Constraint coefficient problems for a subclass of starlike functions

By N. SAMARIS (Patras) and P. KOULORIZOS (Patras)

Abstract

Let $\boldsymbol{S}_{\boldsymbol{R}}^{*}$ be the class of univalent starlike functions with real coefficients defined in the unit disk U. Using the Carathéodory-Toeplitz conditions, we are able to solve the constraint problems of the third and fourth coefficients of $\boldsymbol{S}_{\boldsymbol{R}}^{*}$ for any fixed second coefficient in $[-2,2]$.

1. Introduction

Let $\boldsymbol{H}(U)$ be the topological linear space of analytic functions in the unit disk $U=\{z:|z|<1\}$ and $\boldsymbol{H}_{\boldsymbol{R}}$ be the subclass of $\boldsymbol{H}(U)$ of functions with real coefficients. We consider the class $\boldsymbol{P}_{\boldsymbol{R}}$ of all functions $p \in \boldsymbol{H}_{\boldsymbol{R}}$ with:

$$
p(0)=1 \quad \text { and } \quad \operatorname{Re}[p(z)]>0, \quad z \in U .
$$

By $\boldsymbol{S}_{\boldsymbol{R}}^{*}$ we denote the subclass of $\boldsymbol{H}_{\boldsymbol{R}}$ of normalized univalent starlike functions. A function

$$
g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}
$$

is in $\boldsymbol{S}_{\boldsymbol{R}}^{*}$, iff there exists a function

$$
q(z)=1+\sum_{n=1}^{\infty} q_{n} z^{n}
$$

in $\boldsymbol{P}_{\boldsymbol{R}}$ such that

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=q(z) \tag{1}
\end{equation*}
$$

By $\boldsymbol{C}_{\boldsymbol{R}}$ we denote the subclass of $\boldsymbol{H}_{\boldsymbol{R}}$ of normalized univalent close-to-convex functions. A function

$$
f(z)=z+\sum_{n=2}^{\infty} f_{n} z^{n}
$$

is in $\boldsymbol{C}_{\boldsymbol{R}}$ iff there exists a function $g(z)$ in $\boldsymbol{S}_{\boldsymbol{R}}^{*}$ and a

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

in $\boldsymbol{P}_{\boldsymbol{R}}$ such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)}=p(z) \tag{2}
\end{equation*}
$$

If $t_{1} \in[0,1]$, by $\boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right),\left(\boldsymbol{C}_{\boldsymbol{R}}\left(t_{1}\right)\right)$ we denote the class of functions

$$
g(z)=z+g_{2} z^{2}+g_{3} z^{3}+\cdots \in \boldsymbol{S}_{\boldsymbol{R}}^{*},\left(\boldsymbol{C}_{\boldsymbol{R}}\right)
$$

for which

$$
g_{2}=-2+4 t_{1} .
$$

H. S. Al-Amiri and D. Bshouty in [1] considered the problem of calculating the values $\max _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{n}, \max _{g \in \boldsymbol{C}_{\boldsymbol{R}}\left(t_{1}\right)} g_{n}$. They solved this problem in the following cases:

$$
\begin{equation*}
n=3 \forall t_{1} \in[0,1] \quad \text { and } \quad n=4 \forall t_{1} \in\left[\frac{5}{6}, 1\right] \tag{i}
\end{equation*}
$$

for the class $\boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)$ and

$$
\begin{equation*}
n=3 \forall t_{1} \in[0,1] \quad \text { and } \quad n=4 \forall t_{1} \in\left[\frac{11}{12}, 1\right] \tag{ii}
\end{equation*}
$$

for the class $\boldsymbol{C}_{\boldsymbol{R}}\left(t_{1}\right)$.

In this paper we solve the problem for the class $\boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)$ for $n=4,5$ $\forall t_{1} \in[0,1]$. We will also solve the corresponding problem concerning $\min _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{n}$ for $n=3,4,5 \forall t_{1} \in[0,1]$. All the above results are presented in Theorems 1, 2, 3, 4, 5 .

We face a problem involving the estimation of quantities which depend on the Taylor coefficients of functions belonging to the class $\boldsymbol{P}_{\boldsymbol{R}}$. In [1], H. S. Al-Amiri and D. Bshouty used a Theorem of Dubins concerning the extreme points of crossections of convex sets.

Our first idea is to use the Carathéodory-Toeplitz conditions as they consist the strongest relations between the Taylor coefficients of the class $\boldsymbol{P}_{\boldsymbol{R}}$. A second idea is to express these relations in such a way that each Taylor coefficient can be converted separately to a polynomial of several variables.

