
Publ. Math. Debrecen

56 / 1-2 (2000), 43–52

Quasi-additive and quasi-multiplicative functions
with regularity properties

By I. KÁTAI (Budapest) and M.V. SUBBARAO (Edmonton)

Abstract. In 1946, P. Erd}os [3] proved the remarkable theorem that if f is an
additive monotonic function, then it is a constant multiple of log. He also posed the
conjecture that if it is additive and 1

x

P
n≤x |f(n + 1) − f(n)| → 0 (x → ∞), then

f is a constant multiple of log. While several authors subsequently gave alternate
(and usually simpler) proofs of the Erdős theorem it was K�atai [4] and Wirsing [5]
who independently proved the Erdős conjecture. We here introduce the concept of
quasi-additive functions (analogous to the quasi-multiplicative functions introduced by
the second author in 1985) and prove that the above results hold for quasi-additive
functions, besides establishing several other theorems.

1. Introduction

In 1985, Subbarao introduced weakly multiplicative arithmetic func-
tions f(n) (later renamed quasi-multiplicative arithmetic functions) as
those for which the property

(1.1) f(np) = f(n)f(p)

holds for all primes p and natural numbers n which are relatively prime
to p. In that abstract Subbarao also announced the theorem that if f(n)
is quasi-multiplicative, integer valued and satisfies

(1.2) f(n + p) ≡ f(n) (mod p)

Mathematics Subject Classification: 11A25.
Key words and phrases: quasi additive and quasi-multiplicative functions, monotonic-
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for all natural numbers n and all primes p, then f(n) ≡ nc for some
constant c ≥ 0, or else f(n) is identically zero.

Later, in the paper [2] J. Fabrykowski and M. V. Subbarao gave
a proof of the above theorem and made the conjecture that the theorem
continues to hold even if the relation (1.2) holds only for an infinity of
primes instead of for all primes. This conjecture is still open.

In the present paper we introduce the notion of quasi-additive func-
tions and obtain several results involving quasi-additive and quasi-multipli-
cative functions with regularity properties.

An arithmetic function f is called quasi-additive if for all primes p
and natural numbers n coprime to p the relation

(1.3) f(np) = f(n) + f(p)

holds.
Let M be the set of square-free numbers, and K be the set of square-

full numbers. It is clear that each natural number n can be written uniquely
as n = Km, where (K, m) = 1 and K ∈ K, m ∈ M. We can see
immediately that f is quasi-additive if and only if for every integer n,
f(m) = f(K) + f(n), and f is additive on the set M. A similar assertion
is valid for quasi-multiplicative functions.

2. Theorems concerning quasi-additive and
quasi-multiplicative functions

In 1946 P. Erdős [3] proved that if f is an additive function for which
either f(n+1)− f(n) → 0, or f(n) ≤ f(n+1) (n = 1, 2, . . . ), then f(n) is
a constant multiple of log n. We shall prove that the same assertions hold
for quasi-additive functions.

Theorem 1. If a quasi-additive function f is monotonic, then it is a
constant multiple of log.

Theorem 2. If f is quasi-additive and

(2.1)
1
x

∑

n≤x

|f(n + 1)− f(n)| → 0 (x →∞),

then f is a constant multiple of log.

The above theorem for additive functions was formulated as a conjec-
ture by Erdős [3], and proved by Kátai [4], and Wirsing [5] indepen-
dently.
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The multiplicative function g(n) = ns, s ∈ C behaves quite regularly
as n → ∞. Especially, (n + 1)s − ns → 0 if Res < 1. Giving a positive
answer to a conjecture of Kátai, in 1984 E. Wirsing proved, that if g is a
complex-valued multiplicative function and |g(n)| = 1 (n = 1, 2, . . . ), such
that |g(n + 1)− g(n)| → 0, then g(n) = niτ for some τ ∈ R.

The proof appeared only in 1996 in printed form [8].
From Wirsing’s theorem we can obtain that if a complex-valued mul-

tiplicative function g satisfies ∆g(n) := g(n + 1) − g(n) → 0 (n → ∞),
then either g(n) → 0 or g(n) = ns (Res < 1) (see [6]).

We shall prove

Theorem 3. If g is a quasi-multiplicative function such that |g(n)|=1,

∆g(n) → 0, then g is multiplicative. As a consequence of Wirsing’s theo-

rem, g(n) = niτ .

At present we cannot characterize the class of those multiplicative
functions g for which

(2.2)
1
x

∑

n≤x

|g(n + 1)− g(n)| → 0 (x →∞)

holds. L. Murata and J. L. Mauclaire [7] proved that if (2.2) holds,
|g(n)| = 1 (n = 1, 2, . . . ), and g is multiplicative, then it is completely
multiplicative.

Now we shall prove

Theorem 4. Let g be quasi-multiplicative, |g(n)| = 1 (n = 1, 2, . . . ).
Assume that (2.2) holds. Then g is completely multiplicative.

