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Constraint coefficient problems
for a subclass of starlike functions

By N. SAMARIS (Patras) and P. KOULORIZOS (Patras)

Abstract. Let S∗R be the class of univalent starlike functions with real coefficients
defined in the unit disk U . Using the Carathéodory–Toeplitz conditions, we are able to
solve the constraint problems of the third and fourth coefficients of S∗R for any fixed
second coefficient in [−2, 2].

1. Introduction

Let H(U) be the topological linear space of analytic functions in the
unit disk U = {z : |z| < 1} and HR be the subclass of H(U) of functions
with real coefficients. We consider the class PR of all functions p ∈ HR

with:

p(0) = 1 and Re[p(z)] > 0, z ∈ U.

By S∗R we denote the subclass of HR of normalized univalent starlike
functions. A function

g(z) = z +
∞∑

n=2

gnzn

is in S∗R, iff there exists a function

q(z) = 1 +
∞∑

n=1

qnzn
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in PR such that

(1)
zg′(z)
g(z)

= q(z).

By CR we denote the subclass of HR of normalized univalent close-
to-convex functions. A function

f(z) = z +
∞∑

n=2

fnzn

is in CR iff there exists a function g(z) in S∗R and a

p(z) = 1 +
∞∑

n=1

pnzn

in PR such that

(2)
zf ′(z)
g(z)

= p(z).

If t1 ∈ [0, 1], by S∗R(t1), (CR(t1)) we denote the class of functions

g(z) = z + g2z
2 + g3z

3 + · · · ∈ S∗R, (CR)

for which
g2 = −2 + 4t1.

H. S. Al-Amiri and D. Bshouty in [1] considered the problem of
calculating the values max

g∈S∗R(t1)
gn, max

g∈CR(t1)
gn. They solved this problem

in the following cases:

(i) n = 3 ∀ t1 ∈ [0, 1] and n = 4 ∀ t1 ∈
[
5
6
, 1

]

for the class S∗R(t1) and

(ii) n = 3 ∀ t1 ∈ [0, 1] and n = 4 ∀ t1 ∈
[
11
12

, 1
]

for the class CR(t1).
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In this paper we solve the problem for the class S∗R(t1) for n = 4, 5
∀ t1 ∈ [0, 1]. We will also solve the corresponding problem concerning

min
g∈S∗R(t1)

gn for n = 3, 4, 5 ∀ t1 ∈ [0, 1]. All the above results are presented

in Theorems 1, 2, 3, 4, 5.
We face a problem involving the estimation of quantities which depend

on the Taylor coefficients of functions belonging to the class PR. In [1],
H. S. Al-Amiri and D. Bshouty used a Theorem of Dubins concerning
the extreme points of crossections of convex sets.

Our first idea is to use the Carathéodory–Toeplitz conditions as they
consist the strongest relations between the Taylor coefficients of the class
PR. A second idea is to express these relations in such a way that each
Taylor coefficient can be converted separately to a polynomial of several
variables.

Combining these two ideas, we transform the initial problem into find-
ing the max (or min) of a polynomial of several variables, defined in a
closed interval [0, 1]k, k ≤ 4. All the above are contained in Step 1 of the
proof of Theorem 4. In Step 2 of the proof we calculate in a usual way,
the maximum or the minimum of these polynomials making use of their
particular properties.

A serious problem in this paper is the size of the polynomials which
are involved in the elementary calculations. Using the computer algebra
system Mathematica 2.2, we obtained all necessary results.

2. Main theorems

Theorem 1. If min
g∈S∗R(t1)

g3 = m3(t1), then:

m3(t1) = (1− 4t1)(3− 4t1), for t1 ∈ [0, 1].

Theorem 2. If max
g∈S∗R(t1)

g4 = M4(t1), then:

M4(t1) = 4(−1 + 2t1)(1− 8t1 + 8t21), for t1 ∈
[
0,

5
14

]

M4(t1) =
1
3
(13− 45t1 + 48t21 − 4t31), for t1 ∈

(
5
14

,
5
6

)
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M4(t1) =
4
3
(−1 + 2t1)(3− 4t1 + 4t21), for t1 ∈

[
5
6
, 1

]
.

