On some tangency relation of sets

By TADEUSZ KONIK (Czȩstochowa)

Abstract

In this paper the problem of the tangency relation $T_{l}(a, b, k, p)$ of sets of the classes $A_{p, k}^{*}$ having the Darboux property in a generalized metric space (E, l) is considered. Some conditions for this tangency relation will be given here.

Introduction

Let E be an arbitrary non-empty set and let l be a non-negative real function defined on the Cartesian product $E_{0} \times E_{0}$ of the family E_{0} of all non-empty subsets of the set E.

Let l_{0} be a function defined by the formula

$$
\begin{equation*}
l_{0}(x, y)=l(\{x\},\{y\}) \quad \text { for } x, y \in E . \tag{1}
\end{equation*}
$$

If we put some conditions on the function l, then the function l_{0} defined by (1) will be a metric of the set E. For this reason the pair (E, l) can be treated as a certain generalization of a metric space and we shall call it (see [9]) generalized metric space. Using (1) we may define in the space (E, l), similarly as in a metric space, the following notions: the sphere $S_{l}(p, r)$ and the ball $K_{l}(p, r)$ with centre at the point p and radius r.

Let $S_{l}(p, r)_{u}$ denote the so-called u-neighbourhood of the sphere $S_{l}(p, r)$ in the space (E, l) defined by the formula:

$$
S_{l}(p, r)_{u}= \begin{cases}\bigcup_{q \in S_{l}(p, r)} K_{l}(q, u) & \text { for } u>0 \tag{2}\\ S_{l}(p, r) & \text { for } u=0\end{cases}
$$

Mathematics Subject Classification: 53A99.
Key words and phrases: tangency relation, generalized metric spaces.

Let k be a fixed positive real number and let a, b be arbitrary nonnegative real functions defined in a certain right-hand side neighbourhood of 0 such that

$$
\begin{equation*}
a(r) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \quad \text { and } \quad b(r) \xrightarrow[r \rightarrow 0^{+}]{ } 0 . \tag{3}
\end{equation*}
$$

We say that the pair (A, B) of the sets $A, B \in E_{0}$ is (a, b)-clustered at the point p of the space (E, l), if 0 is a cluster point of the set of all real numbers $r>0$ such that $A \cap S_{l}(p, r)_{a(r)} \neq \emptyset$ and $B \cap S_{l}(p, r)_{b(r)} \neq \emptyset$.

Let (see [9])

$$
T_{l}(a, b, k, p)=\left\{(A, B): A, B \in E_{0}, \text { the pair }(A, B)\right.
$$

$$
\begin{align*}
& \text { is }(a, b) \text {-clustered at the point } p \text { of the space }(E, l) \tag{4}\\
& \text { and } \left.\frac{1}{r^{k}} l\left(A \cap S_{l}(p, r)_{a(r)}, B \cap S_{l}(p, r)_{b(r)}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0\right\} \text {. }
\end{align*}
$$

If $(A, B) \in T_{l}(a, b, k, p)$, then we say that the set $A \in E_{0}$ is (a, b)-tangent of order k to the set $B \in E_{0}$ at the point p of the space (E, l).

We call $T_{l}(a, b, k, p)$ defined by (4) the (a, b)-tangency relation of order k at the point $p \in E$ or shortly: the tangency relation of sets in the generalized metric space (E, l).

Let ρ be an arbitrary metric of the set E. By A^{\prime} we shall denote the set of all cluster points of the set $A \in E_{0}$, and let

$$
\begin{equation*}
\rho(x, A)=\inf \{\rho(x, y): y \in A\} \quad \text { for } x \in E . \tag{5}
\end{equation*}
$$

Let us put (see [4])

$$
A_{p, k}^{*}=\left\{A \in E_{0}: p \in A^{\prime} \text { and there exists a number } \lambda>0\right.
$$

$$
\begin{equation*}
\text { such that } \left.\limsup _{[A, p ; k] \ni(x, y) \rightarrow(p, p)} \frac{\rho(x, y)-\lambda \rho(x, A)}{\rho^{k}(p, x)} \leq 0\right\} \text {, } \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
{[A, p ; k]=\{ } & (x, y): x \in E, y \in A \\
& \text { and } \left.\rho(x, A)<\rho^{k}(p, x)=\rho^{k}(p, y)\right\} . \tag{7}
\end{align*}
$$

We shall denote by $d_{\rho} A$ the diameter of the set $A \in E_{0}$, and by $\rho(A, B)$ the distance of sets $A, B \in E_{0}$ in the metric space (E, ρ).

