Publ. Math. Debrecen 55 / 3-4 (1999), 433-436

A note on the influence of minimal subgroups on the structure of finite groups

By A. BALLESTER-BOLINCHES (Burjassot) and GUO XIUYUN (Shanxi)

Abstract. This paper studies the influence of the subgroups of prime order or order 4 of the focal subgroups on the structure of a finite group. It is proved that a group G belongs to a saturated formation containing the supersoluble groups if there exists a normal subgroup N of G such that G/N lies in the formation and the subgroups of prime order or order 4 of the focal subgroups of the Sylow subgroups of N are normal in the corresponding normalizers of the Sylow subgroups.

In this paper it is understood that all groups are finite.

Recall that if G is a group and P is a Sylow p-subgroup of G for a prime number p, then the subgroup $P \cap G'$ is called the focal subgroup of P with respect to G.

The main object of the present article is to study the influence of the subgroups of prime order or order 4 of the focal subgroups on the structure of the groups. It is a part of a project which studies the influence of the minimal subgroups on the structure of the groups (see Introduction in [1].)

Our main result is the following:

Theorem A. Let \mathcal{F} be a saturated formation containing the class \mathcal{U} of supersoluble groups. Let N be a normal subgroup of a group G such that G/N belongs to \mathcal{F} . If for every Sylow subgroup P of N, every subgroup of prime order or order 4 of $P \cap G'$ is normal in $N_G(P)$, then G belongs to \mathcal{F} .

Mathematics Subject Classification: 20D10, 20D25.

Key words and phrases: finite group, formations.

The research of the first author is supported by Proyecto PB 94-0965 of DGICYT, MEC, Spain.

Recall that a formation is a class of groups which is closed under epimorphic images and subdirect products. A formation \mathcal{F} is saturated if $G/\Phi(G) \in \mathcal{F}$ implies that G belongs to \mathcal{F} .

The proof of our main result depends heavily on the following lemmas which are of independent interest.

Lemma 1 [3; Theorem 1]. Let P be a Sylow p-subgroup of a group G. If every subgroup of prime order or order 4 of $P \cap G'$ is contained in the center of $N_G(P)$, then G is p-nilpotent.

Lemma 2. Let G be a group of odd order. If for each Sylow subgroup P of G, every subgroup of prime order of $P \cap G'$ is normal in $N_G(P)$, then G has a Sylow tower of supersoluble type.

PROOF. We use induction on |G|. Let q be the smallest prime dividing |G| and let Q be a Sylow q-subgroup of G. If $Q \cap G' = 1$, then G is q-nilpotent by Lemma 1. Suppose that $Q \cap G' \neq 1$ and let x be an element of order q in $Q \cap G'$. Then, by hypothesis, $\langle x \rangle$ is a normal subgroup of $T = N_G(Q)$. So $T/C_T(\langle x \rangle)$ is isomorphic to a subgroup of $\operatorname{Aut}(\langle x \rangle)$ which is of order q - 1. Since q is the smallest prime dividing |T|, it follows that $\langle x \rangle \leq Z(T)$. Consequently every subgroup of prime order of $Q \cap G'$ is contained in $Z(N_G(Q))$. By Lemma 1, G is q-nilpotent. Let K be a normal Hall q'-subgroup of G. Then it is clear that K satisfies the hypotheses of the lemma. By induction, K has a Sylow tower of supersoluble type and so does G. The proof of the lemma is now complete.

The next lemma analyzes the case p = 2.

Lemma 3. Let P be a Sylow 2-subgroup of a group G. If every subgroup of order 2 and 4 of $P \cap G'$ is normal in $N_G(P)$, then G is 2-nilpotent.

