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On (0;1) Pél-type interpolation with boundary conditions

By MARGIT LENARD (Kuwait)

Abstract. Let the set of the knots
—l=zp<ap <zp_1<z,_ 1 <---<z1<z]<z0=1 (n>2)

be given on the interval [—1, 1]. Find a polynomial @, (x) of minimal degree satisfying
the (0;1) interpolation properties

Qm(zi) =vi (i=1,...,n—1),
Qn(z}) =y (i=1,...,n),

with the boundary conditions

QY =a;  (=0,....k),

where y;, y;, a;, B; are given real numbers, and k, [ are fixed non-negative integers.

In this paper the existence and uniqueness of the polynomial Qn,(z) is proved if
the inner nodal points {561}7;11 and {z}}! ; are the roots of the Jacobi polynomials
Pr(Lk_';l’l) (z) and Pék’l_l) (z), respectively. Explicit formulae for the fundamental poly-
nomials of interpolation are given. Convergence and approximation theorems are also
proved.

Recently many authors investigated the Pal-type interpolation, in which the nodal
points {z;}}"_ are the roots of wy41(z) and {x}}_, are the roots of wj,, ;(x). The
polynomial @, (z) will be a modified Pal-type interpolational polynomial, because the
knots zo,x1,. .., Ty are the roots of w(x) = (1 — z)**+1(1 + x)lPr(Lliﬁl’l)(a:), and the
knots x§, x%, ..., x5, x5 4, (x§ = —1, zy | = 1) are the roots of w'(z).
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1. Introduction

In 1975 L. G. PAL [9] has introduced a modification of the Hermite—
Fejér interpolation, in which the function values and the first derivatives
are prescribed on two interscaled systems of nodal points {z;}? ; and
{xr}"=!, that is

(1.1) —00 <2 <] < Ty < < Tpo1 < Thh_y < Ty < 400,
where
wp(z)=(x—m21)...(x —2,) and W, (z)=n(z—a7)...(x — 2} _;).
He proved that for any given systems of real numbers
{yntiz and  {yi}il,

there exists a polynomial Q2,—1(z) of minimal degree (2n — 1) satisfying
the following interpolational properties

QQn—l(xk):yk (kzlv"',n)a
Qona(zp) =y, (k=1...,n—1).

This interpolational polynomial is not uniquely determined, hence for
the uniqueness an additional condition is recommended. Introducing the

(1.2)

additional condition Q2,—1(xg) = 0 at an additional knot xy # xj
(k = 1,...,n) Pal proved the uniqueness and gave an explicit formula
for it.

Following P&l’s idea many authors investigated this kind of interpola-
tion and they called it Pdl-type interpolation. In 1992 XI1E [17] presented a
new explicit formula of Pal-type interpolation on the interval [—1,1] with
the additional knot ), where x is equal to one of the nodal points zy
(k =1,...,n). Earlier, in 1985 ENEDUANYA [1] investigated the special
case when

xT

(1.3) wn(z) = —n(n — 1)/ P, 1(t)dt = (1 —2*)P,_,(x),

-1

where P, () is the Legendre polynomial of degree n with the usual normal-
ization P, (1) = 1. For the uniqueness Eneduanya used also the additional



On (0;1) P4l-type interpolation with boundary conditions 467

nodal point z} = —1. SziLl [15] investigated the Pal-type interpolation
on the roots of the Hermite-polynomials with the additional point ¢ = 0.
Both Eneduanya and Szili gave explicit formulae and proved approxima-
tion theorems. J0o6 and SzZABO [6] gave a common generalization of the
classical FEJER interpolation [2] and P4l interpolation. Szl [14] stud-
ied the inverse Pal interpolational problem on the roots of the integrated
Legendre polynomials. Recently JOO and PAL ([4], [5]) investigated the
lacunary (0;0, 1) interpolation on the roots of Jacobi polynomials and their
derivatives, respectively. SEBESTYEN ([10], [11]) studied the same problem
on the roots of Hermite polynomials and gave a completion of the Pal-type
(0;0,1) lacunary interpolation.
In this paper the following problem is investigated:

Let the set of the knots

(14) —l=zp <2, <zp1 <) 1 <--<xy3<x]<z=1 (NR>1)

be given on the interval [—1,1]. Find a polynomial @,,(z) of minimal
degree satisfying the (0;1) interpolation properties

Qm(mz):yz (’i:1,...,n—1),
Qu(zi)=y; (i=1,...,n),

with the boundary conditions

(1.5)

QY (z0) = QY (1) = (j=0,...,k),

(1.6) 4 .
QP (xy) =QY(-1)=p5;  (j=0,....0),

where y;, v, aj, B; are given real numbers, and k, [ are fixed non-negative
integers.

As the polynomial Q,,(x) satisfies 2n + k + [ + 1 conditions due to
(1.5) and (1.6), so the expected minimal degree is m = 2n + k + 1.

In Section 2 we give explicit formulae for the fundamental polyno-
mials of interpolation and prove an existence and uniqueness theorem. In
Section 2 we give an estimate for | f(z)— Q.. (x)| on [-1,1], if f € C"[-1,1]
and the knots (1.4) are the roots of appropriate ultraspherical polynomi-
als. As the Legendre polynomial P,(z) (P,(1) = 1) is an ultraspherical
polynomial with the parameter o = 0, the interpolation on the knots (1.3)
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investigated by Eneduanya is a special case of our interpolational proce-
dure with £ = 0, [ = 1. ENEDUANYA [1] proved that for f € C"[-1,1],
x € [-1,1]

n

() = Qunis (f12)] = O(1)n~"+ % log nw (f(”; 1) ,

where O(1) is independent of n and z. XIE [16] improved this result: for
f € CT[_LlL T e [_17 1]

0) = Qunna (5] = O~ (11

which implies the uniform convergence if f(z) is continuously differentiable
on [—1,1]. Now we can prove the uniform convergence of the interpola-
tional procedure on [—1,1] if f € C¥+1[—1,1] for k > 1.

2. The existence and uniqueness

In what follows, we will use the notations: for fixed integers k = 0,
1>0let
(2.1) wi(z)=PPFD(z) and w,_i(z) =w!'(z),

n

where Pflk’l_l)(m) is the Jacobi polynomial of degree n with the normal-
ization P,(Lk’l_l)(l) = (":k), and let

(2.2) o(z) = (1 —z)" 1 +2)h.
It is known that (see [13])

n+k—i—lP

Y k+1,1
(2.3) P (@) = =P (@)

and P,gk’l_l)(x) satisfies the differential equation

(1= 2P (@) 4 [l — k=1 — (k + 1+ 1)z] P& (2)

(2.4)
+n(n+k+1)PF=D(z) = 0.

Let the set of the knots be given by

(25) —-1l=z, <z, <zp1 <) ;1 <--<x1<z]<zp=1 (Nn>1),
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where {z;}7-' and {z}}7_, are the roots of w, ;(z) and w(z), respec-
tively.
By the differential equation (2.4) we get

[Q(x)wn,l(:c)]/ =-nn+k+10)(1—- a:)k(l + a:)l_lw;;(x)

and for any function ¢(x), differentiable at x}

/

(2.6) le(@)wn1(2)q(@)],_,. = o(@])wn—1(x7)q (27).

We will denote by /;(x) and [ (z) the fundamental polynomials of Lagrange
interpolation on the knots {z; ?:_11 and {x}} ,, respectively, that is

N b= G G0 = e

Lemma 2.1. On the knots in (2.5) the fundamental polynomials of
interpolation are

) — o(x)
) = T+ ) @)

(2.8) X [(1 + 2)wk (2)l(2) — war (2) /

-1

Ci(x) = (1 — ) (1 + ) w1 (2)w) (2)p; (2)

(2.10) + o(w)wn_1(x) / T (L Ywn (Ops (1) + 45wy (1)

i (1 — )1 at

(j=0,...,k), where p;(x) and g;(zx) are uniquely determined polynomials
of degree < k — j;

Dj(x) = (1 — )" (1 + 2)w, 1 (x)w (2)p;(x)

(2.11) + o(@)wn_1(z) /gc1 _wn—l(t)(ljf)t)‘l"jj(t)W;(t) dt
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(j=0,...,1), where pj(x) and ¢;(x) are uniquely determined polynomials
of degree < | —j and | — j — 1, respectively. The polynomials A;(z), B;(x),
Cj(z) and D;(x) are of degree at most 2n + k + [.