We say that the set $A \in E_{0}$ has the Darboux property at the point p of the metric space (E, ρ), written $A \in D_{p}(E, \rho)$ (see [4]), if there exists a number $\tau>0$ such that the set $A \cap S_{\rho}(p, r)$ is non-empty for $r \in(0, \tau)$.

Let f be any subadditive increasing real function defined for all real non-negative numbers, such that $f(0)=0$. By \bar{F}_{f} we denote the class of all functions l fulfilling the conditions:

$$
\begin{array}{ll}
1^{\circ} & l: E_{0} \times E_{0} \longrightarrow\langle 0, \infty), \\
2^{\circ} & f(\rho(A, B)) \leq l(A, B) \leq f\left(d_{\rho}(A \cup B)\right) \quad \text { for } A, B \in E_{0} .
\end{array}
$$

Now
$f(\rho(x, y))=f(\rho(\{x\},\{y\})) \leq l(\{x\},\{y\}) \leq f\left(d_{\rho}(\{x\} \cup\{y\})\right)=f(\rho(x, y)) ;$
from here and from (1) it follows that

$$
\begin{equation*}
l_{0}(x, y)=l(\{x\},\{y\})=f(\rho(x, y)) \quad \text { for } l \in F_{f} \text { and } x, y \in E . \tag{8}
\end{equation*}
$$

It is easy to check that the function l_{0} defined by (8) is a metric of the set E. From this and from Lemma 1 of the paper [4] it follows that setting $d_{l}=d_{l_{0}}$ we get

$$
\begin{equation*}
\frac{1}{r^{k}} d_{l}\left(A \cap S_{l}(p, r)_{a(r)}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{9}
\end{equation*}
$$

if $l \in \bar{F}_{f}, A \in A_{p, k}^{*} \cap D_{p}(E, l)$ and

$$
\begin{equation*}
\frac{a(r)}{r^{k}} \xrightarrow[r \rightarrow 0^{+}]{ } 0 . \tag{10}
\end{equation*}
$$

In this paper the problem of the tangency relation $T_{l}(a, b, k, p)$ of sets of the classes $A_{p, k}^{*}$ having the Darboux property in the generalized metric space (E, l) for $l \in F_{f}$ is considered. Some conditions for this relation have been given here.

1. Two lemmas

Let l_{1}, l_{2} be arbitrary functions belonging to the class $l \in \bar{F}_{f}$. We put by definition

$$
\begin{equation*}
\left(l_{1}+l_{2}\right)(A, B)=l_{1}(A, B)+l_{2}(A, B) \quad \text { for } A, B \in E_{0} . \tag{11}
\end{equation*}
$$

Let $S_{l}(p, r)_{u}$ be a u-neighbourhood of the sphere $S_{l}(p, r)$ in the space (E, l) defined by the formula (2).

Lemma 1. If the functions $l_{1}, l_{2} \in \bar{F}_{f}$, then

$$
\begin{equation*}
S_{l_{1}+l_{2}}(p, r)_{u}=S_{l}(p, r / 2)_{u / 2} \quad \text { for } l \in \bar{F}_{f} . \tag{12}
\end{equation*}
$$

Proof. From the equalities (8) and (11), for $l \in \bar{F}_{f}$ we have

$$
\begin{aligned}
S_{l_{1}+l_{2}}(p, r) & =\left\{x \in E:\left(l_{1}+l_{2}\right)(\{p\},\{x\})=r\right\} \\
& =\left\{x \in E: l_{1}(\{p\},\{x\})+l_{2}(\{p\},\{x\})=r\right\} \\
& =\left\{x \in E: 2 l_{0}(p, x)=r\right\} \\
& =\{x \in E: l(\{p\},\{x\})=r / 2\}=S_{l}(p, r / 2) .
\end{aligned}
$$

