xy) + h(xy)− h(x)− h(x)‖

for h ∈ S(X, Y ). Obviously a function h satisfies the Hosszú equation iff
F(h) = 0.

One can easily notice that F is a continuous function such that for
every constant function c : X → Y

F(h + c) = F(h) for h ∈ S(X,Y ).

Thus we have shown that all the assumptions of Theorem 2 are satis-
fied. Now the assertion of the Corollary follows trivially from Theorem 2.

¤
The following corollary deals with the stability of the Jensen func-

tional equation, however we omit the proof as it is analogous to the previ-
ous one.

Corollary 4. Let L ∈ R+ be arbitrary and let K be a compact convex
set in a Banach space.

Then for every ε > 0 there exists δ > 0 such that for every j : K → Rn,
j ∈ Lip(δ; 0, L) satisfying

∥∥∥∥j(
x + y

2
)− j(x) + j(y)

2

∥∥∥∥ ≤ d for x, y ∈ K,

there exists a Jensen function J : K → Rn such that

‖j(x)− J(x)‖ ≤ ε for x ∈ K.
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