Theorem 3. If min
g∈S∗R(t1)

g4 = m4(t1), then:

m4(t1) =
4
3
(−1 + 2t1)(3− 4t1 + 4t21), for t1 ∈

[
0,

1
6

]

m4(t1) =
1
3
(−12 + 39t1 − 36t21 − 4t31), for t1 ∈

(
1
6
,

9
14

)

m4(t1) = 4(−1 + 2t1)(1− 8t1 + 8t21), for t1 ∈
[

9
14

, 1
]

.

Theorem 4. If max
g∈S∗R(t1)

g5 = M5(t1), then:

M5(t1) =
1
3
(15− 56t1 + 88t21 − 64t31 + 32t41), for t1 ∈ [0, 1].

Theorem 5. If min
g∈S∗R(t1)

g5 = m5(t1), then:

m5(t1) = (5− 20t1 + 16t21)(1− 12t1 + 16t21),

for t1 ∈
[
0,

352− 24
√

66
704

]
∪

[
352 + 24

√
66

704
, 1

]

m5(t1) =
1

486
(−1291 + 4064t1 − 3552t21 − 1024t31 + 512t41

)
,

for t1 ∈
(

352− 24
√

66
704

,
352 + 24

√
66

704

)
.

In order to prove the previous theorems we will need the following
lemmas.

Lemma 1. Let Kn(PR) be the set of x = (x1, x2, . . . , xn) ∈ Rn for

which there exists a q(z) = 1 + q1z + q2z
2 + · · · ∈ PR having q1 = x1,

q2 = x2, . . . , qn = xn. Let also An be the set of x = (x1, x2, . . . , xn) ∈ Rn



Constraint coefficient problems for a subclass . . . 67

such that Dk(x1, x2, . . . , xk) > 0, k = 1, 2, . . . , n where:

Dk(x1, x2, . . . , xk) =

∣∣∣∣∣∣∣∣∣∣∣

2 x1 x2 . . . xk

x1 2 x1 . . . xk−1

x2 x1 2 . . . xk−2

...
...

...
. . .

...

xk xk−1 xk−2 . . . 2

∣∣∣∣∣∣∣∣∣∣∣

.

If An is the closure of An then An = Kn(PR).

The above lemma is a part of the Carathéodory–Toeplitz Theorem
(see [2], [3]).

Lemma 2. If x = (x1, x2, . . . , xn) ∈ Rn (n ≤ 4) the following propo-

sitions are equivalent.

(i) x ∈ Kn(PR)
(ii) there exists a (t1, t2, . . . , tn) ∈ [0, 1]n such that: x1 = p1(t1),

x2 = p2(t1, t2), . . . , xn = pn(t1, t2, . . . , tn) where:

p1(t1) = −2 + 4t1

p2(t1, t2) = 2 + 16t1(−1 + t1 + t2 − t1t2)

p3(t1, t2, t3) = −2 + t1(36− 96t1 + 64t21)− 32t1t2(1− 5t1 + 4t21)

− 64t21t
2
2(1 + t1) + 64(−1 + t1)t1(1− t2)t2t3

p4(t1, t2, t3, t4) = 2
(
1 + 32t1(−1 + 5t1) + 128t31(−2 + t1) + 32t1t2(1− 9t1

+ 20t21 − 12t31) + 128t21t
2
2(1− 4t1 + 3t21) + 128t31t

3
2(1− t1)

+ 128t1t2t3(1− 3t1+2t21 − t2)+128t21t2
2t3(5− 4t1 − 2t2

+ t3 + 2t1t2 − t2t3) + 128t1t
2
2t

2
3(−1 + t2)

+ 128t1t2t3t4(−1+t1 + t2−t1t2 + t3−t1t3−t2t3+t1t2t3)
)
.

Proof. The quantity Dk(x1, x2, . . . , xk) can be written as polyno-
mial of second degree in xk of the form:

−Dk−2(x1, x2, . . . , xk−2)x2
k + . . . , (Dk = 1 for k ≤ 0).

If ρk ≡ ρk(x1, x2, . . . , xk−1) and ρ∗k ≡ ρ∗k(x1, x2, . . . , xk−1) are the roots of
the above polynomial it is easy to see that the relation x ∈ An is equivalent
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to min(ρk, ρ∗k) < xk < max(ρk, ρ∗k) or

(3) xk = ρk + tk(ρ∗k − ρk), tk ∈ (0, 1) k = 1, 2, . . . , n.

• For k = 1 we get ρ1 = −2 and ρ∗1 = 2. Therefore

(4) x1 = p1(t1), t1 ∈ (0, 1).