Therefore if $l_{1}, l_{2} \in \bar{F}_{f}$ then

$$
\begin{equation*}
S_{l_{1}+l_{2}}(p, r)=S_{l}(p, r / 2) \quad \text { for } l \in \bar{F}_{f} . \tag{13}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
K_{l_{1}+l_{2}}(p, r)=K_{l}(p, r / 2) \quad \text { for } l \in \bar{F}_{f} . \tag{14}
\end{equation*}
$$

From the definition (2) of the u-neighbourhood of the sphere $S_{l}(p, r)$, and from (13) and (14) we obtain

$$
S_{l_{1}+l_{2}}(p, r)_{u}=S_{l}(p, r / 2)_{u / 2},
$$

which yields the statement (12) of this lemma.
An immediate consequence of (12) is the following equality

$$
\begin{equation*}
S_{l_{1}+\cdots+l_{n}}(p, r)_{u}=S_{l}(p, r / n)_{u / n} \quad \text { for } l, l_{1}, \ldots=l_{n} \in \bar{F}_{f} \tag{15}
\end{equation*}
$$

Lemma 2. If $l \in \bar{F}_{f}$ and the function a fulfils the condition (10), then

$$
\begin{equation*}
\frac{1}{r^{k}} d_{l}\left(A \cap S_{l}(p, r / n)_{a(r) / n}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{16}
\end{equation*}
$$

for $n \in \mathbb{N}$ and $A \in A_{p, k}^{*} \cap D_{p}(E, l)$.
Proof. From the assumption (10) it follows that

$$
\begin{equation*}
\frac{1}{t^{k}} a(n t) \xrightarrow[t \rightarrow 0^{+}]{ } 0 \tag{17}
\end{equation*}
$$

Hence and from (9) for $A \in A_{p, k}^{*} \cap D_{p}(E, l)$ it results

$$
\begin{equation*}
\frac{1}{t^{k}} d_{l}\left(A \cap S_{l}(p, t)_{a(n t)}\right) \xrightarrow[t \rightarrow 0^{+}]{ } 0 \tag{18}
\end{equation*}
$$

Putting $r=n t$, from (18) we get

$$
\begin{equation*}
\frac{1}{r^{k}} d_{l}\left(A \cap S_{l}(p, r / n)_{a(r)}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{19}
\end{equation*}
$$

Since $A \cap S_{l}(p, r / n)_{a(r) / n} \subset A \cap S_{l}(p, r / n)_{a(r)}$, we have

$$
0 \leq d_{l}\left(A \cap S_{l}(p, r / n)_{a(r) / n}\right) \leq d_{l}\left(A \cap S_{l}(p, r / n)_{a(r)}\right)
$$

Hence and from (19) we get the statement (16) of this lemma.

2. The main result

From (16) it follows in particular that

$$
\begin{equation*}
\frac{1}{r^{k}} d_{l}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{20}
\end{equation*}
$$

if the function a fulfils the condition (10), $l \in \bar{F}_{f}$ and $A \in A_{p, k}^{*} \cap D_{p}(E, l)$.
From the definition

$$
\begin{gather*}
(A, B) \in\left(T_{l_{1}}(a, b, k, p) \cup T_{l_{2}}(a, b, k, p)\right) \\
\Longleftrightarrow\left[(A, B) \in\left(T_{l_{1}}(a, b, k, p) \vee(A, B) \in T_{l_{2}}(a, b, k, p)\right]\right. \tag{21}
\end{gather*}
$$

for $A, B \in E_{0}$ and $l_{1}, l_{2} \in \bar{F}_{f}$.
Theorem 1. If the non-decreasing functions a, b fulfil the condition

$$
\begin{equation*}
\frac{a(r)}{r^{k}} \underset{r \rightarrow 0^{+}}{ } 0 \quad \text { and } \quad \frac{b(r)}{r^{k}} \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{22}
\end{equation*}
$$

and $l_{1}, l_{2} \in \bar{F}_{f}$, then $(A, B) \in T_{l_{1}}(a, b, k, p) \cup T_{l_{2}}(a, b, k, p)$ iff $(A, B) \in$ $T_{l_{1}+l_{2}}(a, b, k, p)$ for $A, B \in A_{p, k}^{*} \cap D_{p}(E, l)$, where $l \in \bar{F}_{f}$.

