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Moufang loops of order 2m, m odd

By ORIN CHEIN (Philadelphia)

Abstract. We first show that every Moufang loop L which contains an abelian
associative subloop M of index two and odd order must, in fact, be a group. We then
use this to address the question “For what value of n = 2m, m odd, must a Moufang
loop of order n be associative?”

1. Introduction

This paper is motivated by a question asked by Rajah and Jamal

in [19]: If L is a Moufang loop of order 2m with an abelian associative
subloop M of order m, must L be a group? Generalizing a result of Leong

and Teh [13], which gives an affirmative answer in the case that m = p2,
p an odd prime, Rajah and Jamal prove that the answer is also affirmative
if m = p2

1 . . . p2
k, or if M ∼= Cp × Cpn . We will show that the answer is

affirmative for any M of odd order.
Actually, the question raised above stems from other work done by

Fook Leong and his students which investigated the question, “For what
integers, n, must every Moufang loop of order n be associative?” The first
result in this direction may be found in [6], where it is shown that every
Moufang loop of prime order must be a group. In [3], the author extended
this result to show that Moufang loops of order p2, p3, and pq, where
p and q are distinct primes, must be associative. Since there are well
known nonassociative Moufang loops of order 24 and 34, it would seem
that no extension of the results above is possible. However, in [7], Leong

showed that a Moufang loop of order p4, with p > 3, must be a group.
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M. Purtill [16] extended the result to Moufang loops of orders pqr, and
p2q, (p, q and r distinct primes), although the proof of the latter result has
a flaw in the case q < p; see [17]. Then Leong and his students produced
a spate of papers, [13], [14], [8], [9], [10], culminating in [11], in which
Leong and Rajah show that any Moufang loop of order pαqα1

1 . . . qαn
n ,

with p < q1 < · · · < qn odd primes and with α ≤ 3, αi ≤ 2, is a group,
and that the same is true with α = 4, provided that p > 3. Since there
exist nonassociative Moufang loops of order 34 [1] and of order p5 for p > 3
[20], and since the direct product of a nonassociative Moufang loop and
a group is a nonassociative Moufang loop, this result goes a long way
toward resolving the problem for odd n. The only remaining cases are
n = pα1

1 . . . pαk

k qβrγ1
1 . . . rγm

m , where p1 < · · · < pk < q < r1 < · · · < rm,
k ≥ 1, αi ≤ 4 (α1 ≤ 3 if p1 = 3), 3 ≤ β ≤ 4, and γi ≤ 2. Rajah,
in his doctoral dissertation [18] showed that, for p and q any odd primes,
there exists a nonassociative Moufang loop of order pq3 if and only if q ≡ 1
(mod p), so that there exist nonassociative Moufang loops of order n, for
n of the form above, provided that q ≡ 1 (mod pi), for at least one i, or
pj ≡ 1 (mod pi), for some i, j with i < j and 3 ≤ αj ≤ 4.

For n even, many cases are handled by a construction of the author
[3] which produces a nonassociative Moufang loop, M(G, 2) of order 2m

for any nonabelian group G of order m. In particular, since the dihedral
group Dr is not abelian, we get a nonassociative Moufang loop of order
4r, for each r ≥ 3. This leaves the case n = 2m, for m odd. Since there
exist nonabelian groups of order p3 and of order pq for primes p < q, with
q ≡ 1 (mod p), there exist nonassociative Moufang loops of orders 2p3

and 2pq for p and q as above. For n < 64, these account for the only
nonassociative Moufang loops of order 2m, with m odd.1). As a result,
the only the values n = 2m which still need be considered, are those for
which m = pα1

1 . . . pαk

k , with p1 < · · · < pk odd primes such that no pj is
congruent to 1 modulo any pi, and with 0 ≤ αi ≤ 2, for all i.

