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On the computation of attractors
for invertible expanding linear operators in Zk

By ATTILA KOVÁCS (Budapest)

Dedicated to Prof. Imre Kátai on the occasion of his 60th birthday.
“In mathematics there exists only one truth.” – I. Kátai

Abstract. It is well-known that if M : Rk → Rk is a linear operator with complex
eigenvalues λ1, . . . , λk satisfying |λi| < 1 (i = 1, 2, . . . , k) then Mnv → 0 for each
v ∈ Rk. If |λi| > 1 (i = 1, 2, . . . , k) then ‖Mnv‖ → ∞ as n → ∞ (v 6= 0). In the
latter case 0 is a repelling fixed point of M and iterates of all points except 0 recede
from 0. In [9] K�atai gave a method providing attracting dynamics for the case of
invertible expanding operators with integer components. This leads to the notion of
number systems. In this paper we shall give an effective algorithm determining the
attractors for a given invertible expanding linear operator of Rk mapping Zk into Zk

and for a given finite set of appropriate integer vectors as digits.

1. Definitions and basic properties

Part of the definitions and notations can be found in the earlier works
of I. Kátai. We shall summarize and extend them according to our pur-
poses. Let M be an invertible linear operator of Rk mapping Zk into Zk.
Assume that M is expanding, i.e. the eigenvalues λ1, . . . , λk of M satisfy

|λi| > 1 (i = 1, . . . , k).

Let L = MZk. Then L is a subgroup (lattice) in Zk, and the order of the
factorgroup Zk/MZk is t = |det(M)|. Let t ≥ 2 and Aj (j = 0, . . . , t− 1)
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denote the cosets of this group. If z, z′ ∈ Zk are in the same residue class
then we will say that they are congruent modulo M and we will denote this
by z ≡ z′ (mod M). For each j choose an arbitrary element aj from Aj

and let
A := {a0, a1, . . . , at−1}.

For arbitrary subsets X, Y of Zk let

(1) ΦY (X) := {M−1(z − d) ∈ Zk : z ∈ X, d ∈ Y, z ≡ d (mod M)}.

If Y is a complete residue system modulo M then for the one-element
subset {x} the set ΦY ({x}) has only one element, say y. In this case we
will write ΦY (x) = y. If it is clear which Y is used, we shall only write
Φ(x) = y. In the following let Y := A and let Φl denote the l-fold iterate
of Φ, Φ0(z0) = z0.

Definition. The sequence of integer vectors Φj(z0)= zj (j =0, 1, 2, . . . )
is called the path of the dynamical system generated by Φ. It is also called
the orbit of z0 generated by Φ.

Since the spectral radius ρ(M−1) < 1, there exists a norm on Rk such
that for the corresponding operator norm

(2) ‖M−1‖ = sup
‖x‖≤1

‖M−1x‖

the inequality ‖M−1‖ < 1 holds (see [6]). Throughout this article ‖ . ‖
denotes this vector and the appropriate operator norm. Let furthermore

(3) K := max
b∈A

‖b‖, r := ‖M−1‖, L :=
Kr

1− r
.

In virtue of (1) and (3) we get that

‖Φ(z)‖ = ‖M−1z −M−1b‖ ≤ r‖z‖+ Kr.

Hence we obtain the following

Lemma 1.

(a) if ‖z‖ ≤ L then ‖Φ(z)‖ ≤ r(L + K) = L,

(b) if ‖z‖ > L then ‖Φ(z)‖ ≤ r‖z‖+L(1− r) < ‖z‖(r +1− r) = ‖z‖.
Since the inequality ‖x‖ ≤ L holds only for finitely many integer

vectors x, the path z, Φ(z),Φ2(z), . . . is ultimately periodic for all z ∈ Zk.
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Definition. p ∈ Zk is called periodic if there exists a j ∈ N such that
Φj(p) = p. The smallest such j is the length of the period of p generated
by Φ.

Let P denote the set of all periodic elements. Let p ∈ P be of period
length l. The set of the periodic elements {Φ(p), . . . , Φl(p)} will be denoted
by C(p).

Definition. Suppose that p ∈ P. Then the basin of attraction of p

consists of all z ∈ Zk for which there exists a j ∈ N such that Φj(z) = p

and is denoted by B(p). Let X ⊆ P. In a similar way, B(X) denotes all
the z ∈ Zk for which there exists a j ∈ N and p′ ∈ X such that Φj(z) = p′.

