On number systems in algebraic number fields

By I. KÁTAI (Budapest) and I. KÖRNYEI (Budapest)

1. Let θ be an algebraic integer with minimal polynomial $p(x)=$ $\left(x-\theta_{1}\right) \cdots\left(x-\theta_{n}\right), \theta=\theta_{1}$ over \mathbf{Q}. Assume that $\left|\theta_{i}\right|>1$ holds for every $i=1, \ldots, n$; let $\kappa=\max 1 /\left|\theta_{i}\right|$. Let $\rho_{j}=\theta_{j}^{-1}(j=1, \ldots, n)$. Let $A=\left\{a_{0}=0, a_{1}, \ldots, a_{t-1}\right\}$ be a full residue system $\bmod \theta, A \subseteq \mathbf{Z}[\theta]$. Let $A^{(j)}$ be the conjugate sets, $A^{(j)}=\left\{a_{0}\left(\theta_{j}\right)=0, a_{1}\left(\theta_{j}\right), \ldots, a_{t-1}\left(\theta_{j}\right)\right\}$. Assume that $\theta_{1}, \ldots, \theta_{2 r} \in \mathbf{C} \backslash \mathbf{R} ; \theta_{2 r+1}, \ldots, \theta_{2 r+s} \in \mathbf{R}, n=2 r+s$, so ordered that $\theta_{r+l}=\bar{\theta}_{l}(l=1, \ldots, r)$. Let $K_{n}=K_{n}^{(r, s)}$ be the set of those vectorials $\underset{\sim}{z}$, the i th coordinate of which is denoted by z_{i} such that $z_{1}, \ldots, z_{2 r} \in \mathbf{C}, z_{r+l}=\bar{z}_{l}(l=1, \ldots, r), z_{2 r+1}, \ldots, z_{2 r+s} \in \mathbf{R}$. It is a linear normed space with $\|\underset{\sim}{z}\|=\max \left|z_{j}\right| . \lambda$ will denote the Lebesque measure in K_{n}, defined as $d x_{l} d y_{l} \cdots d x_{r} d y_{r} d z_{2 r+1} \cdots d_{2 r+s}$.
For an arbitrary $\alpha \in \mathbf{Z}[\theta]$ let $\underset{\sim}{\alpha} \in K_{n}$ the vectorial, the j th coordinate of which is $\alpha\left(\theta_{j}\right)$.

For every $\alpha \in \mathbf{Z}[\theta]$ there exists a unique $b_{0} \in A$ and $\alpha_{1} \in \mathbf{Z}[\theta]$ such that

$$
\begin{equation*}
\alpha=\alpha_{1} \theta+b_{0} . \tag{1.1}
\end{equation*}
$$

(1.1) implies the fulfilment of

$$
\begin{equation*}
\alpha\left(\theta_{j}\right)=\alpha_{1}\left(\theta_{j}\right) \theta_{j}+b_{0}\left(\theta_{j}\right) \quad(j=1, \ldots, n) \tag{1.2}
\end{equation*}
$$

Let $J: \mathbf{Z}[\theta] \rightarrow \mathbf{Z}[\theta]$ be the function defined by $J(\alpha)=\alpha_{1}$. Let $T(\alpha)=\max _{j}\left|\alpha\left(\theta_{j}\right)\right|, K=\max _{b \in A} \max _{j=1, \ldots, n}\left|b\left(\theta_{j}\right)\right|$. From (1.2) we have

$$
\begin{equation*}
T\left(\alpha_{1}\right) \leq \kappa T(\alpha)+\kappa K . \tag{1.3}
\end{equation*}
$$

Since $T(\alpha) \leq C$ can be satisfied only for finitely many elements $\alpha \in$ $\mathbf{Z}[\theta]$, and $\kappa<1$, therefore the sequence $\alpha, \alpha_{1}, \alpha_{2}, \ldots$ is ultimately periodic, where in general, α_{k+1} is defined as

$$
\alpha_{k}=\alpha_{k+1} \theta+b_{k}, \quad b_{k} \in A .
$$

An element $\beta \in \mathbf{Z}[\theta]$ is called to be (purely) periodic with respect to (θ, A) if the sequence $J^{k}(\beta)(k=0,1, \ldots)$ is periodic, i.e. for some $l>0$, $j^{l}(\beta)=\beta$. Let S be the set of all periodic elements.