Proof. We assume that $(A, B) \in T_{l_{1}}(a, b, k, p) \cup T_{l_{2}}(a, b, k, p)$. From here and from (21) for instance it follows that $(A, B) \in T_{l_{1}}(a, b, k, p)$ for $A, B \in A_{p, k}^{*} \cap D_{p}(E, l)$. Hence and from the fact that (see (8))

$$
\begin{equation*}
S_{l_{1}}(p, r)=S_{l_{2}}(p, r)=S_{l}(p, r) \quad \text { for } l, l_{1}, l_{2} \in \bar{F}_{f}, \tag{23}
\end{equation*}
$$

it follows

$$
\begin{equation*}
\frac{1}{t^{k}} l_{1}\left(A \cap S_{l}(p, t)_{a(t)}, B \cap S_{l}(p, t)_{b(t)}\right) \xrightarrow[t \rightarrow 0^{+}]{ } 0 \tag{24}
\end{equation*}
$$

Hence, from the fact that $l_{1}, l_{2} \in \bar{F}_{f}$, from the properties of the function f and from the equality

$$
\begin{equation*}
f\left(d_{\rho} A\right)=d_{l} A \quad \text { for } A \in E_{0} \tag{25}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
\left(l_{1}+\right. & \left.l_{2}\right)\left(A \cap S_{l_{1}+l_{2}}(p, r)_{a(r)}, B \cap S_{l_{1}+l_{2}}(p, r)_{b(r)}\right) \\
= & l_{1}\left(A \cap S_{l_{1}+l_{2}}(p, r)_{a(r)}, B \cap S_{l_{1}+l_{2}}(p, r)_{b(r)}\right) \\
& +l_{2}\left(A \cap S_{l_{1}+l_{2}}(p, r)_{a(r)}, B \cap S_{l_{1}+l_{2}}(p, r)_{b(r)}\right) \\
= & l_{1}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right) \\
& +l_{2}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right) \\
\leq & 2 f\left(d_{\rho}\left(\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}\right) \cup\left(B \cap S_{l}(p, r / 2)_{b(r) / 2}\right)\right)\right) \\
\leq & 2 f\left(d_{\rho}\left(\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}\right)\right)+2 f\left(d_{\rho}\left(\left(B \cap S_{l}(p, r / 2)_{b(r) / 2}\right)\right)\right.\right. \\
& +2 f\left(\rho\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right)\right) \\
\leq & 2 d_{l}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}\right)+2 d_{l}\left(B \cap S_{l}(p, r / 2)_{b(r) / 2}\right) \\
& +2 l_{1}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right),
\end{aligned}
$$

whence

$$
\begin{align*}
\frac{1}{r^{k}}\left(l_{1}+\right. & \left.l_{2}\right)\left(A \cap S_{l_{1}+l_{2}}(p, r)_{a(r)}, B \cap S_{l_{1}+l_{2}}(p, r)_{b(r)}\right) \\
\leq & \frac{2}{r^{k}} d_{l}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}\right)+\frac{2}{r^{k}} d_{l}\left(B \cap S_{l}(p, r / 2)_{b(r) / 2}\right) \tag{26}\\
& +\frac{2}{r^{k}} l_{1}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right) .
\end{align*}
$$

From here, from (20) and (24), and from the theorems on the compatibility of the tangency relations of sets of the classes $A_{p, k}^{*}$ (see Theorem 2 and Theorem 3 of the paper [4] we have

$$
\begin{equation*}
\frac{1}{r^{k}}\left(l_{1}+l_{2}\right)\left(A \cap S_{l_{1}+l_{2}}(p, r)_{a(r)}, B \cap S_{l_{1}+l_{2}}(p, r)_{b(r)}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{27}
\end{equation*}
$$