PROOF. Assume the result is false and choose for G a group of smallest order. Then G is not 2-nilpotent and so G has a subgroup K such that K is not 2-nilpotent but every proper subgroup of K is 2-nilpotent. According to a result due to SCHMIDT ([4; 9.1.9]), K has a normal Sylow 2-subgroup K_2 and $K = K_2 K_p$ for a Sylow p-subgroup K_p of K, $p \neq 2$. Moreover K_2 is of exponent 2 or 4 and $K_2 = [K_2, K_p]$. Without loss of generality we can assume that K_2 is contained in P. So K_2 is really contained in $P \cap G'$. Notice that every subgroup of K_2 is normal in $N_G(P)$. Therefore $\Omega_1(K_2)$ is centralized by $N_G(P)$. Denote by $T = N_G(\Omega_1(K_2))$. Then $\langle K, N_G(P) \rangle$ is a subgroup of T. It is clear that the hypotheses of the lemma hold in T. So if T were a proper subgroup of G, we would have that T would be 2-nilpotent. So K would be 2-nilpotent, a contradiction. Therefore T = G and so $1 \neq \Omega_1(K_2)$ is a normal subgroup of G. Since $N_G(P)$ is contained in $C_G(\Omega_1(K_2))$ and $C_G(\Omega_1(K_2))$ is a normal subgroup of G, it follows that $G = C_G(\Omega_1(K_2))$ and $\Omega_1(K_2)$ is really contained in Z(G). In particular, $K_2 \neq \Omega_1(K_2)$ because K_p does not centralize K_2 . This means that K_2 is of exponent 4. Let $\overline{G} = G/\Omega_1(K_2)$ and denote with bars the images in \overline{G} . Then \overline{K}_2 is of exponent 2 and \overline{K} is a minimal non-2-nilpotent group. Let $\overline{a} \in \overline{K}_2$. Then $\overline{a} = a\Omega_1(K_2)$ for some $a \in K_2$ and o(a) = 4. By hypothesis, $\langle a \rangle$ is a normal subgroup of $N_G(P)$. So $\langle \overline{a} \rangle$ is a normal subgroup of $N_{\overline{G}}(\overline{P})$ and $N_{\overline{G}}(\overline{P})$ centralizes $\langle \overline{a} \rangle$. In particular, \overline{P} centralizes \overline{K}_2 .

Suppose that $N_G(P)$ is a proper subgroup of G. Then $N_G(P)$ is 2nilpotent by minimality of G. This implies that $N_{\bar{G}}(\bar{P})$ is 2-nilpotent. Denote $\bar{A} = N_{\bar{G}}(\bar{K}_2)$. Then $\bar{A} = C_{\bar{G}}(\bar{K}_2)N_{\bar{A}}(\bar{P})$ since \bar{P} is a Sylow 2subgroup of $C_{\bar{G}}(\bar{K}_2)$. Since $N_{\bar{A}}(\bar{P})$ is 2-nilpotent, it follows that $N_{\bar{A}}(\bar{P}) =$ $\bar{P} \times \bar{B}$, for a Hall 2'-subgroup \bar{B} of $N_{\bar{A}}(\bar{P})$. Therefore $\bar{A} = C_{\bar{G}}(\bar{K}_2)$ and \bar{K} is contained in $C_{\bar{G}}(\bar{K}_2)$, a contradiction. Consequently P is a normal subgroup of G. This means that \bar{G} centralizes \bar{K}_2 , final contradiction.

Corollary 1. If for every Sylow subgroup P of a group G, every subgroup of prime order or order 4 of $P \cap G'$ is normal in $N_G(P)$, then G has a Sylow tower of supersoluble type.

Lemma 4 [1; Lemma 2]. Let \mathcal{F} be a saturated formation. Assume that G is a group such that G does not belong to \mathcal{F} and there exists a maximal subgroup M of G such that $M \in \mathcal{F}$ and G = MF(G). Then $G^{\mathcal{F}}$ is a p-group for some prime p, $G^{\mathcal{F}}$ has exponent p if p > 2 and exponent at most 4 if p = 2. Moreover $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is a chief factor of G.

Here $G^{\mathcal{F}}$ is the \mathcal{F} -residual of G, that is, the intersection of all normal subgroups N of G such that $G/N \in \mathcal{F}$.