Combining these two ideas, we transform the initial problem into finding the max (or min) of a polynomial of several variables, defined in a closed interval $[0,1]^{k}, k \leq 4$. All the above are contained in Step 1 of the proof of Theorem 4. In Step 2 of the proof we calculate in a usual way, the maximum or the minimum of these polynomials making use of their particular properties.

A serious problem in this paper is the size of the polynomials which are involved in the elementary calculations. Using the computer algebra system Mathematica 2.2, we obtained all necessary results.

2. Main theorems

Theorem 1. If $\min _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{3}=m_{3}\left(t_{1}\right)$, then:

$$
m_{3}\left(t_{1}\right)=\left(1-4 t_{1}\right)\left(3-4 t_{1}\right), \quad \text { for } t_{1} \in[0,1] .
$$

Theorem 2. If $\max _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{4}=M_{4}\left(t_{1}\right)$, then:

$$
\begin{array}{lr}
M_{4}\left(t_{1}\right)=4\left(-1+2 t_{1}\right)\left(1-8 t_{1}+8 t_{1}^{2}\right), & \text { for } t_{1} \in\left[0, \frac{5}{14}\right] \\
M_{4}\left(t_{1}\right)=\frac{1}{3}\left(13-45 t_{1}+48 t_{1}^{2}-4 t_{1}^{3}\right), & \text { for } t_{1} \in\left(\frac{5}{14}, \frac{5}{6}\right)
\end{array}
$$

$$
M_{4}\left(t_{1}\right)=\frac{4}{3}\left(-1+2 t_{1}\right)\left(3-4 t_{1}+4 t_{1}^{2}\right), \quad \text { for } t_{1} \in\left[\frac{5}{6}, 1\right]
$$

Theorem 3. If $\min _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{4}=m_{4}\left(t_{1}\right)$, then:

$$
\begin{array}{ll}
m_{4}\left(t_{1}\right)=\frac{4}{3}\left(-1+2 t_{1}\right)\left(3-4 t_{1}+4 t_{1}^{2}\right), & \text { for } t_{1} \in\left[0, \frac{1}{6}\right] \\
m_{4}\left(t_{1}\right)=\frac{1}{3}\left(-12+39 t_{1}-36 t_{1}^{2}-4 t_{1}^{3}\right), & \text { for } t_{1} \in\left(\frac{1}{6}, \frac{9}{14}\right) \\
m_{4}\left(t_{1}\right)=4\left(-1+2 t_{1}\right)\left(1-8 t_{1}+8 t_{1}^{2}\right), & \text { for } t_{1} \in\left[\frac{9}{14}, 1\right] .
\end{array}
$$

Theorem 4. If $\max _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{5}=M_{5}\left(t_{1}\right)$, then:

$$
M_{5}\left(t_{1}\right)=\frac{1}{3}\left(15-56 t_{1}+88 t_{1}^{2}-64 t_{1}^{3}+32 t_{1}^{4}\right), \quad \text { for } t_{1} \in[0,1]
$$

Theorem 5. If $\min _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{5}=m_{5}\left(t_{1}\right)$, then:

$$
\begin{aligned}
m_{5}\left(t_{1}\right)= & \left(5-20 t_{1}+16 t_{1}^{2}\right)\left(1-12 t_{1}+16 t_{1}^{2}\right) \\
& \text { for } t_{1} \in\left[0, \frac{352-24 \sqrt{66}}{704}\right] \cup\left[\frac{352+24 \sqrt{66}}{704}, 1\right] \\
m_{5}\left(t_{1}\right)= & \frac{1}{486}\left(-1291+4064 t_{1}-3552 t_{1}^{2}-1024 t_{1}^{3}+512 t_{1}^{4}\right) \\
& \text { for } t_{1} \in\left(\frac{352-24 \sqrt{66}}{704}, \frac{352+24 \sqrt{66}}{704}\right)
\end{aligned}
$$

In order to prove the previous theorems we will need the following lemmas.

Lemma 1. Let $K_{n}\left(\boldsymbol{P}_{\boldsymbol{R}}\right)$ be the set of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ for which there exists a $q(z)=1+q_{1} z+q_{2} z^{2}+\cdots \in \boldsymbol{P}_{\boldsymbol{R}}$ having $q_{1}=x_{1}$, $q_{2}=x_{2}, \ldots, q_{n}=x_{n}$. Let also A_{n} be the set of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
such that $D_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)>0, k=1,2, \ldots, n$ where:

$$
D_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left|\begin{array}{ccccc}
2 & x_{1} & x_{2} & \ldots & x_{k} \\
x_{1} & 2 & x_{1} & \ldots & x_{k-1} \\
x_{2} & x_{1} & 2 & \ldots & x_{k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{k} & x_{k-1} & x_{k-2} & \ldots & 2
\end{array}\right| .
$$

If \bar{A}_{n} is the closure of A_{n} then $\bar{A}_{n}=K_{n}\left(\boldsymbol{P}_{\boldsymbol{R}}\right)$.
The above lemma is a part of the Carathéodory-Toeplitz Theorem (see [2], [3]).