From the fact that $A, B \in D_{p}(E, l)$ for $l \in \bar{F}_{f}$, it follows that there exists a number $\tau>0$ such that $A \cap S_{l}(p, r) \neq \emptyset$ and $B \cap S_{l}(p, r) \neq \emptyset$ for $r \in$ $(0, \tau)$. Because $S_{l_{1}+l_{2}}(p, r)=S_{l}(p, r / 2)$ and $r / 2 \in(0, \tau / 2) \subset(0, \tau)$, then $A \cap S_{l_{1}+l_{2}}(p, r) \neq \emptyset$ and $B \cap S_{l_{1}+l_{2}}(p, r) \neq \emptyset$, and so $A, B \in D_{p}\left(E, l_{1}+l_{2}\right)$. Hence it follows that the pair of sets (A, B) is (a, b)-clustered at the point p of the space $\left(E, l_{1}+l_{2}\right)$. From here and from (27) it follows that $(A, B) \in$ $T_{l_{1}+l_{2}}(a, b, k, p)$.

Now we assume that $(A, B) \in T_{l_{1}+l_{2}}(a, b, k, p)$ for $A, B \in A_{p, k}^{*} \cap$ $D_{p}(E, l)$. Hence we have

$$
\frac{1}{r^{k}}\left(l_{1}+l_{2}\right)\left(A \cap S_{l_{1}+l_{2}}(p, r)_{a(r)}, B \cap S_{l_{1}+l_{2}}(p, r)_{b(r)}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0
$$

From here and from (11) it follows that

$$
\begin{equation*}
\frac{1}{r^{k}} l_{1}\left(A \cap S_{l_{1}+l_{2}}(p, r)_{a(r)}, B \cap S_{l_{1}+l_{2}}(p, r)_{b(r)}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{28}
\end{equation*}
$$

Hence and from Lemma 1 we get

$$
\frac{1}{r^{k}} l_{1}\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0
$$

From here and from the fact that $l_{1} \in \bar{F}_{f}$

$$
\begin{equation*}
\frac{1}{r^{k}} f\left(\rho\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right)\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{29}
\end{equation*}
$$

Because for arbitrary sets $A, B \in E_{0}$

$$
\begin{aligned}
0 & \leq \rho\left(A \cap S_{l}(p, r / 2)_{a(r)}, B \cap S_{l}(p, r / 2)_{b(r)}\right) \\
& \leq \rho\left(A \cap S_{l}(p, r / 2)_{a(r) / 2}, B \cap S_{l}(p, r / 2)_{b(r) / 2}\right)
\end{aligned}
$$

from here and from (29) it follows that

$$
\begin{equation*}
\frac{1}{r^{k}} f\left(\rho\left(A \cap S_{l}(p, r / 2)_{a(r)}, B \cap S_{l}(p, r / 2)_{b(r)}\right)\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0 \tag{30}
\end{equation*}
$$

Hence, from the properties of the function f and from the Theorem 3 of the paper [4] we get

$$
\begin{equation*}
\frac{1}{r^{k}} f\left(d_{\rho}\left(\left(A \cap S_{l}(p, r / 2)_{a(r)}\right) \cup\left(B \cap S_{l}(p, r / 2)_{b(r)}\right)\right)\right) \underset{r \rightarrow 0^{+}}{ } 0 \tag{31}
\end{equation*}
$$

Because for $A, B \in E_{0}$

$$
\begin{aligned}
0 & \leq f\left(d_{\rho}\left(\left(A \cap S_{l}(p, r / 2)_{a(r / 2)}\right) \cup\left(B \cap S_{l}(p, r / 2)_{b(r / 2)}\right)\right)\right) \\
& \leq f\left(d_{\rho}\left(\left(A \cap S_{l}(p, r / 2)_{a(r)}\right) \cup\left(B \cap S_{l}(p, r / 2)_{b(r)}\right)\right)\right)
\end{aligned}
$$

from here and from (31) it follows that

$$
\begin{equation*}
\frac{1}{r^{k}} f\left(d_{\rho}\left(\left(A \cap S_{l}(p, r / 2)_{a(r / 2)}\right) \cup\left(B \cap S_{l}(p, r / 2)_{b(r / 2)}\right)\right)\right) \underset{r \rightarrow 0^{+}}{ } 0 \tag{32}
\end{equation*}
$$

