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The topological structure
of the set of P -sums of a sequence, II

By J. E. NYMANN (Windhoek) and RICARDO A. SÁENZ (Princeton)

Abstract. Let P = {p0, p1, . . . , pN} where pi−1 < pi for i = 1, 2, . . . , N . Let
λ = 〈λn〉 be a sequence of real numbers for which

P |λn| converges. Let

S(P, λ) =

( ∞X
n=1

εnλn : εn ∈ P

)
.

S(P, λ) is called the set of P -sums for the sequence λ. In the case where P = {0, 1} it
is known that S(P, λ) is one of the following: (i) a finite union of intervals; (ii) homeo-
morphic to the Cantor set; (iii) homeomorphic to S({0, 1}, β) where β2n−1 = 3/4n and
β2n = 2/4n (n = 1, 2, . . . ). In this paper this result is generalized to a larger class of
P -sums.

1. Introduction

Let P = {p0, p1, . . . , pN} where pi−1 < pi for i = 1, 2, . . . , N . Let
λ = 〈λn〉 be a sequence of real numbers for which

∑ |λn| converges and
|λn| ≥ |λn+1| > 0 for all n. Let

S(P, λ) =

{ ∞∑
n=1

εnλn : εn ∈ P

}
.

We will call S(P, λ) the set of P -sums for the sequence λ. In the case
P = {0, 1} we will write S(P, λ) = S(λ) and call this set the set of subsums
of λ. In an earlier paper [2] the authors studied the topological structure
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of the set S(P, λ). In the present paper we give further results on this
topic.

In [1], the following theorem was proved for positive term sequences
and then in [2] the restriction that λ has only positive terms was removed.

Theorem 1.1. S(λ) is one of the following:

(i) a finite union of intervals;

(ii) homeomorphic to the Cantor set C;

(iii) homeomorphic to S(β) where β = 〈βn〉 with β2n−1 = 3/4n

and β2n = 2/4n (n = 1, 2, . . . ).

Remark 1.1. In order to visualize the set S(β) above we give the
following example of a set which is homeomorphic to S(β) (see [1]). Let Sn

denote the union of the 2n−1 open middle thirds which are removed from
[0, 1] at the n-th step in the geometric construction of C. Then

C = [0, 1]\
∞⋃

n=1

Sn,

and S(β) is homeomorphic to C ∪⋃∞
n=1 S2n−1.

In [2] the authors gave an example of a sequence γ and a set Q for
which S(Q, γ) is not one of the three types listed above. This example will
be discussed again at the end of this paper.

In this paper the authors will give some sufficient conditions on the
sequence λ and/or the set P which will assure that S(P, λ) is one of the
three types given in Theorem 1.1.

2. Notation and basic results on S(P, λ)

At this point we introduce some notation and terminology which will
be used later in the paper. As usual, if E is any set, aE + b = {ax + b :
x ∈ E}. We will say E is symmetric (about a) if the condition

a + x ∈ E ⇔ a− x ∈ E

is satisfied. (It is easy to see that this is equivalent to E = 2a− E.)
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With λ and P as given above, |λ| will denote the sequence 〈|λn|〉,
s will denote

∑
λn and s̄ will denote

∑ |λn|. Also set

rn =
∞∑

k=n+1

λk

and

r̄n =
∞∑

k=n+1

|λk|.

Also ν will denote the smallest subscript for which

pν − pν−1 = max{pi − pi−1 : i = 1, . . . , N}.

For k a positive integer, Sk(P, λ) will denote the set
{ ∞∑

n=k+1

εnλn : εn ∈ P

}

and will be called the set of P -sums of the k-tail of λ and Fk(P, λ) will
denote {

k∑
n=1

εnλn : εn ∈ P

}

and will be called the set of k-finite P -sums of λ.

Remark 2.1. Using the above notation, the following decomposition
for S(P, λ) is easy to see.

S(P, λ) =
⋃

f∈Fk(P,λ)

(f + Sk(P, λ)).

The following results were given in [2].

Proposition 2.1. S(aP + b, λ) = aS(P, λ)+ bs for any real numbers a

and b.