The following assertions are clearly true:

• P is finite,

• if 0 ∈ A then 0 ∈ P,

• if p ∈ P then Φ(p) ∈ P,

• if p ∈ P then ‖p‖ ≤ L,

• p ∈ P if and only if there is an l > 0 such that

(4) p = a0 + Ma1 + . . . + M l−1al−1 + M lp, aj ∈ A,

• if p
1
, p

2
∈ P then either C(p

1
) = C(p

2
) or C(p

1
) ∩ C(p

2
) = ∅,

• if p
1
, p

2
∈ P, p

1
6= p

2
and C(p

1
) = C(p

2
) then their lengths of period

are equal,

• B(P) = Zk,

• if p
1
, p

2
∈ P then B(p

1
) = B(p

2
) if and only if C(p

1
) = C(p

2
),

• if p
1
, p

2
∈ P, C(p

1
) 6= C(p

2
) then B(p

1
) ∩ B(p

2
) = ∅.

Definition. Let G(P ) be the directed graph defined on the set P by
drawing an edge from p ∈ P to Φ(p). Then G(P ) is a disjoint union
of directed cycles, where loops are allowed. We shall also call G(P ) the
attractor of Zk generated by Φ.
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2. Number systems in Zk

Definition. Let M be an invertible expanding linear operator of Rk

mapping Zk into itself and A be a complete residue system modulo M .
The pair (M,A), A = {0, a1, . . . , at−1}, is called a number system in Zk

if for each z ∈ Zk there exist an m ∈ N0 and aj ∈ A (j = 0, 1, . . . ,m) such
that

z =
m∑

j=0

M jaj .

The uniqueness of the expansion follows from the assumption that
any two elements of A are incongruent modulo M .

Remark. The condition 0 ∈ A suites the traditional number system
concept well: every integer element has a finite and unique representation.
On the other hand all the following theorems remain valid if we substitute
the vector 0 with a congruent element modulo M .

The next two theorems are simple generalizations of the results ach-
ieved in algebraic number fields. The proofs can be found among others
in [8], [1], [7], [10].

Theorem 1. With the above notations the pair (M,A) is a number
system if and only if for each z ∈ Zk there is an n ∈ N0 such that Φn(z) = 0.

Proof. The condition Φ(z) = 0 is equivalent to z ≡ a0 for some
a0 ∈ A. By induction Φn(z) = 0 if and only if z can be written in the
form

z = a0 + Ma1 + . . . + Mn−1an−1

with some a0, a1, . . . , an−1 ∈ A. ¤
Corollary. The pair (M,A) is a number system in Zk if and only if

P = {0}.
Since P is a finite set, this theorem can be used to decide for a given

system (M,A) whether or not it is a number system. Before we continue
in this way, consider the set of “fractions” in the system (M,A):

H :=

{ ∞∑
n=1

M−ndn : dn ∈ A
}
⊆ Rk.

It is well-known that the set H is compact in the metric space Rk.
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Theorem 2. Let I(−H) := Zk ∩ (−H). Then for each z ∈ Zk there
is an m ∈ N0 such that Φm(z) ∈ I(−H).

Proof. Since H is a compact subset of Rk, there exists an ε > 0
such that there is no element of Zk in the set

Nε(−H) \ −H,

where Nε(−H) denotes the open ε-neighbourhood of −H. Let us choose
an arbitrary z ∈ Zk. Then we get that

zm = Φm(z) = M−mz − (M−1d1 + M−2d2 + . . . + M−mdm)

for the corresponding sequence d1, d2, . . . , dm ∈ A. If m is large enough
then the first term on the right hand side has norm less then ε. Hence
zm ∈ Zk ∩ (−H). ¤

Corollary. (a) For each z ∈ Zk the orbit of z must “pass through the
set” I(−H).

(b) If for each z ∈ I(−H) there is an m ∈ N0 such that Φm(z) = 0
then (M,A) is a number system.

The corollary suggests that in order to determine the attractors of
the system (M,A) it would be enough to find the integer points in −H,
or which is computationally equivalent, in H. Then we have only to apply
Φ for these vectors and watch the “cycles” to be formed.