PROOF of Theorem A. Assume that the result is false and let G be a counterexample of minimal order. Among the normal subgroups H of G satisfying the hypotheses of the theorem, we choose N with |N| minimal. By the above corollary, N has a Sylow tower of supersoluble type. So if p is the largest prime dividing |N| and P is a Sylow p-subgroup of N, we have that P is a normal subgroup of G. Denote with bars the images in

436 A. Ballester-Bolinches and Guo Xiuyun : A note on the influence...

 $\overline{G} = G/P$. Then \overline{G} has a normal subgroup \overline{N} such that $\overline{G}/\overline{N}$ belongs to \mathcal{F} . Now if \overline{Q} is a Sylow q-subgroup of \overline{N} , then $p \neq q$ and there exists a Sylow q-subgroup Q of G such that $\overline{Q} = QP/P$. Moreover $\overline{G}' = G'P/P$. Let \overline{a} be an element of order q or 4 in $\overline{Q} \cap \overline{G}'$. Then $\overline{a} = aP$ for some element $a \in Q \cap G'$. By hypothesis, $\langle a \rangle$ is normal in $N_G(Q)$. So $\langle \overline{a} \rangle$ is a normal subgroup of $N_{\overline{G}}(\overline{Q})$. Therefore \overline{G} satisfies the hypotheses of the theorem. The minimal choice of G yields $\overline{G} \in \mathcal{F}$ and by minimality of Nit follows that N = P. This implies that every subgroup of prime order or order 4 of $P \cap G'$ is normal in G.

Assume that G does not belong to \mathcal{F} . Then $1 \neq G^{\mathcal{F}}$ is contained in $P \cap G'$ and so $G^{\mathcal{F}}$ is a *p*-group. By [2; Theorem 3.5], G has a maximal subgroup M such that G = MF'(G), where $F'(G) = \operatorname{Soc}(G \mod \Phi(G))$ and $G/\operatorname{Core}_G(M)$ does not belong to \mathcal{F} . Then $G = MG^{\mathcal{F}}$ and G = MF(G) because $G^{\mathcal{F}}$ is a *p*-group. It is clear that M satisfies the hypotheses of the theorem for its normal subgroup $M \cap P$. So the minimal choice of G yields $M \in \mathcal{F}$.

By Lemma 4, $G^{\mathcal{F}}$ has exponent p if p > 2 and exponent at most 4 if p = 2. In both cases, we have that every subgroup of prime order or order 4 of $G^{\mathcal{F}}$ is normal in G. This implies that $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is a cyclic group of prime order. Since $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is G-isomorphic to $\operatorname{Soc}(G/\operatorname{Core}_G(M))$, it follows that $G/\operatorname{Core}_G(M)$ is supersoluble, a contradiction.

References

- M. ASAAD, A. BALLESTER-BOLINCHES and M. C. PEDRAZA-AGUILERA, A note on minimal subgroups of finite groups, *Comm. in Algebra* 24 no. 8 (1996), 2771–2776.
- [2] A. BALLESTER-BOLINCHES, *H*-normalizers and local definitions of saturated formations of finite groups, *Israel J. Math.* 67 (1989), 312–326.
- [3] A. BALLESTER-BOLINCHES and GUO XIUYUN, Some results on *p*-nilpotence and solubility of finite groups, (*preprint*).
- [4] D. J. S. ROBINSON, A course in the Theory of Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1982.

A. BALLESTER-BOLINCHES DEPARTAMENT D'ALGEBRA UNIVERSITAT DE VALÈNCIA C/ DOCTOR MOLINER 50 46100 BURJASSOT (VALÈNCIA) SPAIN

GUO XIUYUN DEPARTMENT OF MATHEMATICS SHANXI UNIVERSITY TAIYUAN, SHANXI 030006 PEOPLE'S REPUBLIC OF CHINA

(Received March 3, 1998)