3. Lemmata

Lemma 1. Let 1 ≤ Y0, x ≥ eY0 , and let h be an arbitrary additive

function defined on the set M,

a(x) =
∑

Y0≤p≤x

h(p)
p

, b2
1(x) =

∑

Y0≤p≤x

h2(p)
p

,

b2
2(x) =

∑

x1/4<p≤x

h2(p)
p

, ∆(x) =
∏
p<x

(
1− 1

p

)
.
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Then, there exists an absolute constant c1 such that

∑
(h(m)− a(x))2 ≤ c1x∆(Y0)b2

1(x) + c1xb2
2(x),

where on the right hand side m runs over those square-free numbers up to

x the smallest prime factor of which are larger than Y0.

Remark. This Turán–Kubilius type inequality can be proved in a rou-
tine way by using the Eratosthenian sieve. We omit the proof.

Lemma 2 (P. Erdős [3]). Assume that f is additive and there are

positive constants c1, c2 and a sequence xν → ∞ (ν → ∞), such that for

all ν we can choose suitable integers 1 ≤ a1 < a2 < · · · < at ≤ xν such

that t > c1xν and

|f(aj)− f(ak)| ≤ c2

for every j, k ≤ t.

Then f is finitely distributed, i.e., f(n) = c log n + t(n), where

∑
p

min(1, t2(p))
p

< ∞.

4. Proof of Theorem 1

Assume that f(n) ≤ f(n+1) (n = 1, 2, . . . ). If n is an odd square-free
number, then f(n) ≤ f(ν) ≤ f(2n) = f(2) + f(n) for every ν ∈ M from
the interval ν ∈ (n, 2n), thus for at least cn integers ν ∈ M. Let F (n) be
the additive function for which F (K) = 0 if K ∈ K, and F (m) = f(m) if
m ∈ M. Then F is a finitely distributed additive function, consequently
by Lemma 2,

(4.1) F (n) = c log n + t(n),

and

(4.2)
∑

p

min(1, t2(p))
p

< ∞.

Let
R = {p | |t(p)| ≥ 1}.
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From (4.2) we obtain that

(4.3)
∑

p∈R

1
p

< ∞.

Let I be the set of those integers m for which:
(a) m ∈M,
(b) the smallest prime factor is larger than Y0,
(c) they do not have prime divisors from the set R.
Let T (x) = #{n ≤ x | n ∈ I}, s(n) = 1 or 0 according as to n does

or does not belong to I.
Then, by the Eratosthenian sieve we obtain that

(4.4) T (x) = (1 + o(1))x
∏
p

(
1 +

∞∑
α=1

h(pα)
pα

)
,

where

h(pα) = s(pα)− s(pα−1), and

s(p) = 1 if p /∈ R, p > Y0,

s(p) = 0 if either p ∈ R, or p ≤ Y0.

Furthermore,

s(pα) = 0 if α ≥ 2.

Consequently, from (4.4) we immediately deduce that

(4.5) T (x) = c(Y0)(1 + o(1))x,

where

(4.6) c(Y0) =
∏

p≤Y0

(
1− 1

p

) ∏

p∈R
p>Y0

(
1− 1

p

) ∏

p/∈R
p>Y0

(
1− 1

p2

)
.

Let N and M be arbitrary positive integers. Let furthermore ε1, ε2,
δ be arbitrarily small positive numbers.
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Let us choose Y0 so that Y0 > max(N, M),

c(Y0) ≥ (1− ε2)∆(Y0),(4.7)

and

c1

∑
Y0<p
p 6∈R

t2(p)
p

< ε4
1,(4.8)

and let X0 be so that for each X ≥ X0

c1

∑

X1/4≤p≤x
p/∈R

t2(p)
p

< ε4
1∆(Y0).(4.9)

Let L1 and L2 denote the set of integers from the interval
(

x(1−δ)
N , x

N

)
,

and from
(

x
M , x(1+δ)

M

)
, respectively.

Let ν and µ run over L1 ∩ I and L ∩ I, respectively.
Assume now that x is a large value.
From Lemma 1 we obtain that with the exception of at most εT ( x

N )
values of ν, and at most εT ( x

M ) values of µ,

(4.10) t(ν)− ã
( x

N

)
∈ [−ε, ε], t(µ)− ã

( x

M

)
∈ [−ε, ε]

hold, if x is large enough. Here

(4.11) ã(x) =
∑

Y0<p<x
p/∈R

t(p)
p

.

Indeed, apply Lemma 1 for the additive function h the values on
primes of which are

h(p) =
{

t(p) if p /∈ R
0 if p ∈ R.

Thus, by (4.8) and (4.9)

∑

ν∈L1

(
t(ν)− ã

( x

N

))2

≤ 2ε4
1∆(Y0)

x

N
,
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and consequently

#{ν ∈ L1, |t(ν)− ã(x/N)| ≥ ε} ≤ 2ε2
1∆(Y0)

x

N
< εT

( x

N

)
.