Lemma 2. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}(n \leq 4)$ the following propositions are equivalent.
(i) $x \in K_{n}\left(\boldsymbol{P}_{\boldsymbol{R}}\right)$
(ii) there exists a $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in[0,1]^{n}$ such that: $x_{1}=p_{1}\left(t_{1}\right)$, $x_{2}=p_{2}\left(t_{1}, t_{2}\right), \ldots, x_{n}=p_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where:

$$
\begin{aligned}
p_{1}\left(t_{1}\right)= & -2+4 t_{1} \\
p_{2}\left(t_{1}, t_{2}\right)= & 2+16 t 1\left(-1+t_{1}+t_{2}-t_{1} t_{2}\right) \\
p_{3}\left(t_{1}, t_{2}, t_{3}\right)= & -2+t_{1}\left(36-96 t_{1}+64 t_{1}^{2}\right)-32 t_{1} t_{2}\left(1-5 t_{1}+4 t_{1}^{2}\right) \\
& -64 t_{1}^{2} t_{2}^{2}\left(1+t_{1}\right)+64\left(-1+t_{1}\right) t_{1}\left(1-t_{2}\right) t_{2} t_{3} \\
p_{4}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)= & 2\left(1+32 t_{1}\left(-1+5 t_{1}\right)+128 t_{1}^{3}\left(-2+t_{1}\right)+32 t_{1} t_{2}\left(1-9 t_{1}\right.\right. \\
& \left.+20 t_{1}^{2}-12 t_{1}^{3}\right)+128 t_{1}^{2} t_{2}^{2}\left(1-4 t_{1}+3 t_{1}^{2}\right)+128 t_{1}^{3} t_{2}^{3}\left(1-t_{1}\right) \\
& +128 t_{1} t_{2} t_{3}\left(1-3 t_{1}+2 t_{1}^{2}-t_{2}\right)+128 t_{1}^{2} t 2^{2} t_{3}\left(5-4 t_{1}-2 t_{2}\right. \\
& \left.+t_{3}+2 t_{1} t_{2}-t_{2} t_{3}\right)+128 t_{1} t_{2}^{2} t_{3}^{2}\left(-1+t_{2}\right) \\
& \left.+128 t_{1} t_{2} t_{3} t_{4}\left(-1+t_{1}+t_{2}-t_{1} t_{2}+t_{3}-t_{1} t_{3}-t_{2} t_{3}+t_{1} t_{2} t_{3}\right)\right) .
\end{aligned}
$$

Proof. The quantity $D_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ can be written as polynomial of second degree in x_{k} of the form:

$$
-D_{k-2}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right) x_{k}^{2}+\ldots, \quad\left(D_{k}=1 \text { for } k \leq 0\right) .
$$

If $\rho_{k} \equiv \rho_{k}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)$ and $\rho_{k}^{*} \equiv \rho_{k}^{*}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)$ are the roots of the above polynomial it is easy to see that the relation $x \in A_{n}$ is equivalent
to $\min \left(\rho_{k}, \rho_{k}^{*}\right)<x_{k}<\max \left(\rho_{k}, \rho_{k}^{*}\right)$ or

$$
\begin{equation*}
x_{k}=\rho_{k}+t_{k}\left(\rho_{k}^{*}-\rho_{k}\right), \quad t_{k} \in(0,1) k=1,2, \ldots, n \tag{3}
\end{equation*}
$$

- For $k=1$ we get $\rho_{1}=-2$ and $\rho_{1}^{*}=2$. Therefore

$$
\begin{equation*}
x_{1}=p_{1}\left(t_{1}\right), \quad t_{1} \in(0,1) \tag{4}
\end{equation*}
$$

- For $k=2$ by the equation $D_{2}\left(x_{1}, x_{2}\right)=0$ we obtain $\rho_{2}=-2+x_{1}^{2}$ and $\rho_{2}^{*}=2$. Thus combining (3) with (4) we get

$$
\begin{equation*}
x_{2}=p_{2}\left(t_{1}, t_{2}\right), \quad\left(t_{1}, t_{2}\right) \in(0,1)^{2} \tag{5}
\end{equation*}
$$