• For k = 2 by the equation D2(x1, x2) = 0 we obtain ρ2 = −2 + x2
1 and

ρ∗2 = 2. Thus combining (3) with (4) we get

(5) x2 = p2(t1, t2), (t1, t2) ∈ (0, 1)2.

• For k = 3 through equation D3(x1, x2, x3) = 0 we obtain

ρ3 = −4− 2x1 − (x1 − x2)2

−2 + x1
and ρ∗3 = −4 + 2x1 − (x1 + x2)2

2 + x1
.

Consequently, combining (3) with (4) and (5) we obtain after the calcula-
tions

(6) x3 = p3(t1, t2, t3), (t1, t2, t3) ∈ (0, 1)3.

In the same manner we can see that x4 = p4(t1, t2, t3, t4). Summarizing,
we have that the transform

(t1, t2, . . . , tn) −→ (
p1(t1), p2(t1, t2), . . . , pn(t1, t2, . . . , tn)

)

is one-to-one from (0, 1)n onto An. After the above observation the rest
of the proof is straightforward. ¤

3. Proof of Theorem 4

For the proof of the theorem we need the following two steps.

Step 1. Let (α2, α3, . . . , αk) ∈ Rk−1 with k ≤ 5. The following
properties are equivalent.

(i) There exists a function g(z) = z +
∞∑

n=2
gnzn ∈ S∗R such that:

g2 = α2, . . . , gk = αk.
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(ii) There exists a (t1, t2, . . . , tk−1) ∈ [0, 1]k−1, k ≤ 5 such that:

α2 = s2(t1)

α3 = s3(t1, t2)

α4 = s4(t1, t2, t3)

α5 = s5(t1, t2, t3, t4)

with

s2(t1) = −2 + 4t1

s3(t1, t2) = 3 + 16t1(−1 + t1) + 8t1t2(1− t1)

s4(t1, t2, t3) =
4
3
(−3 + t1(30− 72t1 + 48t21) + t1t2(−20 + 76t1 − 56t21)

+ 16t21t
2
2(−1 + t1) + 16t1t2t3(−1 + t1 + t2 − t1t2)

)

s5(t1, t2, t3, t4) =
1
3
(
15 + t1(−240 + 1008t1 − 1536t21 + 768t31) + t1t2(184

− 1336t1 + 2624t21 − 1472t31)+t21t
2
2(416− 1344t1+928t21)

+ 192t31t
3
2(1− t1) + 320t1t2t3(1− 3t1 + 2t21 − t2)

+ t21t
2
2t3(1344− 1024t1 − 384t2 + 384t1t2)

+ 192t1t
2
2t

2
3(−1 + t1 + t2 − t1t2)

+192t1t2t3t4(−1+t1+t2 − t1t2+t3 − t1t3−t2t3+t1t2t3)
)
.

Proof of Step 1. Since g(z) ∈ S∗R it follows that

(7) zg′(z) = g(z)q(z)

where

q(z) = 1 +
∞∑

n=1

qnzn ∈ PR.

From (3) we obtain

g2 = q1(8)

g3 =
1
2
(q2

1 + q2)(9)
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g4 =
1
6
(q3

1 + 3q1q2 + 2q3)(10)

g5 =
1
24

(q4
1 + 6q2

1q2 + 3q2
2 + 8q1q3 + 6q4).(11)

Conversely if q(z) = 1+q1z+q2z
2 + · · · ∈ PR then there exists exactly one

g(z) ∈ S∗R such that zg′(z)
g(z) = q(z). Replacing qk by pk(t1, t2, . . . , tk) ac-

cording to Lemma 2 after the calculations we attain the desired conclusion.
¤

Step 2. Calculation of M5(t1).

We remark that:

1. According to Step 1, our problem is to find the maximum (or min-
imum) of the functions sk(t1, t2, . . . , tk−1) (k = 3, . . . , 5), for fixed t1 and
(t2, . . . , tk−1) ∈ [0, 1]k−2.

2. If we set in any function sk (k = 3, . . . , 5), ti = 0 or ti = 1
(i = 1, 2, 3), then the value of the function does not depend on the variables
tj when j > i.

3. The polynomial s5 is linear in t4 with corresponding coefficient
64(−1 + t1)t1(−1 + t2)t2(−1 + t3)t3 which is non-positive.

