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A note on the influence of minimal
subgroups on the structure of finite groups

By A. BALLESTER-BOLINCHES (Burjassot) and GUO XIUYUN (Shanxi)

Abstract. This paper studies the influence of the subgroups of prime order or
order 4 of the focal subgroups on the structure of a finite group. It is proved that a
group G belongs to a saturated formation containing the supersoluble groups if there
exists a normal subgroup N of G such that G/N lies in the formation and the subgroups
of prime order or order 4 of the focal subgroups of the Sylow subgroups of N are normal
in the corresponding normalizers of the Sylow subgroups.

In this paper it is understood that all groups are finite.
Recall that if G is a group and P is a Sylow p-subgroup of G for a

prime number p, then the subgroup P ∩ G′ is called the focal subgroup
of P with respect to G.

The main object of the present article is to study the influence of the
subgroups of prime order or order 4 of the focal subgroups on the structure
of the groups. It is a part of a project which studies the influence of the
minimal subgroups on the structure of the groups (see Introduction in [1].)

Our main result is the following:

Theorem A. Let F be a saturated formation containing the class U of

supersoluble groups. Let N be a normal subgroup of a group G such that

G/N belongs to F . If for every Sylow subgroup P of N , every subgroup

of prime order or order 4 of P ∩ G′ is normal in NG(P ), then G belongs

to F .
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Recall that a formation is a class of groups which is closed under
epimorphic images and subdirect products. A formation F is saturated if
G/Φ(G) ∈ F implies that G belongs to F .

The proof of our main result depends heavily on the following lemmas
which are of independent interest.

Lemma 1 [3; Theorem 1]. Let P be a Sylow p-subgroup of a group G.

If every subgroup of prime order or order 4 of P ∩ G′ is contained in the

center of NG(P ), then G is p-nilpotent.

Lemma 2. Let G be a group of odd order. If for each Sylow sub-

group P of G, every subgroup of prime order of P ∩G′ is normal in NG(P ),
then G has a Sylow tower of supersoluble type.

Proof. We use induction on |G|. Let q be the smallest prime dividing
|G| and let Q be a Sylow q-subgroup of G. If Q ∩ G′ = 1, then G is q-
nilpotent by Lemma 1. Suppose that Q ∩G′ 6= 1 and let x be an element
of order q in Q ∩ G′. Then, by hypothesis, 〈x〉 is a normal subgroup of
T = NG(Q). So T/CT (〈x〉) is isomorphic to a subgroup of Aut(〈x〉) which
is of order q − 1. Since q is the smallest prime dividing |T |, it follows
that 〈x〉 ≤ Z(T ). Consequently every subgroup of prime order of Q∩G′ is
contained in Z(NG(Q)). By Lemma 1, G is q-nilpotent. Let K be a normal
Hall q′-subgroup of G. Then it is clear that K satisfies the hypotheses of
the lemma. By induction, K has a Sylow tower of supersoluble type and
so does G. The proof of the lemma is now complete.

The next lemma analyzes the case p = 2.

Lemma 3. Let P be a Sylow 2-subgroup of a group G. If every

subgroup of order 2 and 4 of P ∩ G′ is normal in NG(P ), then G is 2-

nilpotent.

Proof. Assume the result is false and choose for G a group of small-
est order. Then G is not 2-nilpotent and so G has a subgroup K such
that K is not 2-nilpotent but every proper subgroup of K is 2-nilpotent.
According to a result due to Schmidt ([4; 9.1.9]), K has a normal Sylow
2-subgroup K2 and K = K2Kp for a Sylow p-subgroup Kp of K, p 6= 2.
Moreover K2 is of exponent 2 or 4 and K2 = [K2,Kp]. Without loss of
generality we can assume that K2 is contained in P . So K2 is really con-
tained in P ∩G′. Notice that every subgroup of K2 is normal in NG(P ).
Therefore Ω1(K2) is centralized by NG(P ). Denote by T = NG(Ω1(K2)).
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Then < K, NG(P ) > is a subgroup of T . It is clear that the hypotheses of
the lemma hold in T . So if T were a proper subgroup of G, we would have
that T would be 2-nilpotent. So K would be 2-nilpotent, a contradiction.
Therefore T = G and so 1 6= Ω1(K2) is a normal subgroup of G. Since
NG(P ) is contained in CG(Ω1(K2)) and CG(Ω1(K2)) is a normal subgroup
of G, it follows that G = CG(Ω1(K2)) and Ω1(K2) is really contained in
Z(G). In particular, K2 6= Ω1(K2) because Kp does not centralize K2.
This means that K2 is of exponent 4. Let Ḡ = G/Ω1(K2) and denote
with bars the images in Ḡ. Then K̄2 is of exponent 2 and K̄ is a minimal
non-2-nilpotent group. Let ā ∈ K̄2. Then ā = aΩ1(K2) for some a ∈ K2

