On number systems in algebraic number fields

By I. KÁTAI (Budapest) and I. KÖRNYEI (Budapest)

1. Let θ be an algebraic integer with minimal polynomial $p(x) = (x - \theta_1) \cdots (x - \theta_n), \ \theta = \theta_1$ over \mathbf{Q} . Assume that $|\theta_i| > 1$ holds for every $i = 1, \ldots, n$; let $\kappa = \max 1/|\theta_i|$. Let $\rho_j = \theta_j^{-1}$ $(j = 1, \ldots, n)$. Let $A = \{a_0 = 0, a_1, \ldots, a_{t-1}\}$ be a full residue system mod $\theta, A \subseteq \mathbf{Z}[\theta]$. Let $A^{(j)}$ be the conjugate sets, $A^{(j)} = \{a_0(\theta_j) = 0, a_1(\theta_j), \ldots, a_{t-1}(\theta_j)\}$. Assume that $\theta_1, \ldots, \theta_{2r} \in \mathbf{C} \setminus \mathbf{R}; \ \theta_{2r+1}, \ldots, \theta_{2r+s} \in \mathbf{R}, \ n = 2r + s$, so ordered that $\theta_{r+l} = \overline{\theta_l}$ $(l = 1, \ldots, r)$. Let $K_n = K_n^{(r,s)}$ be the set of those vectorials z, the *i* th coordinate of which is denoted by z_i such that $z_1, \ldots, z_{2r} \in \mathbf{C}, \ z_{r+l} = \overline{z_l} \ (l = 1, \ldots, r), \ z_{2r+1}, \ldots, z_{2r+s} \in \mathbf{R}$. It is a linear normed space with $\|z\| = \max |z_j|$. λ will denote the Lebesque measure in K_n , defined as $dx_l \, dy_l \cdots dx_r \, dy_r \, dz_{2r+1} \cdots d_{2r+s}$. For an arbitrary $\alpha \in \mathbf{Z}[\theta]$ let $\alpha \in K_n$ the vectorial, the *j* th coordinate

of which is $\alpha(\theta_i)$.

For every $\alpha \in \mathbf{Z}[\theta]$ there exists a unique $b_0 \in A$ and $\alpha_1 \in \mathbf{Z}[\theta]$ such that

(1.1)
$$\alpha = \alpha_1 \theta + b_0.$$

(1.1) implies the fulfilment of

(1.2)
$$\alpha(\theta_j) = \alpha_1(\theta_j)\theta_j + b_0(\theta_j) \quad (j = 1, \dots, n)$$

Let $J : \mathbf{Z}[\theta] \to \mathbf{Z}[\theta]$ be the function defined by $J(\alpha) = \alpha_1$. Let $T(\alpha) = \max_j |\alpha(\theta_j)|, K = \max_{b \in A} \max_{j=1,\dots,n} |b(\theta_j)|$. From (1.2) we have

(1.3)
$$T(\alpha_1) \le \kappa T(\alpha) + \kappa K.$$

I. Kátai and I. Környei

Since $T(\alpha) \leq C$ can be satisfied only for finitely many elements $\alpha \in \mathbf{Z}[\theta]$, and $\kappa < 1$, therefore the sequence $\alpha, \alpha_1, \alpha_2, \ldots$ is ultimately periodic, where in general, α_{k+1} is defined as

$$\alpha_k = \alpha_{k+1}\theta + b_k, \quad b_k \in A.$$

An element $\beta \in \mathbf{Z}[\theta]$ is called to be (purely) periodic with respect to (θ, A) if the sequence $J^k(\beta)$ (k = 0, 1, ...) is periodic, i.e. for some l > 0, $j^l(\beta) = \beta$. Let S be the set of all periodic elements.

One can see easily that S is a finite set, moreover that

(1.4)
$$(E:=) \max_{\beta \in S} T(\beta) \le \frac{\kappa}{1-\kappa} K.$$

Indeed, if $\beta \in S$ is such an element for which $E = T(\beta)$, and $J^{l}(\beta) = \beta$, by using (1.3) with $\alpha_{1} = \beta_{l} = \beta$, $\alpha = \beta_{l-1}$, we have

$$E = T(\beta_l) \le \kappa T(\beta_{l-1}) + \kappa K \le \kappa E + \kappa K,$$

which implies (1.4) immediately.