- For $k=3$ through equation $D_{3}\left(x_{1}, x_{2}, x_{3}\right)=0$ we obtain

$$
\rho_{3}=-\frac{4-2 x_{1}-\left(x_{1}-x_{2}\right)^{2}}{-2+x_{1}} \quad \text { and } \quad \rho_{3}^{*}=-\frac{4+2 x_{1}-\left(x_{1}+x_{2}\right)^{2}}{2+x_{1}}
$$

Consequently, combining (3) with (4) and (5) we obtain after the calculations

$$
\begin{equation*}
x_{3}=p_{3}\left(t_{1}, t_{2}, t_{3}\right), \quad\left(t_{1}, t_{2}, t_{3}\right) \in(0,1)^{3} \tag{6}
\end{equation*}
$$

In the same manner we can see that $x_{4}=p_{4}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$. Summarizing, we have that the transform

$$
\left(t_{1}, t_{2}, \ldots, t_{n}\right) \longrightarrow\left(p_{1}\left(t_{1}\right), p_{2}\left(t_{1}, t_{2}\right), \ldots, p_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)
$$

is one-to-one from $(0,1)^{n}$ onto A_{n}. After the above observation the rest of the proof is straightforward.

3. Proof of Theorem 4

For the proof of the theorem we need the following two steps.
Step 1. Let $\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k}\right) \in \mathbb{R}^{k-1}$ with $k \leq 5$. The following properties are equivalent.
(i) There exists a function $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n} \in \boldsymbol{S}_{\boldsymbol{R}}^{*}$ such that:

$$
g_{2}=\alpha_{2}, \ldots, g_{k}=\alpha_{k}
$$

(ii) There exists a $\left(t_{1}, t_{2}, \ldots, t_{k-1}\right) \in[0,1]^{k-1}, k \leq 5$ such that:

$$
\begin{aligned}
& \alpha_{2}=s_{2}\left(t_{1}\right) \\
& \alpha_{3}=s_{3}\left(t_{1}, t_{2}\right) \\
& \alpha_{4}=s_{4}\left(t_{1}, t_{2}, t_{3}\right) \\
& \alpha_{5}=s_{5}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
s_{2}\left(t_{1}\right)= & -2+4 t_{1} \\
s_{3}\left(t_{1}, t_{2}\right)= & 3+16 t_{1}\left(-1+t_{1}\right)+8 t_{1} t_{2}\left(1-t_{1}\right) \\
s_{4}\left(t_{1}, t_{2}, t_{3}\right)= & \frac{4}{3}\left(-3+t_{1}\left(30-72 t_{1}+48 t_{1}^{2}\right)+t_{1} t_{2}\left(-20+76 t_{1}-56 t_{1}^{2}\right)\right. \\
& \left.+16 t_{1}^{2} t_{2}^{2}\left(-1+t_{1}\right)+16 t_{1} t_{2} t_{3}\left(-1+t_{1}+t_{2}-t_{1} t_{2}\right)\right) \\
s_{5}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)= & \frac{1}{3}\left(15+t_{1}\left(-240+1008 t_{1}-1536 t_{1}^{2}+768 t_{1}^{3}\right)+t_{1} t_{2}(184\right. \\
& \left.-1336 t_{1}+2624 t_{1}^{2}-1472 t_{1}^{3}\right)+t_{1}^{2} t_{2}^{2}\left(416-1344 t_{1}+928 t_{1}^{2}\right) \\
& +192 t_{1}^{3} t_{2}^{3}\left(1-t_{1}\right)+320 t_{1} t_{2} t_{3}\left(1-3 t_{1}+2 t_{1}^{2}-t_{2}\right) \\
& +t_{1}^{2} t_{2}^{2} t_{3}\left(1344-1024 t_{1}-384 t_{2}+384 t_{1} t_{2}\right) \\
& +192 t_{1} t_{2}^{2} t_{3}^{2}\left(-1+t_{1}+t_{2}-t_{1} t_{2}\right) \\
& \left.+192 t_{1} t_{2} t_{3} t_{4}\left(-1+t_{1}+t_{2}-t_{1} t_{2}+t_{3}-t_{1} t_{3}-t_{2} t_{3}+t_{1} t_{2} t_{3}\right)\right)
\end{aligned}
$$