Similarly, we can deduce that

#{µ ∈ L2, |t(µ)− ã(x/M)| ≥ ε} < εT
( x

M

)
.

Let us observe furthermore that ã
(

x
N

)
= ã

(
x
M

)
+ o(1) as x →∞.

Thus, if x is large, then we can always choose a pair ν∗ ∈ L1, µ∗ ∈ L2

for which t(µ∗)− t(ν∗) ∈ [−2ε, 2ε]. Since ν∗N < µ∗M , we have f(ν∗N) ≤
f(µ∗M), consequently

f(N)− F (M) ≤ F (µ∗)− F (ν∗) = c log
µ∗

ν∗
+ t(µ∗)− t(ν∗)

≤ c log
x(1 + δ)N
Mx(1− δ)

+ 2ε = c log
N

M
+ c log

1 + δ

1− δ
+ 2ε.

Since ε and δ are arbitrary, we get f(N) − f(M) ≤ c log N
M . Inter-

changing the values N and M , we immediately get that f(N) − f(M) =
c log N

M , and so that f(N) = c log N .
The proof of the theorem is complete.

Remark. The same method gives the following

Theorem 1a. Let f be an additive monotonic function on M. Then

f(n) = c log n.

5. Proof of Theorem 2

It is enough to prove that for each coprime pair K1, K2 and K = K1K2

we have:
f(K) = f(K1) + f(K2).

Let ∆jf(n) := f(n + j)− f(n). From (2.1) we have that

(5.1)
1
x

∑

n≤x

max
1≤j≤K

|∆jf(n)| → 0 (x →∞).
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Let H denote the set of those square-free numbers m for which

(1) mK2 + 1 is square-free and coprime to K1,

(2) (m,K) = 1.

If m ∈ H, then

f(Km + K1)− f(Km) = f(K1) + f(K2m + 1)− f(K)− f(m)

= (f(K1) + f(K2)− f(K)) + (f(K2m + 1)− f(K2m)),

whence

(5.2)

|f(K1) + f(K2)− f(K)|
∑

m∈H
m≤x

1

≤
∑

m≤x

|∆K1f(Km)|+
∑

m≤x

|∆f(K2m)|.

Let now K be an arbitrary integer, with prime decomposition K =
pα1
1 . . . pαr

r , r ≥ 2. Let K1 = pα1
1 , p1 be odd. Then K2 = pα2

2 . . . pαr
r . Let

a = 1 if p1 - K2 + 1 and a = −1, if p1|K2 + 1. In the last case p1 - K2 − 1.
Let ν run over the arithmetic progression ≡ a (mod K). Observe that for
ν = a + tK, (νK2 + 1,K1) = aK2 + 1, p1 = 1, (ν, K) = 1. The density of
the square-free numbers ≡ a (mod K) is clearly positive, so from (5.2) we
obtain that

(5.3) f(K1) + f(K2) = f(K).

Repeating this argument we get

f(pα1
1 . . . pαr

r ) = f(pα1
1 ) + · · ·+ f(pαr

r ).

Thus f is additive, and for additive functions the assertion is known. The
proof is complete.

Remark. The referee noted that Theorem 2 can be derived from our
Theorem 4 directly in the following way: if f is a quasi-additive function
satisfying (2.1), then for a real number t the quasi-multiplicative function
exp(itf) satisfies (2.2). Since its modulus is 1, by Theorem 4 it is a multi-
plicative function, and since this holds for all t, one gets immediately that
f is additive.
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6. Proof of Theorem 4

Let K, K1, K2 and H be defined as in Section 5. Since

g(Km + K1)ḡ(Km) = g(K1)ḡ(K)g(K2m + 1)ḡ(m)

= g(K1)g(K2)ḡ(K)g(K2m + 1)ḡ(K2m),

we have

(6.1) g(K1)g(K2)ḡ(K)− 1 = ξ(m)η
(m)
0 . . . η

(m)
K1−1 − 1,

where

ξ(m) =
g(K2m)

g(K2m + 1)
, η

(m)
j =

g(Km + j + 1)
g(Km + j)

(j = 0, . . . ,K1 − 1).

The absolute value of the right hand side is less than

c
{
|ξ(m) − 1|+ |η(m)

0 − 1|+ · · ·+ |η(m)
K1−1 − 1|

}
,

where c is a suitable constant that may depend only on K1.
Hence, by (2.2) we deduce that

∣∣∣∣
g(K1)g(K2)

g(K)
− 1

∣∣∣∣
∑
m≤x
m∈H

1 = o(x) (x →∞).

Repeating the argument which we used in the proof of Theorem 2, we
deduce that

g(pα1
1 . . . pαr

r ) = g(pα1
1 )g(pα2

2 . . . pαr
r )

if r ≥ 2 and p1 odd. Thus g is multiplicative, and by the theorem of Murata
and Mauclaire, g is completely multiplicative.

7. Proof of Theorem 3

This is an immediate consequence of Theorem 4.
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for additive functions, J. Number Theory 56 (1996), 391–395.

I. KÁTAI
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