1See [4] for a discussion of all nonassociative Moufang loops of order < 64. Table 16 on

page 81 contains all three loops of either of the forms above, M42(G21, 2), M54(B3, 2),
and M54(G27, 2), although the former is inexplicably absent from Table 28 on page
129, where it is mistakenly counted as a loop of order 40 rather than 42. Also, while
I am on the subject of noting corrections to [4], I would like to thank E.G. Goodaire
for observing that the loop M12(S3, 2) × C3 is missing (the error can be traced to the
argument on the bottom of page 91) and that M48(5, 5, 5, 3, 6, 0) ∼= M48(5, 5, 5, 3, 3, 0)
and M48(5, 5, 5, 6, 3, 6) ∼= M48(5, 5, 5, 3, 3, 6).
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Leong and Teh [12] showed that any Moufang loop L of order 2pq

with p < q odd primes such that p - (q − 1) must in fact be a group. This
is not surprising since a group of order pq, for p and q as above, must be
cyclic and hence, if L contains a subloop of order pq, then L would be a
group, since Moufang loops are diassociative. Of course, this in itself is
not a proof, since Cauchy’s Theorem does not always hold for Moufang
loops (for example, Paige’s simple Moufang loop of order 120 [15] does
not contain an element of order 5), and so L might not contain an element
of order p or one of order q, and thus it might not contain a subloop of
order pq. In a subsequent work [13], Leong and Teh show that, in fact,
a Moufang loop of order 2m, with m odd, must contain a normal subloop
of order m (and so the argument above could now be applied). This fact
will be needed in order to prove Corollary 1, below.

2. The main results

Suppose that L is a Moufang loop of order 2m, m odd, and that L

contains a normal abelian subgroup M of order m.
Let u be an element of L−M . Then L = 〈u,M〉, and every element

of L can be expressed in the form muα, where m ∈ M and 0 ≤ α ≤ 1.
Let Tu denote the inner mapping of L corresponding to conjugation by u.
That is, for x in L, xTu = u−1xu. Since M is a normal subloop, Tu

maps M to itself. Let θ be the restriction of Tu to M . That is, for
every m in M , mθ = u−1mu, and mu = u(mθ). By diassociativity,
m2θ = u−1m2u = u−1muu−1mu = (mθ)2. Also, since u2 must be in
M , and since M is abelian, u2 is in the center of M . Thus, mθ2 =
u−1(u−1mu)u = u−2mu2 = m; so θ2 is the identity mapping and θ−1 = θ.

By Lemma 3.2 on page 117 of [2] , Tu is a semiautomorphism of L.
That is, for x, y in L, (xyx)Tu = (xTu)(yTu)(xTu). In particular, for
m1, m2 in M , (m1m2m1)θ = (m1θ)(m2θ)(m1θ). But M is abelian, so
(m2

1m2)θ = (m1θ)2(m2θ) = (m2
1θ)(m2θ). Since M is of odd order and

since the order of an element of a finite Moufang loop must divide the
order of the loop, every element of M is of odd order and hence has a
square root. (That is, if |m| = 2k + 1, then (mk+1)2 = m.) Thus, for any
m, m′ in M , (mm′)θ = [(m′′)2m′]θ = [(m′′)2θ](m′θ) = (mθ)(m′θ), where
m′′ is the square root of m. Thus θ is an automorphism of M .
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For m1 and m2 in M , let x = (m1u)m2, let y = m1(m2u), and let
z = (m1u)(m2u). Then, by the Moufang identities and the fact that M

is an abelian group, xu = [(m1u)m2]u = m1(um2u) = m1[u2(m2θ)] =
m1[(m2θ)u2] = [m1(m2θ)]u2, so that

(m1u)m2 = x = [m1(m2θ)]u.

Similarly,

uy = u[m1(m2u)] = u[m1(u(m2θ))] = (um1u)(m2θ)

= [u2(m1θ)](m2θ) = u2[(m1θ)(m2θ)].

so that

m1(m2u) = y = u[(m1θ)(m2θ)] = [(m1θ)(m2θ)]θu.

Finally, zu = [(m1u)(m2u)]u = m1(um2u
2) = m1[u(m2u

2)], so that uzu =
u{m1[u(m2u

2)]} = (um1u)(m2u
2) = [u2(m1θ)](m2u

2) = [(m1θ)m2]u4.
Thus, (zθ)u2 = u2(zθ) = uzu = [(m1θ)m2]u4, so zθ = [(m1θ)m2]u2, and

(m1u)(m2u) = z = [(m1θ)m2]θu2.

