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Contact CR-submanifolds in Sasakian
manifolds – a foliated approach

By ROBERT A. WOLAK (Kraków)

Abstract. We study properties of contact CR-submanifolds of Sasakian mani-
folds. We consider a Sasakian manifold as a foliated manifold. Using the correspondence
between foliated and transverse structure we reduce many results about geometrical ob-
jects in Sasakian manifolds to the corresponding results in Kähler manifolds.

In this short note we study properties of contact CR-submanifolds of
Sasakian manifolds. For us a Sasakian manifold is a manifold foliated by a
very particular transversely Kähler foliation. In fact the one-dimensional
foliation of a Sasakian manifold generated by the characteristic vector field
is a transversely Kähler isometric flow. We call this foliation the character-
istic foliation of a Sasakian manifold. Using the correspondence between
foliated and transverse structures, cf. [21, 22], we can reduce many theo-
rems about geometrical objects in Sasakian manifolds to theorems about
corresponding objects in Kähler manifolds. For the first time this approach
has been used successfully by H. Reckziegel in [17] to study horizontal
submanifolds. Although Reckziegel did not use the words “foliation” and
“foliated” his approach is essentially a “foliated” one. The effectiveness of
this method can be easily tested comparing results about the local struc-
ture of Sasakian manifolds with those about Kähler manifolds in two books
of K. Yano and M. Kon, cf. [23. 24].

The author would like to express his gratitude to the referee of the
paper for many a useful comment which permitted to improve considerably
the first version of the paper.
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1. Introduction

We recall some basic definitions on foliations and foliated objects from
[21, 22].

Let F be a foliation on a manifold M . The foliation F is given by a
cocycle U = {Ui, fi, gij} modelled on a manifold N0, i.e.

i) {Ui} is an open covering of M ,
ii) fi : Ui → N0 are submersions with connected fibres defining F ,
iii) gij are local diffeomorphisms of N0 and gij ◦ fj = fi on Ui ∩ Uj .

The image of the submersion fi is an open subset of the manifold N0.
The disjoint union N =

∐
fi(Ui) (also a q-manifold) we call the transverse

manifold of F associated to the cocycle U and the pseudogroup H gener-
ated by gij the holonomy pseudogroup (representative) on the transverse
manifold N .

The foliated geometric structures, i.e. those which in local coordi-
nates can be expressed in the transverse coordinates only, correspond bi-
jectively to holonomy invariant ones on the transverse manifold, cf. [21,
22]. The precise definition presented in the above mentioned works in-
volves natural bundles on the category of foliated manifolds and their
foliated mappings. A foliated structure is a foliated section of such a nat-
ural bundle. In our case we need something much simpler and accessi-
ble. The normal bundle of a foliation and its tensor products are nat-
ural bundles on the category of the foliated manifolds. A foliated sec-
tion S of the normal bundle N(M,F) is a foliated geometric structure
– a foliated vector field. It can be represented by a local vector field
X which in an adapted chart Φ = (x1, . . . , xp, y1, . . . , yq) has the form
ΣiXi(x, y)∂/∂xi + ΣαXα(y)∂/∂yα. Foliated vector fields are sections of
the normal bundle which are given by infinitesimal automorphisms of the
foliation. A k-form ω as a local section of a suitable vector bundle can be
also a foliated geometric structure. In this case our condition transforms
into the following local representation in an adapted chart:

ω = Σα1<···<αk
ωα1,...,αk

(y)dyα1 ∧ . . . dyαk
.

Likewise a tensor field A of the type (1,1), when restricted to the normal
bundle of the foliation (considered as the subbundle of the tangent bundle
of the manifold) in an adapted chart can be represented as follows:

A = Σαi,αj aαi,αj (y)dyαi ⊗ vαj
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where vαj are the sections of the normal bundle (thus in this case standard
local vector fields) which correspond to the local vector fields ∂/∂yαj .

A transversely Kähler foliation is a foliation whose normal bundle has
a foliated Kähler structure, i.e. both the metric and the complex struc-
tures are foliated structures. In view of the above mentioned theorem any
transverse manifold of a transversely Kähler foliation is a Kähler manifold
whose Kähler structure is H-invariant.