PRrROOF. By the definition of the functions A;(x), B;(x), Cj(z) and
Dj(z) it is clear that they are polynomials of degree 2n + k + [.
Using l; (i) = d;; and [j(z]) = 6;,; and (2.6), it is easy to verify that

Aj(xi)zéj,i (izl,...,n—l), A;(l’:)zo (i:1,...,n),
() (1) = — (s) — —
ANy =0 (s=0,....k), A1) =0 (s=0,...,0),

forj=1,...,n—1;

Ci(xz;)=0 (i=1,...,n—1), Ci(z;)=0 (i=1,...,n),
(1) =655 (5=0,...,5-1), CI(-1)=0 (s=0,....0),

for j =0,...,k. Now let us write the polynomial p;(z) from (2.10) in the
form ' ' ‘
pj(z) = aéj) + agj)(l —z)+---+ a,gjzj(l —z)kI,

From the equations
(4) _
{ c/(1) =1
(s) _ _
C;7(1)=0 (s=j+1,...,k)

the coefficients of p;(x) can be determined easily and uniquely. The inte-
grand in (2.10) is a polynomial, if for s =0,...,k —j
dS
dxs

(L4 D)1 (@)p; (@) = g (@) ()| =o.

As the coefficients of the polynomial p;(x) have already been determined,
the unknown coefficients of the polynomial ¢;(x) can also be determined
uniquely from these equations.
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In a similar way it can be shown that for j =0,...,!
Dj(z;)=0 (i=1,...,n—1), Dii(x7) =0 (i=1,...,n),
DY (1)=0 (s=0,...,k), DY (1) =4;, (s=0,....0).

Theorem 1 (Existence and uniqueness). If {y; }7—', {y/},, {o; o
{B; }5:0 are given real numbers, k > 0, [ > 0 are arbitrary fixed integers,
then on the nodal points (2.5) there exists a unique polynomial Q,(x) of
degree at most m = 2n + k + [ satisfying the equations (1.5) and (1.6).
The polynomial Q,,,(z) can be written in the form

n—1 n k
(212) Qu(z) =Y widi(z) + > yiBi(x) + Y _ o;Cj(x) + Y _ B;D;(x),
i=1 i=1 j=0

7=0
where A;(z), Bi(x), Cj(z) and D;(x) are defined in Lemma 2.1.

PROOF. By Lemma 2.1 it is clear that the polynomial (2.12) satisfies
the conditions of the theorem, which proves the existence of interpolational

polynomial @, ().

For the uniqueness we assume that there is another polynomial Q. ()
of degree < m which also satisfies the equations (1.5) and (1.6). Then the
polynomial

R (7) = Qm(z) — Qr, ()
satisfies the equations R,,(z;) =0 (i=1,...,n —1) and
R®(1)=0 (s=0,....,k), R&(=1)=0 (s=0,...,1—1),
so it can be written in the form
R (1) = o(2)wn—1(2)gn(2),

where g, () is a polynomial of degree at most n. Furthermore, from the
equations R, (z¥) =0 (i=1,...,n) we get by (2.6)

i

Ry, (x7) = o(x})wn-1(x7)gn (27) = 0,
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that is g/, (xf) = 0fori =1,...,n. It is possible only in the case ¢/,(z) = 0,
that is g, (x) = ¢ constant, hence

R, () = co(x)wn(z).

But also the equation R%) (—1) = 0 is to be satisfied, so the constant ¢ = 0,
that is R,,(z) = 0, which proves the uniqueness. (|

3. The convergence

In this section we will prove the convergence of the interpolational
procedure, if k =1 —1 = 0, that is the knots {z;}/'~}' and {z}}7_, are the
roots of the ultraspherical polynomials Py(bkjl) () and p (x), respectively.