One can see easily that S is a finite set, moreover that

$$
\begin{equation*}
(E:=) \max _{\beta \in S} T(\beta) \leq \frac{\kappa}{1-\kappa} K . \tag{1.4}
\end{equation*}
$$

Indeed, if $\beta \in S$ is such an element for which $E=T(\beta)$, and $J^{l}(\beta)=\beta$, by using (1.3) with $\alpha_{1}=\beta_{l}=\beta, \alpha=\beta_{l-1}$, we have

$$
E=T\left(\beta_{l}\right) \leq \kappa T\left(\beta_{l-1}\right)+\kappa K \leq \kappa E+\kappa K
$$

which implies (1.4) immediately.
We define the directed graph $G(S)$ as follows: the nodes of it are the elements of S; for every $\alpha \in S$ an edge is directed from α to $J(\alpha)$ and it is labelled by b, if $\alpha=\alpha_{1} \theta+b, b \in A, \alpha=J(\alpha)$.

It is clear that $G(S)$ is a union of disjoint directed circles. Furthermore, $\alpha \in S$ if there exists some $k \geq 0$ and $b_{0}, \ldots, b_{k-1} \in A$ such that

$$
\alpha=b_{0}+b_{1} \theta+\ldots+b_{k-1} \theta^{k-l}+\theta^{k} \alpha .
$$

For some $\eta \in \mathbf{Z}[\theta]$ let $l(\eta)$ be the smallest integer k for which $J^{k}(\eta) \in S$.
Let $\alpha \in \mathbf{Z}[\theta], \alpha_{j}=\alpha_{j+1} \theta+b_{j}, b_{j} \in A(j=0, \ldots, k-1), \alpha_{0}=\alpha$, and $l(\alpha)=k$. Then the sequence b_{0}, \ldots, b_{k-1}, and $\alpha_{k} \in S$ allow to compute α,

$$
\begin{equation*}
\alpha=b_{0}+b_{1} \theta+\ldots+b_{k-1} \theta^{k-1}+\theta^{k} \alpha_{k} . \tag{1.5}
\end{equation*}
$$

We say that this is the regular expansion of α. Given $c_{0}, \ldots, c_{s-1} \in A$, $\gamma \in S$, and consider the expansion

$$
\begin{equation*}
c_{0}+c_{1} \theta+\ldots+c_{s-1} \theta^{s-1}+\theta^{S} \gamma(=\eta) . \tag{1.6}
\end{equation*}
$$

It is the regular expansion of η, if and only if $c_{s-1}+\theta \gamma \notin S$.
For the regular expansion of (1.6) we shall use the notation $\eta=$ $\left[c_{0}, \ldots, c_{s-1} \mid \gamma\right]$. If $\eta \in S$, we shall write $\eta=[\emptyset \mid \eta]$.

Lemma 1. There is a constant c depending only on θ and A such that

$$
\begin{equation*}
\left|l(\alpha)-\max _{j=1, \ldots, n} \frac{\log \left|\alpha\left(\theta_{j}\right)\right|}{\log \left|\theta_{j}\right|}\right| \leq c \tag{1.7}
\end{equation*}
$$

if $\alpha \neq 0$.
Proof. By using (1.1), (1.2) and their iterates, we have

$$
\alpha_{k}\left(\theta_{j}\right)=\alpha\left(\theta_{j}\right) \rho_{j}^{k}-\sum_{l=0}^{k-1} b_{l}\left(\theta_{j}\right) \rho_{j}^{k-l} .
$$

Since the sum on the right hand side is bounded by $\frac{K \kappa}{1-\kappa}$, we get

$$
\begin{equation*}
\left|\alpha_{k}\left(\theta_{j}\right)-\alpha\left(\theta_{j}\right) \rho_{j}{ }^{k}\right| \leq \frac{K \kappa}{1-\kappa} . \tag{1.8}
\end{equation*}
$$

Let C be such a large constant for which

$$
\max _{\beta \in S} T(\beta)<C, \quad C>2 K \frac{\kappa}{1-\kappa}
$$

holds true. Then $l(\alpha)$ is at least so large as the least k for which $J^{k}(\alpha)<C$ is satisfied, consequently the lower estimate for $l(\alpha)$ given in (1.7) is true.