The straightforward way to compute the set I(H) := Zk ∩ H could
be the following: It is obvious that

H =
⋃

b∈A
(b + M−1H).

If we could find a set T0, H ⊆ T0, for which the integers of the set M−1T0

can be computed easily then we would be ready, because in this case
H ⊆ T1 :=

⋃
b∈A(b + M−1T0) and only the convex hull of the integer

points of T1 has to be computed. Unfortunately, to find the “smallest
possible” such set T0 is not easy, since the shape of the set H is in almost
every case rather complicated. Many authors investigated the structure
and properties of the set H in special cases in the last decades, see [1]–[5],
[7], [9], [10]. Our next aim is to determine a set T , H ⊆ T , for which the
set of integers belonging to it can be computed simply and which contains
the smallest possible number of integer vectors.
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3. Determining the set T

We shall consider two approaches. One of them uses coverings of the
set H while the other will be given by effectively computing the operator
norm defined in (2).

3.1. Using a covering of the set H

Let x = (x1, x2, . . . , xk)T ∈ Rk and ‖x‖∞ = max1≤i≤k |xi|. Let us
denote by ‖ . ‖∞ the corresponding operator norm. If M is an invert-
ible expanding linear operator of Rk mapping Zk into Zk then there ex-
ists a smallest c0 ∈ N such that for every c ≥ c0, c ∈ N the inequality
‖M−c‖∞< 1 holds. Let C ≥ c0, C ∈ N be fixed. Then

‖M−C‖∞ < 1,

therefore (I −M−C)−1 exists and

(5) γ :=
1

1− ‖M−C‖∞ ≥ ‖(I −M−C)−1‖∞.

Here I denotes the k-dimensional identity matrix. Using the notations
introduced in the first section let

M−jb =




c
(j)
1 (b)

...
c
(j)
k (b)


 ,

and let
ξ(j)
m := max

b∈A
|c(j)

m (b)|, (m = 1, . . . , k),

where 1 ≤ j ≤ C. Furthermore, define the sets Ij (1 ≤ j ≤ C) as follows:

Ij :=





x =




x1
...

xk


 , |xm| ≤ ξ(j)

m , 1 ≤ m ≤ k





.

Obviously, M−jb ∈ Ij for each b ∈ A. Let

(6) W :=





y =




y1
...

yk


 , |ym| ≤

C∑

j=1

ξ(j)
m , 1 ≤ m ≤ k





.
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It is clear that
C∑

j=1

M−jbj ∈ W

for an arbitrary sequence of vectors bj ∈ A. Hence,

(7) H ⊆ W + M−CW + M−2CW + . . . .

Let us define the points of the k-dimensional rectangle T ′ by

(8)




t1
...
tk


 , −αm ≤ tm ≤ αm, αm =




γ

C∑

j=1

ξ(j)
m




, 1 ≤ m ≤ k.

Then by (5), (6) and (7) we get that H ⊆ T ′ and the integer vectors in T ′

can be computed efficiently.

Remarks. (1) The “good choice” for the constant C in (5) depends on
k, t and on the matrix M . A simple method could be to start with G ← c

and to increase C while ‖M−C‖∞ is less than or equal to a fixed constant.
(This can be done because of the continuity of the norm.) Another ap-
proach may require much more arithmetical operations: start with C ← c

and increment C until the volume of T ′ does not change.

(2) Even if M−nv → 0 (n →∞) for any v ∈ Rk one should be careful
with raising to powers the matrix M−1. In computer implementations us-
ing traditional programming languages in certain cases arithmetical over-
flow can occur. Let for example be k = 5, M = tridiag(0,−2,−210). (In
the following diag() and tridiag() denote the diagonal and tridiagonal ma-
trices, respectively.) Then M−4

1,5 = 150323855360 > 232. In these cases
(among others) computer algebra softwares can be used.

(3) Since we are interested only in the integers in T ′ in equation (8)
the floor function can also be applied. Then the integers in T ′ still cover
the integers in H.
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3.2. Using the operator norm

Let x ∈ H be an arbitrary vector. Then

(9) ‖x‖ =

∥∥∥∥∥∥

∞∑

j=1

M−jbj

∥∥∥∥∥∥

for any well-defined vector norm in Rk, where bj ∈ A (j = 1, 2, . . . ). For
the estimation of the right hand side we will consider the vector norm
introduced in (2).