For a given pseudogroup H of local diffeomorphisms of a q-manifold
T , there are many foliations of various dimensions whose holonomy pseu-
dogroups are equivalent, cf. [11, 22], to H. Any property that depends
only on the equivalence class of the holonomy pseudogroup is called a
transverse property, i.e. all foliations whose holonomy groups are equiv-
alent to the given pseudogroup have this property. Being Riemannian,
transversely Kähler or transversely symplectic are transverse properties,
cf. [7, 22]. Being minimalisable is also a transverse property, cf. [10].

Now let us recall the definition of a Sasakian manifold. Let M be a
smooth manifold of dimension 2n+1. The manifold M is called an almost
contact metric manifold if there exist on M :

1. a non-vanishing vector field ξ and a 1-form η such that η(ξ) = 1;

2. a tensor field ϕ of type (1, 1) such that ϕ2 = −Id + η ⊗ ξ, this
implies that ϕ(ξ) = 0 and η ◦ ϕ ≡ 0;

3. a Riemannian metric g such that g(ϕ(X), ϕ(Y )) = g(X, Y ) −
η(X)η(Y ).

An almost contact metric manifold is called Sasakian if, additionally,
it satisfies the following condition, cf. [19] and [3, p. 73]:

4. (∇Xϕ)Y = g(X, Y )ξ − η(Y )X, and hence, cf. [3, p. 74], ∇Xξ =
−ϕ(X), dη(X, Y ) = g(X,ϕY ) and the 2n+1-form η∧dηn does not vanish.

The last condition, ∇Xξ = −ϕ(X), ensures that the vector field ξ

is a Killing vector field for the metric g, cf. [3]. Therefore, this vector
field defines a Riemannian foliation F of dimension 1 which is an isomet-
ric flow, cf. [5, 6]. The vector field ξ is called the characteristic vector
field and F the characteristic foliation of the Sasakian manifold M . It is
not difficult to verify that Lξϕ| ker η ≡ 0. Therefore the tensors g and
ϕ induce foliated tensors in the normal bundle of the characteristic foli-
ation which can be identified with the bundle ker η. Let ḡ and J̄ be the
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corresponding tensors on the transverse manifold N (of the characteris-
tic foliation). The Riemannian connection ∇ of M induces a transversely
projectable connection in ker η which projects onto the Riemannian con-
nection of (N, ḡ), cf. [15]. The condition (4) ensures that the almost com-
plex structure J̄ is integrable, thus (N, J̄, ḡ) is a Hermitian manifold. The
equality dη(X, Y ) = g(X,ϕY ) means that the 2-form dη is base-like. The
corresponding 2-form Φ on the transverse manifold is its Kähler form,
cf. [16]; and the submersions fi are canonical fibrations, cf. [17]. The ho-
lonomy pseudogroup is a pseudogroup of Kähler transformations and F is
transversely Kähler.

There are many transversely Kähler isometric flows which are not
given by any Sasakian structure. Let Ψ be an isometric flow defining a
transversely Kähler foliation. The transverse manifold N of this foliation
admits a holonomy invariant Kähler structure (ḡ, J̄). Let ξ be the vector
field tangent to the flow Ψ, g the Riemannian metric for which the flow is
isometric, and let Q be the orthogonal complement of ξ in the metric g.
Then we put:

η : η(ξ) ≡ 1, η|Q ≡ 0;

ϕ : ϕ(ξ) ≡ 0 dfi(ϕ(X)) = J̄(dfi(X)) for any X ∈ TUi.

One can easily check that the structure (g, ϕ, ξ, η) defined above satisfies
the conditions 1) – 3), i.e. it is an almost contact metric structure. The
condition (4) is not a transverse one which can be deduced easily from the
Boothby–Wang theorem, cf. [3, 4].