Proposition 2.2. If P is symmetric about a, then

S(P, λ) = S(P, |λ|) + (s− s̄)a.
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Theorem 2.3. S(P, λ) is a perfect set.

The following theorem is a slight generalization of one given in [2].

Theorem 2.4. Assume λ is a positive term sequence. S(P, λ) is a

finite union of intervals if

(1) λn ≤ pN − p0

pν − pν−1
rn

for n sufficiently large. (Also S(P, λ) is an interval if (1) holds for all n.)

Conversely, if

(2)
p1 − p0

pν − p0
≥ λn

λn−1

for n sufficiently large and S(P, λ) is a finite union of intervals, then (1)
holds for n sufficiently large. (Also if (2) holds for all n and S(P, λ) is an

interval, then (1) holds for all n.)

Furthermore, if P is symmetric the requirement that λ have only

positive terms can be deleted if λn and rn are replaced by |λn| and r̄n in

the above inequalities.

Proof. The first part of the theorem was proved in [2], so we only
prove the second part here (the furthermore statement follows from Propo-
sition 2.2). By replacing P by 1

pN−p0
(P − p0), we may assume p0 = 0 and

pN = 1. Then, of course, (1) and (2) become

(pν − pν−1)λn ≤ rn,(1’)

p1λn−1 ≥ pνλn.(2’)

Now suppose (2’) holds for n ≥ N0 and that S(P, λ) is a finite union of
intervals. Assume, with the goal of obtaining a contradiction, that

(pν − pν−1)λn > rn

for infinitely many n. Then there is a sequence 〈nk〉 such that nk ≥ N0

and (pν − pν−1)λnk
> rnk

for all k. We will show that

(pν−1λnk
+ rnk

, pνλnk
) ∩ S(P, λ) = ∅

for all k, and hence the complement of S(P, λ) has infinitely many com-
ponents which completes the contradiction. Now the inequality (2’), i.e.
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p1λnk−1 ≥ pνλnk
, assures us that 0 < p1λnk

< . . . < pν−1λnk
< pνλnk

are
the ν +1 smallest elements of Fnk

(P, λ) for all k. Also pνλnk
is clearly the

smallest element of pνλnk
+Snk

(P, λ). Hence, by Remark 2.1, S(P, λ) can
have no elements between pν−1λnk

+ rnk
and pνλnk

.

3. Main result

The main result of this paper is the following generalization of Theo-
rem 1.1.

Theorem 3.1. If λ is a sequence, P is symmetric, and

(2)
p1 − p0

pν − p0
≥

∣∣∣∣
λn

λn−1

∣∣∣∣

for n sufficiently large, then S(P, λ) is a set of type (i), (ii) or (iii) of

Theorem 1.1.

In the proof of this theorem we will need the following lemmas.

Lemma 3.2. Assume λ is a positive term sequence. If p0s + [0, δ] ⊂
S(P, λ) for some δ > 0 and there is some K such that

(2)
p1 − p0

pν − p0
≥ λn

λn−1

for all n ≥ K, then S(P, λ) is a finite union of intervals.

Proof. As in the proof of Theorem 2.4 we can assume pN = 1 and
p0 = 0. Then (2) becomes

(2’) p1λn−1 ≥ pνλn,

and p0s becomes 0. Assume, with the goal of obtaining a contradiction,
that S(P, λ) is not a finite union of intervals. By Theorem 2.4,

(3) (pν − pν−1)λn > rn

for infinitely many n. Choose n0 ≥ K such that (3) holds for n = n0 and
pν−1λn0 + rn0 < δ. Now

∑
εiλi ≤ pν−1λn0 + rn0 if εi = 0 for i < n0 and εn0 ≤ pν−1.
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Also, by (2’),
∑

εiλi ≥ pνλn0 if εi 6= 0 for some i < n0 or εn0 ≥ pν .