Using the above remarks we can continue as follows: Fixing t1 we con-
sider the extremum of the function s5 on (t2, t3, t4) = (t2, t3, 0), (t2, t3, t4)=
(t2, 1, 0), (t2, t3, t4) = (t2, 0, 0), (t2, t3, t4) = (1, 0, 0), (t2, t3, t4) = (0, 0, 0).
We then find the critical points in the cube [0, 1]3. The maximum of all
the above values is the needed result.

The Case t4 = 0.

From:

(12)
∂s5(t1, t2, t3, 0)

∂t2
= 0 and

∂s5(t1, t2, t3, 0)
∂t3

= 0,

after elementary calculations, we get

t2 =
19 + 112(−1 + t1)t1

72(−1 + t1)t1
and t3 =

t1(−41 + 68t1 − 8t21)
19 + 112(−1 + t1)t1

.
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We then find the set of t1 ∈ (0, 1) for which

(13)





1− t3 ≥ 0

t3 ≥ 0

1− t2 ≥ 0

t2 ≥ 0

are all true. The above relations are polynomial quotients in t1. Con-
verting them to factor products, we find in a simple way that for t1 ∈[
−52+12

√
23

16 , 68−12
√

23
16

]
, all inequalities in (13) are satisfied. Substituting

t2 and t3 in s5(t1, t2, t3, 0) we have

(14) L1(t1) =
1

162
(449− 1504t1 + 1632t21 − 256t31 + 128t41).

The Case t3 = 1.

From:

(15)
∂s5(t1, t2, 1, 0)

∂t2
= 0

we get h1(t1, t2) = 0 where

(16) h1(t1, t2) = A1(t1)t22 + B1(t1)t2 + Γ1(t1)

with

A1(t1) =
32
3

(−16t1 + 61t21 − 74t31 + 29t41)

B1(t1) =
8
3
(63t1 − 287t21 + 408t31 − 184t41)

Γ1(t1) = 5− 80t1 + 336t21 − 512t31 + 256t41.

We then find all possible cases for which h1(t1, t2) has at least one root
with respect to t2, in (0, 1). This is accomplished using the sign of the
quantities:

A1(t1), 1 +
B1(t1)
2A1(t1)

,
−B1(t1)
2A1(t1)

,

(
B1(t1)

)2−4A1(t1)Γ1(t1), h1(t1, 0), h1(t1, 1).
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By a usual procedure we obtain that:

(i) for t1 ∈
(
−160+6

√
870

52 , 224+4
√

238
368

]
and

Ψ1 = (1− t1)
√

(−55 + 160t1 + 26t21) the large root

t22 =
32− 90t1 + 58t21 +

√
2Ψ1

36(−1 + t21)
is in (0, 1)

and

(ii) for t1 ∈
(
−160+6

√
870

52 , 224−4
√

238
368

]
the small root

t21 =
32− 90t1 + 58t21 −

√
2Ψ1

36(−1 + t21)
is in (0, 1).

After substituting the roots t22 , t21 in s5(t1, t2, 1, 0) we obtain respectively
the functions

(17) L2(t1) =
Φ1 +

√
2t1Ψ1(−220 + 640t1 + 104t21)

729(−1 + t1)

for t1 ∈
(
−160+6

√
870

52 , 224+4
√

238
368

]
and

(18) L3(t1) =
Φ1 +

√
2t1Ψ1(220− 640t1 − 104t21)

729(−1 + t1)

for t1 ∈
(
−160+6

√
870

52 , 224−4
√

238
368

]
, where Φ1 = −3645+18637t1− 31900t21+

16524t31 − 176t41 + 560t51.

The Case t3 = 0.

Working as we did in previous Case we obtain that:

(19) L4(t1) =
Φ2 +

√
2Ψ2(−524 + 1372t1 − 952t21 + 104t31)

729t1

for t1 ∈
[

144−4
√

238
368 , 212−6

√
870

52

)
and

(20) L5(t1) =
Φ2 +

√
2Ψ2(524− 1372t1 + 952t21 − 104t31)

729t1
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Figure 1.

for t1 ∈
[

144+4
√

238
368 , 212−6

√
870

52

)
, where Φ2 = 6505t1− 22216t21+ 21420t31−

2624t41 + 560t51 and Ψ2 =
√

t21(131− 212t1 + 26t21).

The Cases t2 = 1 and t2 = 0.