Let $k(\alpha)$ be the least integer k for which

$$
\max _{j=1, \ldots, n}\left|\alpha\left(\theta_{j}\right) \cdot \rho_{j}{ }^{k}\right|<\frac{K \kappa}{1-\kappa} .
$$

Thus

$$
k(\alpha) \leq \max _{j} \frac{\log \left|\alpha\left(\theta_{j}\right)\right|}{\log \left|\theta_{j}\right|}+c_{1}
$$

is true, with a suitable positive constant c_{1}. Furthermore $T\left(\alpha_{m}\right)<C$ holds for every $m \geq k$. Let $N(C)=$ card $\{\beta \in \mathbf{Z}[\theta], T(\beta)<C\}$. Then $l(\alpha) \leq k(\alpha)+N(C)$, and the upper estimate for $l(\alpha)$ in (1.7) is true.

If $\gamma \in S$,

$$
\gamma=c_{s}+c_{s+1} \theta+\cdots+c_{s+k-1} \theta^{k-1}+\theta^{k \gamma}
$$

and

$$
\begin{align*}
\eta= & c_{0}+c_{1} \theta+\cdots+c_{s-1} \theta^{s-1}+\theta^{s}\left(c_{s}+c_{s+1} \theta+\cdots+c_{s+k-1} \theta^{k-1}\right)+ \tag{1.9}\\
& +\theta^{s+k}\left(c_{s}+c_{s+1} \theta+\cdots+c_{s+k-1} \theta^{k-1}\right)+\theta^{s+2 k} \gamma= \\
= & \cdots \\
= & \xi_{u}+\eta_{u}
\end{align*}
$$

where $\xi_{u}=\sum_{s=0}^{u-1} c_{s} \theta^{s}$ and η_{u} is divisible by θ^{u}.
2. If $S=\{0\}$, then (θ, A) is said to be a number system (NS). If $A=A_{0}=\{0,1, \ldots,|N(\theta)|-1\}$ in additionally then $\left(\theta, A_{0}\right)$ is said to be a canonical nomber system (CNS). All the possible CNS were given for Gaussian integers by I. Kátai and J. Szabó [2], for quadratic extension field by I. Kátai and B. Kovács [3], [4], and independently by W. Gilbert [1], for $\mathbf{Q}(\sqrt[3]{2})$ by S. Körmendi [5].
W. Gilbert observed some nice geometric properties of the sets

$$
H=\left\{Z \mid Z=\sum_{j=1}^{\infty} b_{j} \theta^{-j} ; \quad b_{j} \in A_{0}\right\}
$$

in imaginary quadratic extensions.
3. Theorem 1. Assume that the conditions stated for (θ, A) in section 1 are satisfied. Let $H \subseteq K_{n}$ be the set of those $\underset{\sim}{z}$, for which there exists an infinite sequence of elements $b_{1}(\theta), b_{2}(\theta), \ldots \in A$, such that

$$
\begin{equation*}
z_{j}=\sum_{m=1}^{\infty} b_{m}\left(\theta_{j}\right) \rho_{j}^{m} \quad(j=1, \ldots, n) \tag{3.2}
\end{equation*}
$$

hold.
Then
(i) H is a compact set,

$$
\begin{equation*}
\underset{\alpha \in Z[\theta]}{\cup}\{H+\underset{\sim}{\alpha}\}=K_{n}, \tag{ii}
\end{equation*}
$$

furthermore, if (θ, A) is a number system, then

$$
\begin{equation*}
\lambda\left((H+\underset{\sim}{\gamma}) \cap\left(H+\underset{\sim}{\gamma}{\underset{\sim}{2}}_{2}\right)\right)=0 \tag{iii}
\end{equation*}
$$