Let M be an invertible expanding linear operator of Rk. We shall
construct a vector norm – throughout this subsection denoted by ‖ · ‖∗ –,
such that for the corresponding operator norm the inequality ‖M−1‖∗ < 1
holds. This operator norm can be given using a basis transformation with
the aid of an appropriate regular matrix S and of the maximum norm in
the form

‖M−1‖∗ := ‖SM−1S−1‖∞.

This follows from the fact that

‖M−1x‖∗ = ‖SM−1x‖∞ ≤ ‖SM−1S−1‖∞‖Sx‖∞,

so the operator norm is induced by the vector norm ‖Sx‖∞. Let J =
TM−1T−1 = diag(Λj) be the Jordan form of the matrix M−1. Let us
choose S := T . Hence

‖M−1‖∗ := ‖J‖∞ = max
j
‖Λj‖∞.

If J is simple (i.e. J consists of k Jordan blocks) then

‖J‖∞ = ρ(M−1) < 1.

Suppose now that the eigenvalues of the matrix M are not all distinct. Let
Λj = tridiag(0, λj , 1) ∈ Cm×m be a non-trivial Jordan block (m < k). In
this case

‖Λj‖∞ > 1,

therefore we use the similarity transformation Dj := diag1≤i≤m(µm−i
j ) to

obtain DjΛjD
−1
j = tridiag(0, λj , µj), where µj > 0 and it can be chosen

in such a way that µj + |λj | < 1. Hence

‖DjΛjD
−1
j ‖∞ < 1.
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Putting all this together, in case of trivial Jordan blocks let Dj := 1,
moreover S := diag(Dj)T . Then

‖M−1‖∗ = ‖SM−1S−1‖∞ = ‖DjΛjD
−1
j ‖∞ < 1.

Further, let us denote ‖ · ‖ := ‖ · ‖∗ as in the earlier sections. Then
(I −M−1)−1 exists, it has the geometric series expansion (I −M−1)−1 =
I + M−1 + M−2 + . . . + M−n + . . . , and

(10) ‖(I −M−1)−1‖ ≤ 1
1− ‖M−1‖ .

By using (3), (9) and (10) we get that

(11) ‖Sx‖∞ = ‖x‖ =

∥∥∥∥∥∥

∞∑

j=1

M−jbj

∥∥∥∥∥∥
≤ Kr

1− r
= L.

Now we are looking for those x ∈ Zk for which (11) is satisfied. If ‖x‖∞ ≤
L/‖S‖∞ then (11) is clearly true. Let y := Sx. Then S−1y = x, hence

‖x‖∞ ≤ ‖S−1‖∞‖y‖∞ = ‖S−1‖∞‖Sx‖∞ ≤ L‖S−1‖∞.

Let T ′′ be the k-dimensional hypercube centered at 0 with vertex coordi-
nates ±βi (i = 1, . . . , k), where

(12) βi := dL‖S−1‖∞e.

It follows from the construction that H ⊆ T ′′.

Remarks. (1) By virtue of the construction for a given ε > 0 there
is an operator matrix norm for which ‖M−1‖ ≤ ρ(M−1) + ε. This is a
known result (see [6]).

(2) To determine the vertices of T ′′ one needs
• a Jordan block computation of M and
• a matrix inverse computation of S.

Clearly, the matrix S is not unique. The constants µj can be cho-
sen arbitrarily according to their definition but in the computer imple-
mentations the floating point overflows (e.g. µj-s are too small) must be
avoided. The best solution would be to the optimize µj-s obtaining the
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smallest value for ‖S−1‖ but it could require much computational time.
Nevertheless, in some cases it is worth the trouble.

(3) By similar arguments as earlier, in (12) the floor function can also
be applied. Then the integers in T ′′ cover the integers in H.

(4) The computation of the vector norm ‖.‖ for an arbitrary vector
x ∈ Rk requires a matrix multiplication with S and during these operations
a maximum searching.

Forming the intersection of T ′ and T ′′ we proved the following theo-
rem:

Theorem 3. Let the set of integer points IT be defined as follows:

IT :=








t1
...

tk


 ∈ Zk, −κm ≤ tm ≤ κm, where

κm = min




γ

C∑

j=1

ξ(j)
m

 , bL‖S−1‖∞c

 , 1 ≤ m ≤ k



 .