We define the directed graph G(S) as follows: the nodes of it are the elements of S; for every $\alpha \in S$ an edge is directed from α to $J(\alpha)$ and it is labelled by b, if $\alpha = \alpha_1 \theta + b$, $b \in A$, $\alpha = J(\alpha)$.

It is clear that G(S) is a union of disjoint directed circles. Furthermore, $\alpha \in S$ if there exists some $k \geq 0$ and $b_0, \ldots, b_{k-1} \in A$ such that

$$\alpha = b_0 + b_1\theta + \ldots + b_{k-1}\theta^{k-l} + \theta^k\alpha$$

For some $\eta \in \mathbf{Z}[\theta]$ let $l(\eta)$ be the smallest integer k for which $J^k(\eta) \in S$. Let $\alpha \in \mathbf{Z}[\theta]$, $\alpha_j = \alpha_{j+1}\theta + b_j$, $b_j \in A$ (j = 0, ..., k-1), $\alpha_0 = \alpha$, and $l(\alpha) = k$. Then the sequence $b_0, ..., b_{k-1}$, and $\alpha_k \in S$ allow to compute α ,

(1.5)
$$\alpha = b_0 + b_1\theta + \ldots + b_{k-1}\theta^{k-1} + \theta^k \alpha_k.$$

We say that this is the regular expansion of α . Given $c_0, \ldots, c_{s-1} \in A$, $\gamma \in S$, and consider the expansion

(1.6)
$$c_0 + c_1 \theta + \ldots + c_{s-1} \theta^{s-1} + \theta^S \gamma(=\eta).$$

It is the regular expansion of η , if and only if $c_{s-1} + \theta \gamma \notin S$.

For the regular expansion of (1.6) we shall use the notation $\eta = [c_0, \ldots, c_{s-1}|\gamma]$. If $\eta \in S$, we shall write $\eta = [\emptyset|\eta]$.

290

Lemma 1. There is a constant *c* depending only on θ and *A* such that

(1.7)
$$\left| l(\alpha) - \max_{j=1,\dots,n} \frac{\log |\alpha(\theta_j)|}{\log |\theta_j|} \right| \le c,$$

if $\alpha \neq 0$.

PROOF. By using (1.1), (1.2) and their iterates, we have

$$\alpha_k(\theta_j) = \alpha(\theta_j) \rho_j^{\ k} - \sum_{l=0}^{k-1} b_l(\theta_j) \rho_j^{\ k-l}.$$

Since the sum on the right hand side is bounded by $\frac{K\kappa}{1-\kappa}$, we get

(1.8)
$$|\alpha_k(\theta_j) - \alpha(\theta_j)\rho_j^{\ k}| \le \frac{K\kappa}{1-\kappa}$$

Let C be such a large constant for which

$$\max_{\beta \in S} T(\beta) < C, \quad C > 2K \frac{\kappa}{1-\kappa}$$

holds true. Then $l(\alpha)$ is at least so large as the least k for which $J^k(\alpha) < C$ is satisfied, consequently the lower estimate for $l(\alpha)$ given in (1.7) is true.

Let $k(\alpha)$ be the least integer k for which

$$\max_{j=1,\ldots,n} |\alpha(\theta_j) \cdot \rho_j^{k}| < \frac{K\kappa}{1-\kappa}$$

Thus

$$k(\alpha) \le \max_{j} \frac{\log |\alpha(\theta_j)|}{\log |\theta_j|} + c_1$$

is true, with a suitable positive constant c_1 . Furthermore $T(\alpha_m) < C$ holds for every $m \ge k$. Let $N(C) = \text{card } \{\beta \in \mathbf{Z}[\theta], T(\beta) < C\}$. Then $l(\alpha) \le k(\alpha) + N(C)$, and the upper estimate for $l(\alpha)$ in (1.7) is true. If $\gamma \in S$,

$$\gamma = c_s + c_{s+1}\theta + \dots + c_{s+k-1}\theta^{k-1} + \theta^{k\gamma}$$

and

(1.9)
$$\eta = c_0 + c_1 \theta + \dots + c_{s-1} \theta^{s-1} + \theta^s (c_s + c_{s+1} \theta + \dots + c_{s+k-1} \theta^{k-1}) + \theta^{s+k} (c_s + c_{s+1} \theta + \dots + c_{s+k-1} \theta^{k-1}) + \theta^{s+2k} \gamma = \dots = \xi_u + \eta_u$$

where $\xi_u = \sum_{s=0}^{u-1} c_s \theta^s$ and η_u is divisible by θ^u . **2.** If $S = \{0\}$, then (θ, A) is said to be a number system (NS). If