Let us take a compact Kähler manifold B and S1-bundles over B.
They are classified by integral 2-forms on B, cf. [13]. The manifold B is
the space of leaves of any foliation defined by such an S1-bundle. The
holonomy pseudogroup of any such foliation is equivalent to the triv-
ial pseudogroup on B (generated by the identity transformation of B).
Therefore if “being Sasakian” were a transverse property, then any such
a foliation would be given by a Sasakian structure. However, according
to the Boothby–Wang theorem this is not true – the corresponding S1-
bundle should be classified by a very special 2-form: the Kähler form of
some Kähler structure of B. For more properties of transversely Kähler
foliations see [8].
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First of all we are going to compare various curvature tensors of the
manifolds (M, g, ϕ) and (N, ḡ, J̄). For any X ∈ TxNi and y ∈ f−1

i (x)
denote by X∗ the only vector of ker ηy such that dfi(X∗) = X. The
considerations of [23, Chapter VI], yield the following relations:

1. (J̄X)∗ = ϕ(X∗);
2. g(X∗, Y ∗) = ḡ(X, Y );
3. (∇̄XY )∗ = ∇X∗Y ∗+g(Y ∗, ϕX∗)ξ, where∇ and ∇̄ are the Levi–Civita

connections of g and ḡ, respectively;
4. (R̄(X, Y )Z)∗ = R(X∗, Y ∗)Z∗ + g(Z∗, ϕY ∗)ϕX∗ − g(Z∗, ϕX∗)ϕY ∗ −

2g(Y ∗, ϕX∗)ϕZ∗ where R and R̄ are the curvature tensors of ∇ and
∇̄, respectively;

5. S̄(X, Y ) = S(X∗, Y ∗) + 2g(X∗, Y ∗) where S and S̄ are the Ricci
curvature tensors of (M, g) and (N, ḡ), respectively;

6. r̄ = r + 2n where r and r̄ are the scalar curvatures of (M, g) and
(N, ḡ), respectively;

7. K̄(X, J̄X) = K(X∗, ϕX∗) + 3 where K and K̄ are the sectional cur-
vature tensors of (M, g) and (N, ḡ), respectively;

As an example we shall prove the following theorem, cf. [3]:

Theorem 1. The ϕ-sectional curvature determines completely the
sectional curvature of a Sasakian manifold.

Proof. It is well-known that for any plane tangent to the characteris-
tic vector field the sectional curvature is equal to 1. – This is a consequence
of the curvature formula: R(X, Y )ξ = g(Y, ξ)X − g(X, ξ)Y which holds
for any vector fields X and Y on the manifold M . Using the above men-
tioned formula the calculation of the sectional curvature of a plane which
is neither tangent to ξ nor transverse (i.e. tangent to ker η) involves the
sectional curvature of the projection of the plane onto ker η, and terms
depending only on the basis of the plane. (We split any vector into a
vector tangent to ker η and a vector parallel to ξ.) Therefore everything
depends on the scalar curvature for transverse planes. The formula (4)
establishes the relation between the sectional curvature in the transverse
direction in a Sasakian manifold and the corresponding sectional curvature
in the transverse manifold. The formula (7) gives the precise relation be-
tween ϕ-sectional curvature and the holomorphic sectional curvature of M
and N , respectively. As N is a Kähler manifold, its holomorphic sectional
curvature determines its sectional curvature, so the ϕ-sectional curvature
determines the sectional curvature of a Sasakian manifold M . ¤
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The formula (7) leads to the following proposition:

Proposition 1. The characteristic foliation of a Sasakian space form

M(c) is a transversely Kähler isometric flow modelled on a Kähler space

form N(c− 3).

Now let us turn our attention to submanifolds. Let W be an m + 1
dimensional submanifold of M tangent to ξ, i.e. for any x ∈ W , ξ(x) ∈
TxW . For any point of this submanifold we can find a very special adapted
chart at this point. The proof of this fact is a simple generalization of the
Frobenius theorem.

Lemma 1. Let x be a point of a submanifold W tangent to the char-

acteristic vector field of a Sasakian manifold M . Then there exists an

adapted chart ψ : V → R2n+1, ψ = (ψ1, . . . , ψ2n+1) at x such that the set

U = {y ∈ V | ψm+2(y) = · · · = ψ2n+1(y) = 0} is a connected component

of V ∩ W containing x and (ψ1 | U, . . . , ψm+1|U) : U → Rm+1 is an

adapted chart for the induced foliation of W .