Then I(H) ⊆ IT , I(−H) ⊆ IT and the set IT can rapidly be computed.

4. Computation of the function Φ

For a calculation of the function Φ one needs a fast procedure to
determine for an arbitrary z ∈ Zk the corresponding congruent element
d ∈ A modulo M . Our first method is a straightforward generalization of
the method used for the case of Gaussian integers in [10].

4.1. The adjoint method

Applying the notations already adopted let z be an arbitrary element
of Zk and let A = {a0, a1, . . . , at−1} be a complete residue system mod-
ulo M . If

z ≡ aj modulo M

then
M∗z ≡ M∗aj modulo tI,
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where M∗ denotes the adjoint of M , I the identity matrix and t= | det(M)|.
Here by “adjoint of the operator M” we mean the integer matrix, for which

the elements are the adjoints of the appropriate subdeterminants. Let

(13) Ā := M∗A (mod tI) = {b0, b1, . . . , bt−1},

where

(14) bj = M∗aj (mod tI) =




b
(j)
1
...

b
(j)
k


 ∈ Zk, 0 ≤ b

(j)
i < t, (i = 1, . . . , k).

Due to the complete residue system property of A, for every z ∈ Zk there

exists a unique bj ∈ Ā such that bj = M∗z (mod tI). Now from (13)

and (14) it follows that z ≡ aj modulo M .

In order to obtain for an arbitrary z ∈ Zk the congruent element in A
modulo M one has to perform a multiplication by the matrix M∗ (mod tI),

which requires k2 integer multiplications over Zt = Z/tZ. Can the num-

ber of operations be reduced? Fortunately, in many cases the answer is

positive. Suppose that there exists an i ∈ N, 1 ≤ i ≤ k for which the
b
(j)
i (j = 0, 1, . . . , t− 1) in (14) are all different. Then the inner product of

an arbitrary z ∈ Zk by the i-th row of M∗ modulo t uniquely determines

the index j for which z ≡ aj modulo M . This requires only k integer

multiplications over Zt. The question, in which cases does such an i exist

will be answered in Section 6. But what can be made when such an i does

not exist? Then one has to investigate further the set Ā and to figure

out a strategy to minimize the number of multiplications to obtain for an

arbitrary z ∈ Zk the appropriate bj ∈ Ā for which bj = M∗z modulo tI.

Beside the optimization the strategy needs GCD computations, which sug-

gests the existence of another (simpler) approach. Indeed, essentially the

same goal can be reached by another method, which is based on the so

called Smith normal form (see [7]).
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4.2. Using the Smith normal form

Let M be an invertible linear operator mapping Zk into Zk. Then
there are linear transformations U and V mapping Zk onto itself such that

UMV = D

has diagonal form in the standard basis with positive integer elements
d1, . . . , dk in the diagonal, such that di | di+1 for i = 1, 2, . . . , k − 1 and

k∏

i=1

di = | det(M)|.

The Smith normal form can be obtained by doing elementary row and
column operations on M . We remark that U and V have determinants ±1
and they are also invertible and have integer components.

Theorem 4. For an invertible M with the notations above let for

z1, z2 ∈ Zk the numbers u1, u2, . . . , uk and û1, û2, . . . , ûk denote the co-

ordinates of Uz1 and Uz2 respectively. Then

z1 ≡ z2 modulo M

if and only if

ui ≡ ûi modulo di

for all i = 1, 2, . . . , k.

Proof. z1 ≡ z2 modulo M if and only if

M−1(z1 − z2) ∈ Zk.

This is equivalent to the condition

V −1M−1(z1 − z2) ∈ Zk.

But
V −1M−1 = D−1U,

hence the equations
ui ≡ ûi modulo di

must be satisfied for all i = 1, 2, . . . , k. ¤
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From a computational point of view, at the first sight there is no gain:
in obtaining the congruent element in A modulo M for the vector z ∈ Zk

in the general case. In the first step one has to multiply z by the integer
matrix U (mod D) instead of M∗ (mod tI). But if there exists a positive
integer s for which di = 1, i = 1, . . . , s, s < k then ui ≡ 0 (mod di) for
all i = 1, . . . , s and for all z ∈ Zk, hence it is enough to perform only k

integer multiplications modulo dj for each j = s + 1, . . . , k. Let

(15) Â := UA (mod D) = {b̂0, b̂1, . . . , b̂t−1},

where

(16) b̂j = Uaj (mod D) =




b
(j)
1
...

b
(j)
k


 ∈ Zk, 0 ≤ b

(j)
i < di, (i = 1, . . . , k).