Proof of Step 1. Since $g(z) \in \boldsymbol{S}_{\boldsymbol{R}}^{*}$ it follows that

$$
\begin{equation*}
z g^{\prime}(z)=g(z) q(z) \tag{7}
\end{equation*}
$$

where

$$
q(z)=1+\sum_{n=1}^{\infty} q_{n} z^{n} \in \boldsymbol{P}_{\boldsymbol{R}}
$$

From (3) we obtain

$$
\begin{align*}
g_{2} & =q_{1} \tag{8}\\
g_{3} & =\frac{1}{2}\left(q_{1}^{2}+q_{2}\right)
\end{align*}
$$

$$
\begin{align*}
& g_{4}=\frac{1}{6}\left(q_{1}^{3}+3 q_{1} q_{2}+2 q_{3}\right) \tag{10}\\
& g_{5}=\frac{1}{24}\left(q_{1}^{4}+6 q_{1}^{2} q_{2}+3 q_{2}^{2}+8 q_{1} q_{3}+6 q_{4}\right) \tag{11}
\end{align*}
$$

Conversely if $q(z)=1+q_{1} z+q_{2} z^{2}+\cdots \in \boldsymbol{P}_{\boldsymbol{R}}$ then there exists exactly one $g(z) \in \boldsymbol{S}_{\boldsymbol{R}}^{*}$ such that $\frac{z g^{\prime}(z)}{g(z)}=q(z)$. Replacing q_{k} by $p_{k}\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ according to Lemma 2 after the calculations we attain the desired conclusion.

Step 2. Calculation of $M_{5}\left(t_{1}\right)$.
We remark that:

1. According to Step 1, our problem is to find the maximum (or minimum) of the functions $s_{k}\left(t_{1}, t_{2}, \ldots, t_{k-1}\right)(k=3, \ldots, 5)$, for fixed t_{1} and $\left(t_{2}, \ldots, t_{k-1}\right) \in[0,1]^{k-2}$.
2. If we set in any function $s_{k}(k=3, \ldots, 5), t_{i}=0$ or $t_{i}=1$ $(i=1,2,3)$, then the value of the function does not depend on the variables t_{j} when $j>i$.
3. The polynomial s_{5} is linear in t_{4} with corresponding coefficient $64\left(-1+t_{1}\right) t_{1}\left(-1+t_{2}\right) t_{2}\left(-1+t_{3}\right) t_{3}$ which is non-positive.

Using the above remarks we can continue as follows: Fixing t_{1} we consider the extremum of the function s_{5} on $\left(t_{2}, t_{3}, t_{4}\right)=\left(t_{2}, t_{3}, 0\right),\left(t_{2}, t_{3}, t_{4}\right)=$ $\left(t_{2}, 1,0\right),\left(t_{2}, t_{3}, t_{4}\right)=\left(t_{2}, 0,0\right),\left(t_{2}, t_{3}, t_{4}\right)=(1,0,0),\left(t_{2}, t_{3}, t_{4}\right)=(0,0,0)$. We then find the critical points in the cube $[0,1]^{3}$. The maximum of all the above values is the needed result.

The Case $t_{4}=0$.
From:

$$
\begin{equation*}
\frac{\partial s_{5}\left(t_{1}, t_{2}, t_{3}, 0\right)}{\partial t_{2}}=0 \quad \text { and } \quad \frac{\partial s_{5}\left(t_{1}, t_{2}, t_{3}, 0\right)}{\partial t_{3}}=0 \tag{12}
\end{equation*}
$$

after elementary calculations, we get

$$
t_{2}=\frac{19+112\left(-1+t_{1}\right) t_{1}}{72\left(-1+t_{1}\right) t_{1}} \quad \text { and } \quad t_{3}=\frac{t_{1}\left(-41+68 t_{1}-8 t_{1}^{2}\right)}{19+112\left(-1+t_{1}\right) t_{1}} .
$$

We then find the set of $t_{1} \in(0,1)$ for which

$$
\left\{\begin{align*}
1-t_{3} & \geq 0 \tag{13}\\
t_{3} & \geq 0 \\
1-t_{2} & \geq 0 \\
t_{2} & \geq 0
\end{align*}\right.
$$

are all true. The above relations are polynomial quotients in t_{1}. Converting them to factor products, we find in a simple way that for $t_{1} \in$ $\left[\frac{-52+12 \sqrt{23}}{16}, \frac{68-12 \sqrt{23}}{16}\right]$, all inequalities in (13) are satisfied. Substituting t_{2} and t_{3} in $s_{5}\left(t_{1}, t_{2}, t_{3}, 0\right)$ we have

$$
\begin{equation*}
L_{1}\left(t_{1}\right)=\frac{1}{162}\left(449-1504 t_{1}+1632 t_{1}^{2}-256 t_{1}^{3}+128 t_{1}^{4}\right) \tag{14}
\end{equation*}
$$