[For i < n, pjλi ≥ pjλn−1 ≥ p1λn−1 ≥ pνλn for j > 0.] Therefore,
(pν−1λn0 +rn0 , pνλn0)∩S(P, λ) = ∅ and δ > pν−1λn0 +rn0 , a contradiction
with [0, δ] ⊂ S(P, λ).

In what follows we will refer to a component of S(P, λ) as an interval
of S(P, λ) and a component of [p0s, pNs] \ S(P, λ) as a gap of S(P, λ).

Lemma 3.3. Assume λ is a positive term sequence. If (a, b) is a gap
of S(P, λ), then for some ε > 0 and ε′ > 0,

(b− p0s) + ((p0s + [0, ε]) ∩ S(P, λ)) = [b, b + ε] ∩ S(P, λ)

and

(a− pNs) + (pNs + [−ε′, 0]) ∩ S(P, λ) = ([a− ε′, a] ∩ S(P, λ)).

Proof. As before, we will assume pN = 1 and p0 = 0. It is not
difficult to see that b must be a finite P -sum. Suppose

b =
k∑

i=1

εiλi ∈ Fk(P, λ) (εi ∈ P for 1 ≤ i ≤ k)

with εk 6= 0. Now assume that the elements of Fk(P, λ), in order, are

0 = f1 < f2 < . . . < ft =
k∑

i=1

λi

and suppose b = fj . Recall that

S(P, λ) =
t⋃

i=1

(fi + Sk(P, λ)).

From this we see that a = fj−1 + rk. Let ε = 1
2 min(f2 − f1, fj+1 − fj).

Then

b + ([0, ε] ∩ S(P, λ)) = b + ([0, ε] ∩ Sk(P, λ))
= [b, b + ε] ∩ (b + Sk(P, λ))
= [b, b + ε] ∩ S(P, λ).
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Now let ε′ = 1
2 min(ft−ft−1, fj−1−fj−2). As before, and using ft = s−rk

and fj−1 = a− rk we have,

(a− s) + ([s− ε′, s] ∩ S(P, λ))

= (a− s) + ([s− ε′, s] ∩ ((s− rk) + Sk(P, λ))

= [a− ε′, a] ∩ ((a− rk) + Sk(P, λ))

= [a− ε′, a] ∩ S(P, λ).

We now proceed to prove Theorem 3.1. The proof follows very closely
the proof of the early version of Theorem 1.1 in [1].

Proof of Theorem 3.1. As before we will assume that pN = 1 and
p0 = 0. Also since P is symmetric we can assume λ has only positive
terms by Proposition 2.2. Suppose that S(P, λ) is neither a finite union
of intervals nor homeomorphic to the Cantor set. Then it is clear that
the complement of S(P, λ) must contain infinitely many intervals. S(P, λ)
must contain infinitely many intervals as well, for if there were only finitely
many, then either [0, δ] ⊂ S(P, λ) for some δ > 0 or [0, δ]∩S(P, λ) contains
no interval for some δ > 0. The former cannot be true by Lemma 3.2. If
the latter holds, then S(P, λ) ∩ [0, δ] is homeomorphic to the Cantor set
and then for some n, Sn(P, λ) is homeomorphic to the Cantor set. Thus,
by Remark 2.1 and the fact that a finite union of Cantor sets is a Cantor
set, S(P, λ) would be homeomorphic to the Cantor set which contradicts
our initial assumption. Thus S(P, λ) contains infinitely many intervals.

In fact, S(P, λ) ∩ [a, b] cannot be homeomorphic to the Cantor set
for any a, b ∈ S(P, λ) since for every n, Sn(P, λ) must contain (infinitely
many) intervals. Suppose then, that for some x ∈ S(P, λ),

S(P, λ) ∩ (x, x + δ) = ∅ for some δ > 0.

Then since S(P, λ) is perfect,

S(P, λ) ∩ (x− δ, x) 6= ∅ for every δ > 0,

and therefore there are intervals in S(P, λ) arbitrarily close to x, i.e. the
union of the intervals of S(P, λ) is dense in S(P, λ).