This lemma leads us to the following

Proposition 2. Let W be a submanifold tangent to the characteristic

foliation of a Sasakian manifold M . Then for any point x of W there

exist neighbourhoods U and V of x in W and M , respectively, having the

following properties:

i) U is a connected component of V ∩W containing x;

ii) U is a foliated subset of V (for the characteristic foliation);

iii) there exists a Riemannian submersion with connected fibres f : V→N0

onto a Kähler manifold N0 defining the characteristic foliation;

iv) there exists a submanifold W̄ of N0 such that U = f−1(W̄ ).

Proof. Let U and V be neighbourhoods of the point x from Lem-
ma 1. Then we define the submersion f as p2n ◦ψ : V → R2n where p2n is
the projection (x1, . . . , x2n+1) 7→ (x2, . . . , x2n+1). On the set im f ⊂ R2n

the Sasakian structure of M induces a Kähler structure for which the
submersion is a Riemannian submersion. Since the characteristic foliation
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restricted to V is defined by this submersion and the set U is saturated,
there exists a submanifold W̄ of N0 satisfying the condition (iv). ¤

2. Contact CR-submanifolds

First we recall the definition of a contact CR-submanifold, cf. [24].

Definition 1. Let W be a connected submanifold of a Sasakian man-
ifold M tangent to the characteristic vector field. W is called a contact
CR-submanifold of M if there exists a differentiable distribution D on W

of constant dimension, D : x 7→ Dx ⊂ TxW , satisfying the following con-
ditions:

i) D is invariant with respect to ϕ, i.e. for any x ∈ W , ϕDx ⊂ Dx;

ii) the complementary orthogonal distribution D⊥ : x 7→ D⊥
x ⊂ TxW is

anti-invariant with respect to ϕ, i.e. for any x ∈ W , ϕD⊥
x ⊂ TxW⊥.

A contact CR-submanifold W is non-trivial if dim D = h > 0 and
dim D⊥ = q > 0; cf. [24, p. 48].

The image by ϕ of the tangent bundle TW splits into two distributions
ϕ(D) and ϕ(D⊥), tangent and orthogonal to W , respectively:

ϕ(Dx) ⊂ TxW ∩ ϕ(TxW ) and ϕ(D⊥
x ) ⊂ TxW⊥ ∩ ϕ(TxW ).

One can easily check that

ϕ(Dx) = TxW ∩ ϕ(TxW ) = D0 and ϕ(D⊥
x ) = TxW⊥ ∩ ϕ(TxW ).

Thus the distribution D0 has constant dimension and D = D0 or
D = D0 ⊕ TF , and D⊥ = D⊥

0 ⊕ TF or D⊥
0 , respectively, where D⊥

0 is
the orthogonal complement of D0 ⊕ TF . This means that the tangent
bundle TW of W admits the following decomposition: TF ⊕ D0 ⊕ D⊥

0 .
Moreover, the distributions D0 and D⊥

0 define the decomposition of the
subbundle ker η|TW = im ϕ|TW . For the rest of the paper we assume that
D = D0 ⊕ TF .

The above description of the distributions D and D⊥ coupled with
the fact that the tensors g and ϕ induce foliated tensors on ker η yield the
following (cf. [24])
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Proposition 3. Let W be a submanifold tangent to the characteristic

vector field of a Sasakian manifold. Then W is a contact CR-subman-

ifold iff the coresponding submanifolds in the transverse manifold are CR-

submanifolds.

Proof. As the problem is a local one, we can consider the character-
istic fibration f : M → N and a submanifold W = f−1(W̄ ); in this case
the statement is trivial. ¤

Having described in detail the distributions D and D⊥ we turn our
attention to their properties. The argument in the proof of Theorem III.3.1
of [24] ensures only that the distribution D⊥ ⊕ TF is integrable. Thus we
have the following version of Theorem III.3.1:

Theorem 2. Let W be a contact CR-sub-manifold of a Sasakian man-

ifold M . Then the distribution D⊥ ⊕ TF is completely integrable and

its integral submanifolds are anti-invariant submanifolds (tangent to the

characteristic vector field).

For the same reason we obtain the following version of Theorem III.3.2
of [24], where B is the second fundamental form of the submanifold W in M

and ∇Xξ = PX:

Theorem 3. Let W be a contact CR-submanifold of a Sasakian man-

ifold M . Then the distribution D is integrable iff B(X, PY ) = B(Y, PX)
for any X, Y ∈ D. Its integral submanifolds are invariant submanifolds

of M .