The Case $t_{3}=1$.
From:

$$
\begin{equation*}
\frac{\partial s_{5}\left(t_{1}, t_{2}, 1,0\right)}{\partial t_{2}}=0 \tag{15}
\end{equation*}
$$

we get $h_{1}\left(t_{1}, t_{2}\right)=0$ where

$$
\begin{equation*}
h_{1}\left(t_{1}, t_{2}\right)=A_{1}\left(t_{1}\right) t_{2}^{2}+B_{1}\left(t_{1}\right) t_{2}+\Gamma_{1}\left(t_{1}\right) \tag{16}
\end{equation*}
$$

with

$$
\begin{aligned}
& A_{1}\left(t_{1}\right)=\frac{32}{3}\left(-16 t_{1}+61 t_{1}^{2}-74 t_{1}^{3}+29 t_{1}^{4}\right) \\
& B_{1}\left(t_{1}\right)=\frac{8}{3}\left(63 t_{1}-287 t_{1}^{2}+408 t_{1}^{3}-184 t_{1}^{4}\right) \\
& \Gamma_{1}\left(t_{1}\right)=5-80 t_{1}+336 t_{1}^{2}-512 t_{1}^{3}+256 t_{1}^{4} .
\end{aligned}
$$

We then find all possible cases for which $h_{1}\left(t_{1}, t_{2}\right)$ has at least one root with respect to t_{2}, in $(0,1)$. This is accomplished using the sign of the quantities:

$$
\begin{gathered}
A_{1}\left(t_{1}\right), \quad 1+\frac{B_{1}\left(t_{1}\right)}{2 A_{1}\left(t_{1}\right)}, \quad \frac{-B_{1}\left(t_{1}\right)}{2 A_{1}\left(t_{1}\right)}, \\
\left(B_{1}\left(t_{1}\right)\right)^{2}-4 A_{1}\left(t_{1}\right) \Gamma_{1}\left(t_{1}\right), \quad h_{1}\left(t_{1}, 0\right), \quad h_{1}\left(t_{1}, 1\right) .
\end{gathered}
$$

By a usual procedure we obtain that:
(i) for $t_{1} \in\left(\frac{-160+6 \sqrt{870}}{52}, \frac{224+4 \sqrt{238}}{368}\right]$ and
$\Psi_{1}=\left(1-t_{1}\right) \sqrt{\left(-55+160 t_{1}+26 t_{1}^{2}\right)}$ the large root

$$
t_{2_{2}}=\frac{32-90 t_{1}+58 t_{1}^{2}+\sqrt{2} \Psi_{1}}{36\left(-1+t_{1}^{2}\right)} \quad \text { is in }(0,1)
$$

and
(ii) for $t_{1} \in\left(\frac{-160+6 \sqrt{870}}{52}, \frac{224-4 \sqrt{238}}{368}\right]$ the small root

$$
t_{2_{1}}=\frac{32-90 t_{1}+58 t_{1}^{2}-\sqrt{2} \Psi_{1}}{36\left(-1+t_{1}^{2}\right)} \quad \text { is in }(0,1) .
$$

After substituting the roots $t_{2_{2}}, t_{2_{1}}$ in $s_{5}\left(t_{1}, t_{2}, 1,0\right)$ we obtain respectively the functions

$$
\begin{equation*}
L_{2}\left(t_{1}\right)=\frac{\Phi_{1}+\sqrt{2} t_{1} \Psi_{1}\left(-220+640 t_{1}+104 t_{1}^{2}\right)}{729\left(-1+t_{1}\right)} \tag{17}
\end{equation*}
$$

for $t_{1} \in\left(\frac{-160+6 \sqrt{870}}{52}, \frac{224+4 \sqrt{238}}{368}\right]$ and

$$
\begin{equation*}
L_{3}\left(t_{1}\right)=\frac{\Phi_{1}+\sqrt{2} t_{1} \Psi_{1}\left(220-640 t_{1}-104 t_{1}^{2}\right)}{729\left(-1+t_{1}\right)} \tag{18}
\end{equation*}
$$

for $t_{1} \in\left(\frac{-160+6 \sqrt{870}}{52}, \frac{224-4 \sqrt{238}}{368}\right]$, where $\Phi_{1}=-3645+18637 t_{1}-31900 t_{1}^{2}+$ $16524 t_{1}^{3}-176 t_{1}^{4}+560 t_{1}^{5}$.