We get that for every z ∈ Zk there exists a unique b̂j ∈ Â such that
b̂j = Uz (mod D). From (15) and (16) we have that z ≡ aj modulo M .

4.3. Computer implementation

In computer implementations once the computation M∗z modulo tI

or Uz modulo D was performed for the vector z ∈ Zk, the result must be
looked up in the table T (Ā) or in T (Â), respectively, obtaining the index
j for which aj ≡ z modulo M , aj ∈ A. This can be done using searching
strategies or hashing. Let us see an example for such a hash function in
the case of the Smith normal form. The idea comes from the mixed radix
representation.

Theorem 5. Using the notations above let us define the function h by

h(z) =
k∑

i=s+1

(ui mod di)
i−1∏

j=s+1

dj .

Then h is an integer-valued function with values 0, . . . , t− 1, and h(z1) =
h(z2) if and only if z1 ≡ z2 modulo M .

The proof is easy, it is left to the reader. (See also [7].)
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Remark. The set Ā can be generated only from A but the set Â can
be produced also directly from D. A complete residue system (mod M)
can be generated from Â (Ā) by multiplying the elements with U−1 (M).

We summarize our results for the computation of the function Φ:
• For a given vector z ∈ Zk computing M∗z (mod tI) requires k2 integer

multiplications over Zt, computing Uz (mod D) requires k integer
multiplications over Zdj for each j = s + 1, . . . , k, where s depends
on the matrix M .

• Looking up the congruent element aj in the table T (A) either a search-
ing has to be performed in T (Ā) or in T (Â) to obtain the index j or
a hashing has to be done.

• To perform the function Φ after a vector subtraction a matrix mul-
tiplication must be applied either with M∗ over Z and then dividing
by det(M) or with M−1 over R.

5. Algorithm for computing the attractors

In the previous section we presented a fast procedure to compute the
function Φ. But how many times should we apply it for an arbitrary vector
z until the orbit of z reaches the attractor?

5.1. The length of the standard expansion

Let z ∈ Zk be an arbitrary vector. If z0 := z 6∈ P then there is a
unique l ∈ N and a0, a1, . . . , al−1 ∈ A such that

zj = aj + Mzj+1 (j = 0, . . . , l − 1), zl ∈ P

and none of z0, z1, . . . , zl−1 do belong to P. Then let the expansion of z

be denoted by

(17) (a0, a1, . . . , al−1 | p), (p = zl).

If such an expansion is given then z can be computed by

(18) z = a0 + Ma1 + . . . + M l−1al−1 + M lp.

If z ∈ P then its expansion in (M,A) will be denoted by (∗ | z).
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Definition. We shall say that (17) is the standard expansion of the
vector z given by (18) and l is the length of the standard expansion.

For an arbitrary sequence of vectors a0, a1, . . . , al−1 ∈A and p∈P
the expression (a0, a1, . . . , al−1 | p) means the vector z given by z =∑l−1

j=0 M jaj +M lp. This expansion is the standard expansion of the vector
z if and only if Φl−1z = al−1 + Mp /∈ P. Observe that if p ∈ P then all
z ∈ B(p) \ C(p) have a standard expansion (a0, a1, . . . , al | p̂) for some
ai ∈ A (i = 0, . . . , l), l ∈ N and p̂ ∈ C(p).

Returning to the original question: what can be stated about the
length of the standard expansion for an arbitrary z ∈ Zk? Let l(z) be the
smallest integer l ≥ 0 for which Φl(z) ∈ P.

Theorem 6. There is a constant c = c(M,A) for which

∣∣∣∣l(z)− log ‖z‖
log ‖M‖

∣∣∣∣ < c,

where z ∈ Zk \ {0}.
The proof is a straightforward generalization of the one-dimensional

case given by Kátai in [9].

5.2. The algorithm

In this subsection an algorithm will be presented for determining the
attractors denoted by G(P ) for a given invertible expanding linear opera-
tor M of Rk mapping Zk into Zk and for a given set A of digits.