Hence and from the fact that $l_{1} \in \bar{F}_{f}$ we obtain

$$
\frac{1}{r^{k}} l_{1}\left(A \cap S_{l}(p, r / 2)_{a(r / 2)}, B \cap S_{l}(p, r / 2)_{b(r / 2)}\right) \xrightarrow[r \rightarrow 0^{+}]{ } 0
$$

i.e.

$$
\begin{equation*}
\frac{1}{t^{k}} l_{1}\left(A \cap S_{l}(p, t)_{a(t)}, B \cap S_{l}(p, t)_{b(t)}\right) \xrightarrow[t \rightarrow 0^{+}]{ } 0 \tag{33}
\end{equation*}
$$

From the assumption $A, B \in D_{p}(E, l)$ for $l \in \bar{F}_{f}$ and from (23) it follows that $A, B \in D_{p}\left(E, l_{1}\right)$ for $l_{1} \in \bar{F}_{f}$. Hence we get that the pair of sets (A, B) is (a, b)-clustered at the point p of the space $\left(E, l_{1}\right)$. From here and from the condition (33) it follows that $(A, B) \in T_{l_{1}}(a, b, k, p)$, and this means that $(A, B) \in T_{l_{1}}(a, b, k, p) \cup T_{l_{2}}(a, b, k, p)$. This ends the proof of the theorem.

Let $A, B \in E_{0}$ and $l_{1}, l_{2}, \ldots, l_{n} \in \bar{F}_{f}$; from the definition

$$
\begin{gather*}
(A, B) \in \bigcup_{i=1}^{n} T_{l_{i}}(a, b, k, p) \Longleftrightarrow(A, B) \in T_{l_{j}}(a, b, k, p) \tag{34}\\
\text { for an } j \in\{1,2, \ldots, n\} .
\end{gather*}
$$

Hence and from Theorem 1 we get
Corollary 1. If the non-decreasing functions a, b fulfil the condition (22) and $l_{1}, l_{2}, \ldots, l_{n} \in \bar{F}_{f}$, then $(A, B) \in \bigcup_{i=1}^{n} T_{l_{i}}(a, b, k, p)$ if and only if $(A, B) \in T_{l_{1}+\cdots+l_{n}}(a, b, k, p)$, for $A, B \in A_{p, k}^{*} \cap D_{p}(E, l)$, where $l \in \bar{F}_{f}$.

References

[1] A. Chądzyńska, On some classes of sets related to the symmetry of the tangency relation in a metric space, Ann. Soc. Math. Polon., Comm. Math. 16 (1972), 219-228.
[2] S. Go乇A̧b and Z. Moszner, Sur le contact des courbes dans les espaces metriques généraux, Colloq. Math. 10 (1963), 105-311.
[3] J. Grochulski, T. Konik and M. Tkacz, On the tangency of sets in metric spaces, Ann. Polon. Math. 38 (1980), 121-131.
[4] T. Konik, On the compatibility of the tangency relations of sets of the classes $A_{p, k}^{*}$ in generalized metric spaces, Demonstratio Math. 19 (1986), 203-220.
[5] T. Konik, On the equivalence of the tangency relation of sets, Ann. Soc. Math. Polon., Comm. Math. 31 (1991), 73-78.
[6] T. Konik, On the tangency of sets in generalized metric spaces for certain functions of the class F_{ρ}^{*}, Matematički Vesnik (Belgrade) 43 (1991), 1-10.
[7] T. Konik, On the tangency of sets of the class $\tilde{M}_{p, k}$, Publ. Math. Debrecen 43 (3-4) (1993), 329-336.
[8] T. Konik, On the reflexivity symmetry and transitivity of the tangency relations of sets of the class $\tilde{M}_{p, k}$, Journal of Geometry (Basel) 52 (1995), 142-151.
[9] W. WAliszewski, On the tangency of sets in generalized metric spaces, Ann. Polon. Math. 28 (1973), 275-284.

TADEUSZ KONIK
INSTITUTE OF MATHEMATICS \& COMPUTER SCIENCE
TECHNICAL UNIVERSITY
DA̧BROWSKIEGO 73, 42-200 CZȨSTOCHOWA
POLAND
(Received February 9, 1998; revised October 29, 1998)