The Case $t_{3}=0$.
Working as we did in previous Case we obtain that:

$$
\begin{equation*}
L_{4}\left(t_{1}\right)=\frac{\Phi_{2}+\sqrt{2} \Psi_{2}\left(-524+1372 t_{1}-952 t_{1}^{2}+104 t_{1}^{3}\right)}{729 t_{1}} \tag{19}
\end{equation*}
$$

for $t_{1} \in\left[\frac{144-4 \sqrt{238}}{368}, \frac{212-6 \sqrt{870}}{52}\right)$ and

$$
\begin{equation*}
L_{5}\left(t_{1}\right)=\frac{\Phi_{2}+\sqrt{2} \Psi_{2}\left(524-1372 t_{1}+952 t_{1}^{2}-104 t_{1}^{3}\right)}{729 t_{1}} \tag{20}
\end{equation*}
$$

Figure 1.

for $t_{1} \in\left[\frac{144+4 \sqrt{238}}{368}, \frac{212-6 \sqrt{870}}{52}\right)$, where $\Phi_{2}=6505 t_{1}-22216 t_{1}^{2}+21420 t_{1}^{3}-$ $2624 t_{1}^{4}+560 t_{1}^{5}$ and $\Psi_{2}=\sqrt{t_{1}^{2}\left(131-212 t_{1}+26 t_{1}^{2}\right)}$.

The Cases $t_{2}=1$ and $t_{2}=0$.

$$
\begin{equation*}
L_{6}\left(t_{1}\right)=\frac{1}{3}\left(15-56 t_{1}+88 t_{1}^{2}-64 t_{1}^{3}+32 t_{1}^{4}\right) \tag{21}
\end{equation*}
$$

for $t_{1} \in[0,1]$ and

$$
\begin{equation*}
L_{7}\left(t_{1}\right)=\left(5-20 t_{1}+16 t_{1}^{2}\right)\left(1-12 t_{1}+16 t_{1}^{2}\right) \tag{22}
\end{equation*}
$$

for $t_{1} \in[0,1]$ are derived by setting in $s_{5}, t_{2}=1$ and $t_{2}=0$, respectively.
A hint about the form of $M_{5}\left(t_{1}\right)$ is obtained by the graphs of the functions $L_{i}(1 \leq i \leq 7)$ (see Figure 1). In order to give a strict proof of Theorem 4 we consider the functions $L_{6}\left(t_{1}\right)-L_{i}\left(t_{1}\right)(i \neq 6)$ in the subdomains of their definition and we examine their signs. More specificly:

- Since $L_{6}\left(t_{1}\right)-L_{1}\left(t_{1}\right)=\frac{\left(19-40 t_{1}+40 t 1^{2}\right)^{2}}{162}$ it is obvious that $L_{6}\left(t_{1}\right) \geq L_{1}\left(t_{1}\right)$ in $\left[\frac{-52+12 \sqrt{23}}{16}, \frac{68-12 \sqrt{23}}{16}\right]$.
- Also $L_{6}\left(t_{1}\right)-L_{7}\left(t_{1}\right)=\frac{184\left(1-t_{1}\right) t_{1}\left(-1+2 t_{1}\right)^{2}}{3}$. Therefore $L_{6}\left(t_{1}\right) \geq L_{7}\left(t_{1}\right)$ in $[0,1]$.
- Solving the equations $L_{6}\left(t_{1}\right)-L_{i}\left(t_{1}\right)=0$ for $i=2,3,4,5$ in all the cases we find the simple roots $t_{1}=0$ and $t_{1}=1$. Checking the sign of the functions $L_{6}\left(t_{1}\right)-L_{i}\left(t_{1}\right)$ in the interior of the subdomains of their definition we obtain that $L_{6}\left(t_{1}\right) \geq L_{i}\left(t_{1}\right),(i=2,3,4,5)$.

4. Proof of the other theorems

Proof of Theorem 5. As in the procedure of the Proof of Theorem 4 in order to find $\min _{g \in S_{R}^{*}\left(t_{1}\right)} g_{5}$ we consider the restriction of function s_{5} for $\left(t_{2}, t_{3}, t_{4}\right)=\left(t_{2}, t_{3}, 1\right)$. The procedure of seeking local extreme points gives that for $t_{1} \in\left[\frac{352-24 \sqrt{66}}{704}, \frac{352+24 \sqrt{66}}{704}\right]$ the corresponding value for s_{5} is

$$
\begin{equation*}
R_{1}\left(t_{1}\right)=\frac{1}{486}\left(-1291+4064 t_{1}-3552 t_{1}^{2}-1024 t_{1}^{3}+512 t_{1}^{4}\right) \tag{23}
\end{equation*}
$$

From Remark 2 of Step 2, it follows that in order to find the form of $m_{5}\left(t_{1}\right)$ it is sufficient to compare the values of the functions $L_{i}\left(t_{1}\right)(i=2, \ldots, 7)$, to that of $R_{1}\left(t_{1}\right)$. For the comparison we folow the procedure of the Proof of Theorem 4 .