Remark. As the properties described by the above theorems are local,
they can be derived from the corresponding theorems for CR-submanifolds
of Kähler manifolds, compare Theorems IV.4.1 and IV.4.2 of [24].

Proposition 4. Let W be a contact CR-submanifold tangent to the

characteristic vector field of a Sasakian manifold M . If g(B(X, Y ), ϕZ)= 0
for any X, Y ∈ D0, Z ∈ D⊥

0 then any geodesic of W tangent to D0 at one

point remains tangent to D0 at any point of its domain.

Proof. Since the foliation F|W is a Riemannian foliation, a geodesic
orthogonal to F at one point is orthogonal to F at any point of its do-
main, and it is a D0 ⊕ D⊥

0 -horizontal lift of the corresponding geodesic
in the transverse manifold, cf. [18, 25, 15]. Let us consider a geodesic
α : (a, b) → W tangent to D0 at 0 and the set A = {t ∈ (a, b) : α̇(t) ∈ D0}.
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The set A is closed and 0 ∈ A. We shall show that it is also open. As
the problem is local we can reduce our considerations to a foliated sub-
manifold of a Sasakian manifold with the characteristic foliation given by
a global submersion with connected fibres, i.e. the characteristic fibration
f : M → N and W = f−1(W̄ ) where W̄ is a CR-submanifold of the Kähler
manifold N . Therefore TW̄ admits a decomposition into orthogonal dis-
tributions D̄ and D̄⊥ such that D = f−1(D̄) and D0 = ker η ∩ f−1(D̄),
D⊥

0 = ker η ∩ f−1(D̄⊥). Let B be the second fundamental form of the
submanifold W in M and B̄ be the second fundamental form of the sub-
manifold W̄ in N . Then B(X∗, Y ∗) = B̄(X,Y )∗, cf. [24], p. 101, where,
for any vector X tangent to W̄ , X∗ is its ker η (D0⊕D⊥

0 ) – lift to M , and
hence ḡ(B̄(X,Y ), ϕ̄Z) = 0 for any X,Y ∈ D̄ and Z ∈ D̄⊥. Then Propo-
sition IV.4.2 of [24] ensures that D̄ is a totally geodesic foliation of W̄ .
Let ᾱ be the geodesic in W̄ corresponding to α. If α is tangent to D0 at
t ∈ (a, b), then ᾱ is tangent to D̄ at this point. Since the foliation D̄ is
totally geodesic, ᾱ must be contained in some leaf of D̄. Hence α being
the D0 ⊕D⊥

0 -horizontal lift of ᾱ, it must be tangent to D0. Therefore the
set A is open, and thus A = (a, b). ¤

Taking as a model Kähler manifolds we can introduce the following
notions:

Definition 2. We say that a contact CR-submanifold W is:

i) D0-totally geodesic iff B(X, Y ) = 0 for any X,Y ∈ D0;

ii) contact mixed foliate if B(X,Y ) = 0 for any X ∈ D and Y ∈ D⊥,
and B(PX, Y ) = B(X, PY ) for any X, Y ∈ D0.

It is not difficult to verify the following

Lemma 2. i) W is D0-totally geodesic iff W̄ is D̄-totally geodesic;

ii) W is contact mixed foliate iff W̄ is mixed foliate.

Proposition 5. Let W be a contact CR-submanifold tangent to the

characteristic vector field of a Sasakian manifold M . If W is D0-totally

geodesic, then D is a foliation and any geodesic of W tangent to D0 at

one point remains tangent to D0 at any point of its domain.

Proof. It is a consequence of Lemma 2, Corollary IV.4.3 of [24]
and of considerations similar to those of the second part of the proof of
Proposition 4. ¤
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Proposition 6. If W is a contact mixed foliate non-trivial contact

CR-submanifold of a Sasakian manifold space form M(c), then c ≤ −3.

Proof. The transverse manifold of the characteristic foliation has
constant holomorphic sectional curvature equal to c + 3. The problem is
local and Lemma 2 together with Proposition IV.4.3 of [24] ensures that
c + 3 ≤ 0. Thus c ≤ −3. ¤

Corollary 1. Let W be a contact mixed foliate contact CR-subman-

ifold of a Sasakian space form M(c). If c > −3, then W is either an

invariant submanifold or an anti-invariant submanifold of M(c).