We will need the following results and estimates on the ultraspherical
polynomials P\ (x) = Pr(ba’a)(x) (a>—=1,n=1) (see [13]):

(3.1) P () = (—1)" P (—x);

from (2.4)

(32) (1—22)P" (z) —2(a+1)xzP™ (z) +n(n+2a+ 1) P (z) =0;
and

(3.3) 1P\ (2)| = O(n®) xe[-1,1],

By a-AEO@=0 (o) sel-uil

where O(n) is independent of .

If &,...,&, are the roots of P (z) then we have the asymptotical
relations

J
55 e e (& 20)
| 2 <)
n2 J
na+2
.3 (6] 2 O)
/ ats
(3.6) B~ T
(& <0)
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where a,, ~ b, means that |a,| = O(b,) and |b,| = O(a,). If £;(x) de-
notes the fundamental polynomial of Lagrange interpolation on the knots
&1,...,&, which corresponds to the knot §;, then (see [13], [7])

()
B7) b) = =t
P (&) — &)
1 n—1 1
— W : P (&) P (x)
(1- [P (&) Z by
where
M(n+a+1)
(a) — 2 ~
(3.8) W, 2 T(n+ 1)T(n+ 20 +1) @
1
oy e 2 Trasn) [l w30
Y w2+ 1T+ DI 20+ ) | Z, (=0

where the constants C1, Cy depend only on «.

Lemma 3.1. For the ultraspherical polynomial Pﬁa)(x) (¢ > —1,
n 2 1) on the interval [—1,1]

(3.10) (1—ga%)5ts

/ P (1) dt‘ =02 +n"%),
1

(3.11) (1—g2?)5ta

/ (14 t)PLotD (1) dt‘ = O(n*% +n®7%)
—1

where O(n) is independent of x.
PROOF. Integrating the differential equation (3.2) we get

v 1
/ P (1) dt =
1 nn+2a+1) + 2a

x |202P(® (z) — (1 — 22) P\ () + 2aP(™ (-1)|,

and applying the estimates (3.3), (3.4) and

n—+2a+1

P () = 215

P ()
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we get (3.10).
Integrating the second integral by parts we get

(1 —x2)3‘+i/ (1+t)PletV (1) dt

-1

2 a1l (o a1 r o
= (1+$)(1—$2)2+4P7(1+)1(37)—(1—$2)2+4/_1P£+)1(t)dt]
Now applying (3.4) and (3.10) we get the estimate (3.11). O

Lemma 3.2. Ifk=1—1 21, n = 2 the Lebesgue function of the first
kind fundamental polynomials (2.8) satisfies

ny O(nlogn) (k
3.12 1—23)|A;(z)| = .
for all x € [—1,1] where O(n) is independent of .

PrROOF. If k =1 — 1, substituting (2.1), (2.2) and (2.3) into (2.8) we
get for j=1,...,n—1

1)
2)

1\

j=1

(12" (1 + )P (2)
(1 — 22)k+1 (1 + a5) P (a5)

Aj(z) = Li(z)

(k+1) z
e g2k Py o) / (14 t)1;(t) dt

21— a2 (14 ) P (25) /-
= Aja(z) + Aj2(x)
From (3.2) with a = k and by (2.3)

1—aF hyry
5 P (),

P (a) = — 5

hence applying (3.7) with a = k + 1 we get

(1—z;)(142)(1— x2>ﬁ+%P<’”<x> (k1)
3k+15 (k+1)/ 3 Wn—l

(1—%‘?)14]‘71 (IE) = —-2n

(3.13) xZ e (1= 2 PED (@)1 = 2?) FH P (),
0 ho
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and in a similar way

k43 k
(1—a?) 4, (@) =" 2D A=) (1) FHE P @)
7 k1 / 3 n—
: (1= 2T 2 [P ()]

k1
(314) % Z h(k+1) 1733 ) +4P(/€+1)( )(1*$2)2+4
v=0

></ (14 )PSO (t) dt
-1

where we applied again (3.7) with o = k + 1. Using (3.5) and (3.6) with
Pr(lkjl)(w) we get