As in [4] , we can summarize these results as follows: For 0 ≤ α, β ≤ 1,

(m1u
α)(m2u

β) = [(m1θ
β)(m2θ

α+β)]θβ · uα+β .

But θ is an endomorphism of M , and θ2 is the identity, so

(m1u
α)(m2u

β) = [(m1θ
β)(m2θ

α+β)]θβuα+β

= [(m1θ
2β)(m2θ

α+2β)]uα+β = [m1(m2θ
α)]uα+β .

But then, for any m1u
α,m2u

β ,m3u
γ in L,

[(m1u
α)(m2u

β)](m3u
γ) = {[m1(m2θ

α)]uα+β}(m3u
γ)

= {[m1(m2θ
α)]m3θ

α+β}uα+β+γ ,
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and

(m1u
α)[(m2u

β)(m3u
γ)] = (m1u

α){[m2(m3θ
β)]uβ+γ}

= {m1[m2(m3θ
β)]θα}uα+β+γ

= {m1[(m2θ
α)(m3θ

α+β)]}uα+β+γ

= {[m1(m2θ
α)](m3θ

α+β)}uα+β+γ .

Thus L is associative.

We have proved the following:

Theorem. Every Moufang loop L of order 2m, m odd, which contains

a normal abelian subgroup M of order m is a group.

We can now settle the question of for which values of n = 2m must
every Moufang loop of order n be a group.

Corollary 1. Every Moufang loop of order 2m is associative if and

only if every group of order m is abelian.

Proof. If there exists a nonabelian group G of order m, then the
loop Mn(G, 2) is a nonassociative Moufang loop of order n = 2m.

As shown above, this covers all even values of m, m ≥ 6. (There are
no nonabelian groups of order less than 6, and there are no nonassociative
Moufang loops of order less than 12.)

Now consider n = 2m, and suppose that every group of order m is
abelian. If m < 6, then the result follows from [5], since there are no
nonassociative Moufang loops of order less than 12. On the other hand,
if m ≥ 6, then m must be odd (since the dihedral group of order 2k is
not abelian), and so, by the result of Leong and Teh discussed above
[13], any Moufang loop L of order n must contain a normal subloop M of
order m. Since there exists a nonabelian group of order p3, for any prime
p, m cannot be divisible by p3 for any prime p. But then, M must be
associative, by [11]. Furthermore, since all groups of order m are abelian,
M is an abelian group. But then, by the Theorem, L is a group.
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3. Some questions

We might wonder whether all of the hypotheses of the Theorem are
really necessary.

Clearly it is necessary that M be abelian, since the M(G, 2) construc-
tion of [3] provides examples of nonassociative Moufang loops when M is
not abelian.

The proof of the Theorem clearly uses the fact that m is odd, but
might there be a different proof which gives us the result for m even as well?
We thank E.G. Goodaire for noting that the loop M32(D4×C2, 2) provides
a counterexample. This nonassociative Moufang loop contains an abelian
normal subgroup of index two which is isomorphic to C2 × C2 × C2 × C2.

How about the fact that M is of index two? In the proof of the
Theorem, we do not really need u2 to be an element of M . All that is
needed is that u2 commutes with every element of M and that it associates
with every pair of elements of M . That is, what is needed is that u2 is in
the center of 〈u2,M〉. We could therefore prove the following:

Corollary 2. If a Moufang loop L contains a normal abelian subgroup

M of odd order m, such that L/M is cyclic, and if u2 ∈ Z(〈u2,M〉), for

uM some generator of L/M , then L is a group.

Can we dispose with the assumption that u2 ∈ Z(〈u2,M〉)? That is,

Question 1. If a Moufang loop L contains a normal abelian subgroup
M of odd order m, such that L/M is cyclic, must L be a group?

Returning to the question of whether M must be of odd order, in the
counterexample above, M is of order 16 and |L/M | = 2. This suggests the
following question:

Question 2. If a Moufang loop L contains a normal abelian subgroup
M such that L/M is is cyclic and such that (|L/M |, |M |) = 1, must L be
a group?
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