We now define a strictly increasing mapping f from the union of all
intervals of S(β) onto all intervals of S(P, λ) and also all the gaps of S(β)
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onto all the gaps of S(P, λ). We define the mapping inductively. Begin by
mapping the longest interval of S(β) in a strictly increasing way onto the
longest interval of S(P, λ). There can be at most finitely many intervals
of the same length in either set, so in case no one interval is the longest,
we may choose the left-most interval. Denote this interval of S(β) by I.
Also, as part of the first induction step, we map the longest gap of S(β)
to the left (respectively right) of I in a strictly increasing way onto the
longest gap of S(P, λ) to the left (respectively right) of f [I]. If more than
one gap has the same length, we again use the “left-most rule” discussed
above. This completes step one of the inductive definition of f .

After the n-th step, (4n−1)/3 intervals of S(β) will have been mapped
in a strictly increasing way onto (4n− 1)/3 intervals of S(P, λ) and 2(4n−
1)/3 gaps of S(β) will have been mapped onto 2(4n−1)/3 gaps of S(P, λ).
We now apply the process of the first induction step to each of the spaces
between any two adjacent intervals and/or gaps (of which there are 4n−1)
and to the space between 0 and the left-most of the gaps and to the space
between the right-most of the gaps and 5/3. (Note that 5/3 =

∑
βn.) To

be sure we can carry out step n + 1 (for n = 1, 2, . . . ) we need to know
that in each of the 4n spaces of S(β) (and S(P, λ)) to which we apply the
first inductive step, there are infinitely many intervals and gaps of S(β)
(and S(P, λ)). Lemma 3.3 guarantees this since there are infinitely many
intervals and gaps of S(β) (and S(P, λ)) in [0, ε]. Because S(β) is symmet-
ric and we are assuming that P is symmetric (so S(P, λ) is symmetric),
there are infinitely many intervals and gaps of S(β) (respectively S(P, λ))
in [5/3− ε, 5/3] (respectively [s− ε, s]).

When f is defined in this way, it is a strictly increasing mapping of the
union of all intervals of S(β) onto the union of all intervals of S(P, λ) and
the union of all the gaps of S(β) onto the union of all the gaps of S(P, λ).
Earlier in the proof it was shown that the union of all the intervals of S(β)
(respectively S(P, λ)) is dense in S(β) (respectively S(P, λ)). Hence the
union of all the intervals and gaps of S(β) (respectively S(P, λ)) is dense
in [0, 5/3] (respectively [0, s]). Hence f can be extended in a unique way to
a strictly increasing mapping of [0, 5/3] onto [0, s] which maps S(β) onto
S(P, λ). f restricted to S(β) is the desired homeomorphism.
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4. Conjecture

As mentioned earlier, the authors gave an example in [2] of a se-
quence γ and a set Q for which S(Q, γ) is not one of the three types in
Theorem 1.1. In that example γn = 1/3n and Q = {0, 1, 2, 9}. In [2] it
was shown that [0, 9/8] is an interval of S(Q, γ). It is not difficult to
check that for any ε′ > 0 there are infinitely many intervals and gaps
of S(Q, γ) in [9/2 − ε′, 9/2]. (Note that 9/2 =

∑
pNγn =

∑
9/3n.)

Lemma gaps shows that when λ is a positive term sequence the struc-
ture of S(P, λ) is highly dependent on the structure of S(P, λ) in
[p0s, p0s + ε] and in [pNs − ε′, pNs]. Lemma gaps implies that if λ
is a positive term sequence, whenever (a, b) and (c, d) are two gaps of
S(P, λ), then, for some ε > 0 and ε′ > 0,

(c− a) + ([a− ε, a] ∩ S(P, λ)) = [c− ε, c] ∩ S(P, λ)

and
(d− b) + ([b, b + ε′] ∩ S(P, λ)) = [d, d + ε′] ∩ S(P, λ).

If we can verify the above statement where gaps is replaced by inter-
vals, we believe that a construction similar to the one in the proof
of Theorem 3.1 will show that if λ is a positive term sequence, then
S(P, λ) is homeomorphic to one of three types described in Theorem 3.1
or homeomorphic to S(Q, γ).
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