2. If $S = \{0\}$, then (θ, A) is said to be a number system (NS). If $A = A_0 = \{0, 1, \dots, |N(\theta)| - 1\}$ in additionally then (θ, A_0) is said to be a canonical nomber system (CNS). All the possible CNS were given for Gaussian integers by I. KÁTAI and J. SZABÓ [2], for quadratic extension field by I. KÁTAI and B. KOVÁCS [3], [4], and independently by W. GILBERT [1], for $\mathbf{Q}(\sqrt[3]{2})$ by S. KÖRMENDI [5].

W. GILBERT observed some nice geometric properties of the sets

$$H = \{ Z \mid Z = \sum_{j=1}^{\infty} b_j \theta^{-j}; \quad b_j \in A_0 \}$$

in imaginary quadratic extensions.

3. Theorem 1. Assume that the conditions stated for (θ, A) in section 1 are satisfied. Let $H \subseteq K_n$ be the set of those \underline{z} , for which there exists an infinite sequence of elements $b_1(\theta), b_2(\theta), \ldots \in A$, such that

(3.2)
$$z_j = \sum_{m=1}^{\infty} b_m(\theta_j) \rho_j^m \quad (j = 1, \dots, n)$$

hold.

Then

(i) H is a compact set,

(ii)
$$\bigcup_{\alpha \in Z[\theta]} \{H + \alpha\} = K_n,$$

furthermore, if (θ, A) is a number system, then

(iii)
$$\lambda((H+\underset{\sim}{\gamma_1})\cap(H+\underset{\sim}{\gamma_2}))=0$$

for every $\gamma_1, \gamma_2 \in Z[0]$, $\gamma_1 \neq \gamma_2$, and if A denotes the linear mapping $K_n \to K_n$ acting as $z_j \to \theta_j z_j$ (j = 1, ..., n), then

(iv)
$$A^l H = \bigcup_{\gamma} (H + \gamma)$$

where γ runs over those elements of $Z[\theta]$ which have the form $\gamma = \sum_{m=0}^{l-1} b_m \theta^m$, $b_m \in A$.

PROOF. Assertion (i) is clear. A detailed proof is given in [2] in the case of Gaussian integers.

292

Let e = 1. Then $\theta^j = A^j e$ $(j = 0, 1, \dots, n-1)$. These vectorials are independent in K_n , since the matrix composed from them is of a Vandermonde type with distinct generating elements, $\theta_1, \ldots, \theta_n$.

Since every integer $\alpha \in \mathbf{Z}[\theta]$ can be uniquely written as $\alpha = d_0 + d_1\theta +$ $\dots + d_{n-1}\theta^{n-1}, d_{\nu} \in \mathbf{Z}$, therefore $M = \{\alpha \mid \alpha \in \mathbf{Z}[\theta]\}$ form a lattice with the basis vectors θ^j $(j = 0, \dots, n-1)$ in K_n .

Let $z \in K_n$, $z \neq 0$. We let T to run over the set of positive integers. Consider $A^T z$. Then it can be approximated with a suitable $\alpha_T \in M$ such that $|A^T \underline{z} - \alpha_T| < c$, i.e.

(3.3)
$$|\theta_j^T z_j - \alpha_T(\theta_j)| < c \quad (j = 1, \dots, n)$$

Then $\alpha_T(\theta)$ has a regular expansion,

(3.4)
$$\alpha_T(\theta) = c_0^{(T)} + c_1^{(T)}\theta + \ldots + c_{s-1}^{(T)}\theta^{s-1} + \theta^s \gamma_T,$$

where $c_i^{(T)} \in A, \gamma_T \in S$ and s depends on T. From Lemma 1 we have that $l(\alpha) \leq T + R$, where R is a suitable integer which does not depend on T. It may depend on z. Applying the algorithm (1.1) $(\alpha \rightarrow \alpha_1) T + R - s$ times,

$$\gamma_T = c_s^{(T)} + c_{s+1}^{(T)}\theta + \ldots + c_{T+R}^{(T)}\theta^{T+R-s-1} + \theta^{T+R-s+1}\gamma_T^*,$$

where $\gamma_T^* \in S, c_{\nu}^{(T)} \in A \ (\nu = s, \dots, T + R).$ Consequently

$$\alpha_T(\theta_j) = \sum_{m=0}^{T+R} c_m^{(T)}(\theta_j) \theta_j^m + \gamma_T^*(\theta_j) \theta_j^{T+R+1} \quad (j = 1, \dots, n).$$