1

(3.15) T ;
(1—a2) %+ % | P ()3

hence for k =2 1 applying (3.4), (3.11) and (3.15)

(1= a)|A5()| = O(W)n ——n~? <01 0y ff}) o
and .
(1 - 22)|4;0(z)| = O(1)n? inn— <02 Y %(V—S n yk—3))
B { O(logn) (k=1)
O(n*=2) (k=2

where the constants C, Cy are independent of x, n. Taking the sum for j
we get the statement of the lemma. O

Lemma 3.3. If k =1 —1 2 1, n =2 2, the Lebesgue function of the
second kind fundamental polynomials (2.9) satisfies for all x € [—1,1]

(3.16) D_IBi@ =0 (k21

where O(n) is independent of x.
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PrROOF. For k =1—1 using (2.3) and (3.7) we can write (2.9) in the
following form

Bj(l‘) — (1 — $2)k+1wn—1(l') /I l*(t) dt

(1 =2 w1 (25)

4241 (1-2?)tipMY () Wk
2 s e "
J J
n—1
L #2544 plh) (5 2n5+1 [ po
x;}wu—%) P (3)(1 — 2?) 71Pl, (t) dt.

Using (3.5) and (3.6) with piP (x) we get
1

«2\ 3k 1 9 k)«
(1—222) 743 | P (a7)]

= O(n_%),

and applying (3.4), (3.8), (3.9) and Lemma 3.1 in a similar way as in
Lemma 3.2 we get the estimates

|Bj()| =0(n*2) (k1)

Finally, taking the sum for j = 1,...,n our statement is proved. O

Theorem 2. Let k 2 0 be a fixed integer, m = 2n+2k+1, and let the

knots {x;}?=' and {}}7_, be the roots of the ultraspherical polynomials

P}lkjl)(m) and P,(lk)(a:), respectively. If f € C"[-1,1] (r 2 k+ 1, n =
2r — k + 2), then the interpolational polynomial

Qi )= Y Fla)Auta) + 3 ') Bula)
k+1

k
(3.17) +) OMC() + > FI(-1)D;(x)
j=0 Jj=0

with the fundamental polynomials given in Lemma 2.1 satisfies

O(n=*1) (k=0)

2 — O (e )l = w( £ L
F(2) = Quilas )] = w(f wﬂ{o@vwa (k21)

for x € [-1,1].
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PrOOF. For k = 0 we refer to the proof of the theorem of XIE [16]
and we prove the statement for k = 1. Let f € C"[—1,1], then by the
theorem of GOPENGAUZ [3] for every m = 4r +5 there exists a polynomial
pm(z) of degree at most m such that for j =0,...,r

r—j
|f(j)(l’) _p%) (z)] £ M, (W) w (f(?’); V?) )

where w( f (7);.) denotes the modulus of continuity of the function £ (x)
and the constants M, ; depend only on r and j. Moreover,

FO(£1) = pd)(£1) (j=0,...,7).
Hence for z € [-1,1]

If(w)—Qm(fﬁ'f)l S (@) = pm (@) [+ [pm(2) = @ (25 F)] = |f (@) —pm (2)]
+Z!fwz )| |Ai(z |+Z\f ;)| |Bi()]

éM’"; (fm 1) <1+Z 1= 22)|Ai(2 |)
<f(r) 1>Z|B

Applying (3.12) and (3.16) we get

+M’I"1

1 1
0) = Quas )] = 00) e (1 1o ()
where «,, = nlogn or nk_%, according to k = 1 and k = 2, which com-
pletes the proof for k = 1. d

As a corollary of Theorem 2 we can state the following convergence
theorem:

Theorem 3. Let k = 0 be a fixed integer, m = 2n+2k+1,n = k+4,
and let the knots {x;}""[' and {x}}1, be the roots of the ultraspherical
polynomials Pflkjl)(x) and Pflk)(x), respectively. If f € C**1[—1,1], then
Qm(z; f) described in (3.17) uniformly converges to f(x) on [—1,1] as
n — 0.
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