and o(a) = 4. By hypothesis, 〈a〉 is a normal subgroup of NG(P ). So 〈ā〉 is
a normal subgroup of NḠ(P̄ ) and NḠ(P̄ ) centralizes 〈ā〉. In particular, P̄

centralizes K̄2.
Suppose that NG(P ) is a proper subgroup of G. Then NG(P ) is 2-

nilpotent by minimality of G. This implies that NḠ(P̄ ) is 2-nilpotent.
Denote Ā = NḠ(K̄2). Then Ā = CḠ(K̄2)NĀ(P̄ ) since P̄ is a Sylow 2-
subgroup of CḠ(K̄2). Since NĀ(P̄ ) is 2-nilpotent, it follows that NĀ(P̄ ) =
P̄ × B̄, for a Hall 2′-subgroup B̄ of NĀ(P̄ ). Therefore Ā = CḠ(K̄2) and K̄

is contained in CḠ(K̄2), a contradiction. Consequently P is a normal
subgroup of G. This means that Ḡ centralizes K̄2, final contradiction.

Corollary 1. If for every Sylow subgroup P of a group G, every sub-

group of prime order or order 4 of P ∩G′ is normal in NG(P ), then G has

a Sylow tower of supersoluble type.

Lemma 4 [1; Lemma 2]. Let F be a saturated formation. Assume

that G is a group such that G does not belong to F and there exists a

maximal subgroup M of G such that M ∈ F and G = MF (G). Then GF

is a p-group for some prime p, GF has exponent p if p > 2 and exponent

at most 4 if p = 2. Moreover GF/(GF )′ is a chief factor of G.

Here GF is the F-residual of G, that is, the intersection of all normal

subgroups N of G such that G/N ∈ F .

Proof of Theorem A. Assume that the result is false and let G be a
counterexample of minimal order. Among the normal subgroups H of G

satisfying the hypotheses of the theorem, we choose N with |N | minimal.
By the above corollary, N has a Sylow tower of supersoluble type. So if
p is the largest prime dividing |N | and P is a Sylow p-subgroup of N , we
have that P is a normal subgroup of G. Denote with bars the images in
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Ḡ = G/P . Then Ḡ has a normal subgroup N̄ such that Ḡ/N̄ belongs
to F . Now if Q̄ is a Sylow q-subgroup of N̄ , then p 6= q and there exists a
Sylow q-subgroup Q of G such that Q̄ = QP/P . Moreover Ḡ′ = G′P/P .
Let ā be an element of order q or 4 in Q̄ ∩ Ḡ′. Then ā = aP for some
element a ∈ Q ∩ G′. By hypothesis, 〈a〉 is normal in NG(Q). So 〈ā〉 is a
normal subgroup of NḠ(Q̄). Therefore Ḡ satisfies the hypotheses of the
theorem. The minimal choice of G yields Ḡ ∈ F and by minimality of N
it follows that N = P . This implies that every subgroup of prime order or
order 4 of P ∩G′ is normal in G.

Assume that G does not belong to F . Then 1 6= GF is contained in
P ∩ G′ and so GF is a p-group. By [2; Theorem 3.5], G has a maximal
subgroup M such that G = MF ′(G), where F ′(G) = Soc(G mod Φ(G))
and G/ CoreG(M) does not belong to F . Then G = MGF and G =
MF (G) because GF is a p-group. It is clear that M satisfies the hypotheses
of the theorem for its normal subgroup M ∩P . So the minimal choice of G
yields M ∈ F .

By Lemma 4, GF has exponent p if p > 2 and exponent at most 4
if p = 2. In both cases, we have that every subgroup of prime order or
order 4 of GF is normal in G. This implies that GF/(GF )′ is a cyclic group
of prime order. Since GF/(GF )′ is G-isomorphic to Soc(G/ CoreG(M)), it
follows that G/ CoreG(M) is supersoluble, a contradiction.
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