For arbitrary finite subsets X, Y of Zk let

ΨY (X) := {Mz + d ∈ Zk : z ∈ X, d ∈ Y }.

In the following let Y := A and for simplicity we shall write Ψ(X). Observe
that in a certain sense Ψ – which acts as a left shift operator – is an inverse
of Φ, which acts as a right shift operator. Let Ψl denote the l-fold iterate
of Ψ, Ψ0(X) = X. Then the following assertions are obviously true:
• X ⊂ Ψ(X) if and only if P ⊆ X,
• if for all z ∈ X, z 6∈ P then X ∩Ψj(X) = ∅ for all j ∈ N,
• if p ∈ P , the length of the period of p is q, X ∩ C(p) = {p} and

p ∈ Ψj(X) for some j ∈ N then q | j.



112 Attila Kovács

Remark. The computation of Ψ requires k2 integer multiplications
and tk integer additions.

Algorithm for determining the attractors for a given system (M,A):
Recall that the points of the attractor are in the set IT , which can be

computed efficiently.
1. Suppose that p ∈ P ⊆ IT is known. Then (iterating the function Φ)
C(p) can be easily computed.

2. The operator Ψ can be used to generate the (finite) set (B(p) ∩ IT ) \
C(p).

3. Omit these points from IT .
4. Find a new periodic element and repeat the process until integer

points in IT \ ∪ C(pi
) remain.

Generating the orbit of an arbitrary z ∈ IT one can easily get a new
periodic element p and even the set C(p). IT is finite so the algorithm
terminates.

We have seen that the function Φ can be applied to generate the
periodic elements. We will show that to determine the periodic elements
with small periods there is a faster way to compute.

Theorem 7. Let l ∈ N be fixed. Suppose that the matrix (I −M l) is
regular. Then p ∈ P if and only if

(I −M l)−1(a0 + Ma1 + . . . + M l−1al−1) ∈ Zk,

where ai ∈ A, (i = 0, 1, . . . , l − 1).

Proof. It was stated in (4) that p ∈ P if and only if there is an l > 0
such that

p = a0 + Ma1 + . . . + M l−1al−1 + M lp, aj ∈ A.

This is equivalent to

(19) p = (I −M l)−1(a0 + Ma1 + . . . + M l−1al−1) ∈ Zk,

which was to be proved. ¤
For a given l ∈ N this theorem can be used to generate all the periodic

elements with period length l1, where l1 | l (l1 ∈ N). Putting the vectors
ai ∈ A in all possible ways into the equation (19) one has only to check
whether the right hand side is an integer vector or not.
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Remarks. (1) From a computational point of view this procedure is
preferable only for small l and t.

(2) The method requires exact computations, e.g. use of computer
algebra.

Recall that the attractor of a number system may contain only the
loop 0 → 0. To answer the question whether a given system (M,A) is a
number system or not – applying Theorem 7 – first check the number of
small periods (in most cases only the loops). Next, – if it is necessary – the
operator Ψ can be iterated for the one element initial set X = {0}. If all
the points in IT can be produced in this way then it is a number system,
otherwise it is not. The termination follows from Lemma 1 and from the
fact that IT is finite.

6. Canonical number systems in Zk

Definition. A set of vectors CM,j ⊂ Zk is called j-canonical with re-
spect to the matrix M (1 ≤ j ≤ k) if all the elements have the form νej ,
where ej denotes the j-th unit vector, ν = 0, 1, . . . , t−1 and t = | det(M)|.
If the set CM,j forms a complete residue system – CRS for brevity – mod-
ulo M then we will denote it by Aj . If there exists a j for which (M,Aj)
is a number system then it is called a j-canonical number system.

Canonical number systems play a significant role in mathematics and
computer science. In the following we shall analyze the existence of j-
canonical complete residue systems.

Theorem 8. Let M be an invertible expanding linear operator of Rk

mapping Zk into itself and let c = [c1, c2, . . . , ck]T ∈ Zk be the j-th column
of the matrix M∗ (adjoint of M). Let GCD(cl, t) := δl (l = 1, . . . , k),
where t = |det(M)|. Let furthermore τl := t/δl. Then the following
statements are equivalent:

(1) There exists j-canonical CRS modulo M .

(2) The set

Āc =





νc mod t =




νc1 mod t
...