(21) L6(t1) =
1
3
(15− 56t1 + 88t21 − 64t31 + 32t41)

for t1 ∈ [0, 1] and

(22) L7(t1) = (5− 20t1 + 16t21)(1− 12t1 + 16t21)

for t1 ∈ [0, 1] are derived by setting in s5, t2 = 1 and t2 = 0, respectively.
A hint about the form of M5(t1) is obtained by the graphs of the

functions Li (1 ≤ i ≤ 7) (see Figure 1). In order to give a strict proof
of Theorem 4 we consider the functions L6(t1) − Li(t1) (i 6= 6) in the
subdomains of their definition and we examine their signs. More specificly:

• Since L6(t1)−L1(t1) = (19−40t1+40t12)2

162 it is obvious that L6(t1) ≥ L1(t1)

in
[
−52+12

√
23

16 , 68−12
√

23
16

]
.

• Also L6(t1) − L7(t1) = 184(1−t1)t1(−1+2t1)
2

3 . Therefore L6(t1) ≥ L7(t1)
in [0, 1].
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• Solving the equations L6(t1) − Li(t1) = 0 for i = 2, 3, 4, 5 in all the
cases we find the simple roots t1 = 0 and t1 = 1. Checking the sign of
the functions L6(t1) − Li(t1) in the interior of the subdomains of their
definition we obtain that L6(t1) ≥ Li(t1), (i = 2, 3, 4, 5).

4. Proof of the other theorems

Proof of Theorem 5. As in the procedure of the Proof of Theorem 4
in order to find min

g∈S∗R(t1)
g5 we consider the restriction of function s5 for

(t2, t3, t4) = (t2, t3, 1). The procedure of seeking local extreme points gives
that for t1 ∈

[
352−24

√
66

704 , 352+24
√

66
704

]
the corresponding value for s5 is

(23) R1(t1) =
1

486
(−1291 + 4064t1 − 3552t21 − 1024t31 + 512t41)

From Remark 2 of Step 2, it follows that in order to find the form of m5(t1)
it is sufficient to compare the values of the functions Li(t1) (i = 2, . . . , 7),
to that of R1(t1). For the comparison we folow the procedure of the Proof
of Theorem 4. ¤

Proof of Theorem 2. We observe that the polynomial s4 is linear
in t3 having the non-positive 64

3 (−1 + t1)t1(1 − t2)t2 coefficient. We will
achieve max

g∈S∗R(t1)
g4 by considering the restriction of function s4 for (t2, t3) =

(t2, 0). Since

(24)
∂s4(t1, t2, 0)

∂t2
= 0,

it follows that for
t2 =

−5 + 14t1
8t1

we obtain a local extreme point of s4. The constraint t2 ∈ (0, 1) is satisfied
for t1 ∈

(
5
14 , 5

6

)
. Replacing the above value of t2 in s4(t1, t2, 0) we get

(25) N1(t1) =
1
3
(13− 45t1 + 48t21 − 4t31)

for t1 ∈
(

5
14 , 5

6

)
. For t2 = 0 and t2 = 1 we obtain respectively

(26) N2(t1) = 4(−1 + 2t1)(1− 8t1 + 8t21)
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Figure 2.

for t1 ∈ [0, 1] and

(27) N3(t1) =
4
3
(−1 + 2t1)(3− 4t1 + 4t21)

for t1 ∈ [0, 1]. Comparing the values of the functions Ni(t1) as in the Proof
of Theorem 4 we get that max{Ni(t1), i = 1, 2, 3}, coincides with the form
of Theorem 2 (see Figure 2). ¤

Proof of Theorem 3. According to the Proof of Theorem 2, min
g∈S∗R(t1)

g4

will be achieved by the restriction of the function s4 for (t2, t3) = (t2, 1).
Since

(28)
∂s4(t1, t2, 1)

∂t2
= 0,

it is obvious that for

t2 =
−9 + 14t1
8(−1 + t1)

we get a local extreme point of s4. The constraint t2 ∈ (0, 1) is satisfied for
t1 ∈

(
1
6 , 9

14

)
. In this interval replacing the above value of t2 in s4(t1, t2, 1)
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we get

(29) K1(t1) =
1
3
(−12 + 39t1 − 36t21 − 4t31).

From Remark 2 of Step 2 the result follows again by comparing the val-
ues of functions Ni(t1) (i = 2, 3), to that of K1(t1) as in the Proof of
Theorem 4. ¤

Proof of Theorem 1. Follow the same procedure as in the Proof of
Theorem 5, 3. ¤
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