This is a counterpart of Corollary IV.4.4 of [24]. Theorem IV.6.1 of
[24] or [1] yield the following

Theorem 4. Let W be a contact totally umbilical non-trivial contact

CR-submanifold of a Sasakian manifold M . If dim D⊥
0 > 1, then a geo-

desic orthogonal to ξ and tangent to W at one point has this property on

an open subset of its domain.

Proof. The corresponding submanifold W̄ in the transverse man-
ifold is totally umbilical. Since the characteristic foliation is Riemannian
we have to show that the geodesic is tangent to W on an open subset
of its domain. This property is a local one and therefore we can reduce
our considerations to the canonical fibration. The geodesic is the ker η-
horizontal lift of a geodesic in N . Therefore it is sufficient to know that
the submanifold W̄ is totally geodesic. This is precisely the fact which
Bejancu’s theorem ensures. ¤

Theorem 5. Let W be a totally geodesic contact CR-submanifold of

a Sasakian manifold M . Then D and D⊥⊕TF are Riemannian foliations,

and locally:

i) W is diffeomorphic to R×N0 ×N1,

ii) the foliation D is given by the projection R×N0 ×N1 → N1 ⊂ N ,

iii) the foliation D⊥⊕TF is given by the projection R×N0×N1 → N0⊂N ,

iv) the submanifold W̄ ⊂ N is a Riemannian product of N0 × N1, of

a totally geodesic invariant submanifold N0, and a totally geodesic

anti-invariant submanifold N1 of N .

Proof. The problem is local and we can reduce our considerations
to the case of canonical fibration. Therefore we can assume that W =
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f−1(W̄ ) for some CR-submanifold W̄ of the Kähler manifold N and that
the submersion f : M → N is a Riemannian submersion. The orthog-
onal complement of TF on W is equal to ker η = D0 ⊕ D⊥

0 . Therefore
D0 = (df |W )−1(D̄) ∩ ker η and D⊥

0 = (df |W )−1(D̄⊥) ∩ ker η where D̄

and D̄⊥ are invariant and antiinvariant distributions, respectively, of the
CR-submanifold W̄ of N .

Since W̄ is totally geodesic, cf. [24], Prop. V.2.5, Theorem IV.6.2
of [24] assures that the submanifold W̄ of N is a Riemannian product
N0 ×N1 of a totally geodesic invariant submanifold N0 and a totally ge-
odesic anti-invariant submanifold N1 of N . Therefore it remains to prove
that the foliations D and D⊥ ⊕ TF are Riemannian foliations of the sub-
manifold W . The subbundle D⊥

0 is the orthogonal complement of D,
therefore the foliation D is Riemannian iff any geodesic of W which is tan-
gent to D⊥

0 at one point remains tangent to D⊥
0 at any point of its domain,

cf. [25, 15]. Likewise the subbundle D0 is the orthogonal complement of
D⊥⊕TF , therefore the foliation D⊥⊕TF is Riemannian iff any geodesic
of W which is tangent to D0 at one point remains tangent to D0 at any
point of its domain.

Let us take a geodesic γ of W which is tangent to D⊥
0 at one point x.

Since f is a Riemannian submersion γ is a horizontal geodesic, i.e. tangent
to ker η. Its image fγ is a geodesic in W̄ , cf. [12], which is tangent to D̄⊥

at one point. As both distributions, D̄ and D̄⊥, are totally geodesic,
the geodesic fγ remains tangent to D̄ throughout its domain. The ker η-
orthogonal lift γ′ passing through the point x of fγ is a geodesic in M

and W which is tangent to D⊥
0 . Both geodesics, γ and γ′, have the same

tangent vector at the point x, therefore they must be equal.
Similar considerations are valid for the other distribution. ¤

Final remarks. 1. The same method can be applied to submanifolds
transverse to the characteristic vector field of a Sasakian manifold.

2. This method is also applicable to the S-structures of D. E. Blair,
cf. [2].
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JAGIELLOŃSKI, WÃL. REYMONTA 4
31–137 KRAKÓW
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