Thus, from (3.3) we have

(3.5)
$$z_j = \rho_j^T \alpha_T(\theta_j) + \omega_j^{(T)} \quad (j = 1, \dots, n),$$

where $\omega_i^{(T)} \to 0$ as $T \to \infty$, furthermore from (1.9)

(3.6)
$$\rho_j^T \alpha_T(\theta_j) = \sum_{h=-T}^{-1} c_{T+h}^{(T)}(\theta_j) \theta_j^h + \eta_T^*(\theta_j) \theta_j^{-T}.$$

Since

(3.7)
$$\eta_T^*(\theta_j)\rho_j^T \in Z(\theta_j)$$

may take only on finitely many values, therefore there exists an $\alpha(\theta_i)$ which occurs as the value of (3.7) for infinitely many values of T.

Let us keep only those T for which

(3.8)
$$Z_{j} = \sum_{h=-T}^{-1} c_{T+h}^{(T)}(\theta_{j})\theta_{j}^{h} + \alpha(\theta_{j})$$

holds. Then there is an infinite subsequence of these T values for which some $d_{-1} \in A$ occurs as $c_{T-1}^{(T)}$ infinitely often. Continuing this process ad infinitum, we obtain that

$$z_j = \alpha(\theta_j) + \sum_{l=1}^{\infty} d_{-l}(\theta_j) \cdot \rho_j^l \quad (j = 1, \dots, n)$$

holds with some $\alpha \in \mathbf{Z}[\theta], d_{-l} \in A$ (l = 1, 2, ...). This proves (ii).

Assume now that (θ, A) is a NS. The fulfilment of (iv) is clear. From (ii) we have $\lambda(H) = \lambda(H+\alpha) > 0$. We have card $(A) = |\theta_1 \dots \theta_n| = |N(\theta)|$,

furthermore that $\lambda(A^l H) = |N(\theta)|^l \lambda(H)$. There exist exactly $|N(\theta)|^l$ distinct γ occuring on the right hand side of (iv). Thus

(3.9)
$$|N(\theta)|^{l}\lambda(H) = \lambda(A^{l}H) = \lambda(\cup(H+\gamma)) \leq \sum \lambda(H+\gamma)$$

and equality holds if and only if

(3.10)
$$\lambda((H+\gamma_1)\cap(H+\gamma_2))=0$$

is satisfied for all pairs of $\gamma_1 \neq \gamma_2$ occuring in (iv). Since the right most side of (3.9) equals $|N(\theta)|^l \lambda(H)$, and l can be chosen to be arbitrarily large, therefore (3.10) is true for all $\gamma_1, \gamma_2 \in \mathbf{Z}[\theta] \mid \gamma_1 \neq \gamma_2$. This completes the proof of our theorem.

References

- W. GILBERT, Radix representations of quadratic fields, J. Math. Anal. and Appl. 83 (1981), 264–274.
- [2] I. KÁTAI AND J. SZABÓ, Canonical number systems for complex integers, Acta Sci. Math. (Szeged) 37 (1975), 255–260.
- [3] I. KÁTAI AND B. KOVÁCS, Canonical number systems in imaginary quadratic field, Acta Math. Acad. Sci. Hung. 37 (1981), 159–164.
- [4] I. KÁTAI AND B. KOVÁCS, Kanonische Zahlensysteme in der Theorie der quadratischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980), 99–107.
- [5] J. KÖRMENDI, Canonical number systems in $\mathbf{Q}(\sqrt[3]{2})$., Acta Sci. Math. 37 (1975), 255-260.

I. KÁTAI AND I. KÖRNYEI EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER H–1117 BUDAPEST BOGDÁNFY ÚT 10/B.

(Received September 20, 1991)

294