for every $\gamma_{1}, \gamma_{2} \in Z[0]$, $\gamma_{1} \neq \gamma_{2}$, and if A denotes the linear mapping $K_{n} \rightarrow K_{n}$ acting as $z_{j} \rightarrow \theta_{j} z_{j}(j=1, \ldots, n)$, then

$$
\begin{equation*}
A^{l} H=\underset{\gamma}{\cup}(H+\underset{\sim}{\gamma}) \tag{iv}
\end{equation*}
$$

where γ runs over those elements of $Z[\theta]$ which have the form $\gamma=\sum_{m=0}^{l-1} b_{m} \theta^{m}$, $b_{m} \in A$.

Proof. Assertion (i) is clear. A detailed proof is given in [2] in the case of Gaussian integers.

Let $e=\underset{\sim}{1}$. Then ${\underset{\sim}{\mid}}^{j}=A^{j} e(j=0,1, \ldots, n-1)$. These vectorials are independent in K_{n}, since the matrix composed from them is of a Vandermonde type with distinct generating elements, $\theta_{1}, \ldots, \theta_{n}$.

Since every integer $\alpha \in \mathbf{Z}[\theta]$ can be uniquely written as $\alpha=d_{0}+d_{1} \theta+$ $\ldots+d_{n-1} \theta^{n-1}, d_{\nu} \in \mathbf{Z}$, therefore $M=\{\underset{\sim}{\alpha} \mid \alpha \in \mathbf{Z}[\theta]\}$ form a lattice with the basis vectors ${\underset{\sim}{\theta}}^{j}(j=0, \ldots, n-1)$ in K_{n}.

Let $z \in K_{n}, \underset{\sim}{z} \neq 0$. We let T to run over the set of positive integers. Consider $A^{T} \underset{\sim}{z}$. Then it can be approximated with a suitable $\underset{\sim}{\alpha} \underset{T}{ } \in M$ such that $\left|A^{T} \underset{\sim}{z}-\underset{\sim}{\alpha}\right|<c$, i.e.

$$
\begin{equation*}
\left|\theta_{j}^{T} z_{j}-\alpha_{T}\left(\theta_{j}\right)\right|<c \quad(j=1, \ldots, n) \tag{3.3}
\end{equation*}
$$

Then $\alpha_{T}(\theta)$ has a regular expansion,

$$
\begin{equation*}
\alpha_{T}(\theta)=c_{0}^{(T)}+c_{1}^{(T)} \theta+\ldots+c_{s-1}^{(T)} \theta^{s-1}+\theta^{s} \gamma_{T}, \tag{3.4}
\end{equation*}
$$

where $c_{j}^{(T)} \in A, \gamma_{T} \in S$ and s depends on T. From Lemma 1 we have that $l(\alpha) \leq T+R$, where R is a suitable integer which does not depend on T. It may depend on $\underset{\sim}{z}$. Applying the algorithm (1.1) $\left(\alpha \rightarrow \alpha_{1}\right) T+R-s$ times,

$$
\gamma_{T}=c_{s}^{(T)}+c_{s+1}^{(T)} \theta+\ldots+c_{T+R}^{(T)} \theta^{T+R-s-1}+\theta^{T+R-s+1} \gamma_{T}{ }^{*}
$$

where $\gamma_{T}{ }^{*} \in S, c_{\nu}^{(T)} \in A(\nu=s, \ldots, T+R)$.
Consequently

$$
\alpha_{T}\left(\theta_{j}\right)=\sum_{m=0}^{T+R} c_{m}^{(T)}\left(\theta_{j}\right) \theta_{j}^{m}+\gamma_{T}^{*}\left(\theta_{j}\right) \theta_{j}^{T+R+1} \quad(j=1, \ldots, n) .
$$