Proof of Theorem 2. We observe that the polynomial s_{4} is linear in t_{3} having the non-positive $\frac{64}{3}\left(-1+t_{1}\right) t_{1}\left(1-t_{2}\right) t_{2}$ coefficient. We will achieve $\max _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{4}$ by considering the restriction of function s_{4} for $\left(t_{2}, t_{3}\right)=$ $\left(t_{2}, 0\right)$. Since

$$
\begin{equation*}
\frac{\partial s_{4}\left(t_{1}, t_{2}, 0\right)}{\partial t_{2}}=0 \tag{24}
\end{equation*}
$$

it follows that for

$$
t_{2}=\frac{-5+14 t_{1}}{8 t_{1}}
$$

we obtain a local extreme point of s_{4}. The constraint $t_{2} \in(0,1)$ is satisfied for $t_{1} \in\left(\frac{5}{14}, \frac{5}{6}\right)$. Replacing the above value of t_{2} in $s_{4}\left(t_{1}, t_{2}, 0\right)$ we get

$$
\begin{equation*}
N_{1}\left(t_{1}\right)=\frac{1}{3}\left(13-45 t_{1}+48 t_{1}^{2}-4 t_{1}^{3}\right) \tag{25}
\end{equation*}
$$

for $t_{1} \in\left(\frac{5}{14}, \frac{5}{6}\right)$. For $t_{2}=0$ and $t_{2}=1$ we obtain respectively

$$
\begin{equation*}
N_{2}\left(t_{1}\right)=4\left(-1+2 t_{1}\right)\left(1-8 t_{1}+8 t_{1}^{2}\right) \tag{26}
\end{equation*}
$$

Figure 2.
for $t_{1} \in[0,1]$ and

$$
\begin{equation*}
N_{3}\left(t_{1}\right)=\frac{4}{3}\left(-1+2 t_{1}\right)\left(3-4 t_{1}+4 t_{1}^{2}\right) \tag{27}
\end{equation*}
$$

for $t_{1} \in[0,1]$. Comparing the values of the functions $N_{i}\left(t_{1}\right)$ as in the Proof of Theorem 4 we get that $\max \left\{N_{i}\left(t_{1}\right), i=1,2,3\right\}$, coincides with the form of Theorem 2 (see Figure 2).

Proof of Theorem 3. According to the Proof of Theorem 2, $\min _{g \in \boldsymbol{S}_{\boldsymbol{R}}^{*}\left(t_{1}\right)} g_{4}$ will be achieved by the restriction of the function s_{4} for $\left(t_{2}, t_{3}\right)=\left(t_{2}, 1\right)$. Since

$$
\begin{equation*}
\frac{\partial s_{4}\left(t_{1}, t_{2}, 1\right)}{\partial t_{2}}=0 \tag{28}
\end{equation*}
$$

it is obvious that for

$$
t_{2}=\frac{-9+14 t_{1}}{8\left(-1+t_{1}\right)}
$$

we get a local extreme point of s_{4}. The constraint $t_{2} \in(0,1)$ is satisfied for $t_{1} \in\left(\frac{1}{6}, \frac{9}{14}\right)$. In this interval replacing the above value of t_{2} in $s_{4}\left(t_{1}, t_{2}, 1\right)$
we get

$$
\begin{equation*}
K_{1}\left(t_{1}\right)=\frac{1}{3}\left(-12+39 t_{1}-36 t_{1}^{2}-4 t_{1}^{3}\right) . \tag{29}
\end{equation*}
$$

From Remark 2 of Step 2 the result follows again by comparing the values of functions $N_{i}\left(t_{1}\right)(i=2,3)$, to that of $K_{1}\left(t_{1}\right)$ as in the Proof of Theorem 4.

Proof of Theorem 1. Follow the same procedure as in the Proof of Theorem 5, 3.

Acknowledgement. The authors are thankful to the referee for careful reading and many useful suggestions.

References

[1] H. S. Al-Amiri and D. Bshouty, Constraint coefficient problem for subclasses of univalent functions, Current Topics In Analytic Function Theory, World Scien. Publ., 1992, 29-35.
[2] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95-115.
[3] O. Toeplitz, Über die Fourier'sche Entwickelung positiver Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 131-132.

```
N. SAMARIS
DEPARTMENT OF MATHEMATICS
FACULTY OF SIENCES
UNIVERSITY OF PATRAS
26500 PATRAS
GREECE
P. KOULORIZOS
DEPARTMENT OF MATHEMATICS
FACULTY OF SIENCES
UNIVERSITY OF PATRAS
26500 PATRAS
GREECE
```

(Received May 20, 1998; revised January 28, 1999)