Thus, from (3.3) we have

$$
\begin{equation*}
z_{j}=\rho_{j}^{T} \alpha_{T}\left(\theta_{j}\right)+\omega_{j}^{(T)} \quad(j=1, \ldots, n) \tag{3.5}
\end{equation*}
$$

where $\omega_{j}^{(T)} \rightarrow 0$ as $T \rightarrow \infty$, furthermore from (1.9)

$$
\begin{equation*}
\rho_{j}^{T} \alpha_{T}\left(\theta_{j}\right)=\sum_{h=-T}^{-1} c_{T+h}^{(T)}\left(\theta_{j}\right) \theta_{j}^{h}+\eta_{T}^{*}\left(\theta_{j}\right) \theta_{j}^{-T} \tag{3.6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\eta_{T}^{*}\left(\theta_{j}\right) \rho_{j}^{T} \in Z\left(\theta_{j}\right) \tag{3.7}
\end{equation*}
$$

may take only on finitely many values, therefore there exists an $\alpha\left(\theta_{j}\right)$ which occurs as the value of (3.7) for infinitely many values of T.

Let us keep only those T for which

$$
\begin{equation*}
Z_{j}=\sum_{h=-T}^{-1} c_{T+h}^{(T)}\left(\theta_{j}\right) \theta_{j}^{h}+\alpha\left(\theta_{j}\right) \tag{3.8}
\end{equation*}
$$

holds. Then there is an infinite subsequence of these T values for which some $d_{-1} \in A$ occurs as $c_{T-1}^{(T)}$ infinitely often. Continuing this process ad infinitum, we obtain that

$$
z_{j}=\alpha\left(\theta_{j}\right)+\sum_{l=1}^{\infty} d_{-l}\left(\theta_{j}\right) \cdot \rho_{j}^{l} \quad(j=1, \ldots, n)
$$

holds with some $\alpha \in \mathbf{Z}[\theta], d_{-l} \in A(l=1,2, \ldots)$. This proves (ii).
Assume now that (θ, A) is a NS. The fulfilment of (iv) is clear. From (ii) we have $\lambda(H)=\lambda(H+\underset{\sim}{\alpha})>0$. We have card $(A)=\left|\theta_{1} \ldots \theta_{n}\right|=|N(\theta)|$, furthermore that $\lambda\left(A^{l} H\right)=|N(\theta)|^{l} \lambda(H)$. There exist exactly $|N(\theta)|^{l}$ distinct γ occuring on the right hand side of (iv). Thus

$$
\begin{equation*}
|N(\theta)|^{l} \lambda(H)=\lambda\left(A^{l} H\right)=\lambda(\cup(H+\underset{\sim}{\gamma})) \leq \sum \lambda(H+\underset{\sim}{\gamma}) \tag{3.9}
\end{equation*}
$$

and equality holds if and only if

$$
\begin{equation*}
\lambda\left(\left(H+\underset{\sim}{\gamma_{1}}\right) \cap\left(H+\underset{\sim}{\gamma_{2}}\right)\right)=0 \tag{3.10}
\end{equation*}
$$

is satisfied for all pairs of $\gamma_{1} \neq \gamma_{2}$ occuring in (iv). Since the right most side of (3.9) equals $|N(\theta)|^{l} \lambda(H)$, and 1 can be chosen to be arbitrarily large, therefore (3.10) is true for all $\gamma_{1}, \gamma_{2} \in \mathbf{Z}[\theta] \mid \gamma_{1} \neq \gamma_{2}$. This completes the proof of our theorem.

References

[1] W. Gilbert, Radix representations of quadratic fields, J. Math. Anal. and Appl. 83 (1981), 264-274.
[2] I. KÁtai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged) 37 (1975), 255-260.
[3] I. KÁtai and B. Kovács, Canonical number systems in imaginary quadratic field, Acta Math. Acad. Sci. Hung. 37 (1981), 159-164.
[4] I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980), 99-107.
[5] J. Körmendi, Canonical number systems in $\mathbf{Q}(\sqrt[3]{2})$., Acta Sci. Math. 37 (1975), 255-260.
I. KÁtai And i. KÖrnyei

EÖTVÖS LORÁND UNIVERSITY
COMPUTER CENTER
H-1117 BUDAPEST
BOGDÁNFY ÚT 10/B.