νck mod t


 , ν = 0, 1, . . . , t− 1





has exactly t elements.
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(3) LCM(τ1, . . . , τk) = t.

Proof. (1) ⇔ (2). The proof immediately follows from the construc-
tion of Ā (see Section 4.1).

(1) ⇔ (3). Due to the CRS property of the set Aj all its elements are
incongruent modulo M and the set Aj has t elements. This means that
the equation hej = Mη has no solution for any h ∈ N, 0 < h < t and any
η = [η1, η2, . . . , ηk]T ∈ Zk. Hence it is enough to examine the solvability
of the system of equations

(20)

hc1 = tη1

...

hck = tηk.

Case 1. There exists a cl (1 ≤ l ≤ k) such that GCD(cl, t) = 1. In this
case from the equation hcl = tηl it follows that t | h. Hence the system of
equations (20) has no integer solution.

Case 2. Suppose that GCD(cl, t) = δl > 1 for all l = 1, 2, . . . , k. Let
c∗l = cl/δl. Then hc∗l = τlηl (l = 1, . . . , k). Since GCD(c∗l , τl) = 1, there-
fore τl |h for all l = 1, . . . , k. It means that LCM(τ1, τ2, . . . , τk) |h. Hence
the system of equations (20) has no solution if and only if LCM(τ1, τ2, . . . ,
τk)≥ t. On the other hand LCM(τ1, . . . , τk) | t. Therefore LCM(τ1, . . . , τk)
= t. (If τl = t for some l then GCD(cl, t) = 1.) We have that there exists
a j-canonical CRS modulo M if and only if LCM(τ1, . . . , τk) = t. ¤

Remarks. (1) If there exists a ci ∈ Z \ 0 in the j-th column of the
matrix M∗ for which GCD(ci, t) = 1 modulo t then there is a j-canonical
complete residue system modulo M . Theorem 8 shows that the converse
of this statement is not always true.

(2) If t is prime then there always exist j-canonical CRS for all 1 ≤
j ≤ k.

Lemma 2. Using the above notations above suppose that for a given

M there exists a j-canonical CRS. Then there is an i ∈ N, 1 ≤ i ≤ k

for which GCD(ci, t) = 1 modulo t if and only if the set {νci modulo t,

ν = 0, 1, . . . , t− 1} forms a CRS modulo t.

The proof is obvious.
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Corollary. If for a given M there exist j-canonical CRS and ci ac-

cording to the lemma then it is enough to perform only k multiplications

modulo t to determine for an arbitrary z ∈ Zk the element b = (M∗z
modulo tI) ∈ Ā (see Section 4).

The converse of this statement is not true. Let a counter-example be

the matrix M =
[

2 4
6 3

]
. Then t = 18 and M∗ =

[−3 4
6 −2

]
. Using the

Smith normal form for every z ∈ Zk it is enough to perform k multipli-
cations to obtain the appropriate b ∈ Ā but there is no 1- or 2-canonical
CRS and GCD(ci, t) > 1 modulo t for all ci.

7. Examples

First we have to call the reader’s attention to the connection between
the invertible expanding linear operators and the ring of integers of a given
algebraic number field.

Let Θ be an algebraic integer with minimal polynomial f(x) = xk +
ck−1x

k−1 + . . . + c1x + c0. Let us denote the conjugates of Θ over Q by
Θ1, Θ2, . . . , Θk. Assume that |Θi| > 1 (i = 1, . . . , k). Let Z[Θ] be the set
of elements of form u0 + u1Θ + · · · + uk−1Θk−1 (uj ∈ Z). Then Z[Θ] is
a ring. For the addition it is isomorphic to the additive group Zk. Let
α ∈ Z[Θ]. The map α → Θα can be formulated as a linear transformation,
which has a simple form in the basis {1,Θ, Θ2, . . . , Θk}, namely the matrix




0 . . . −c0

1 0 . . .
...

0
. . .

...
0 . . . 1 −ck−1




.

Therefore all the problems can be formulated in Zk instead of in Z[Θ].

Example 1. Let

M =
[

1 −1
−2 −1

]
, A =

{[
0
0

]
,

[−2
0

]
,

[
0
1

]}
.
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Then t = | det(M)| = 3, the eigenvalues of M are ±√3, the Jordan trans-

formation matrix is S =
[

1 1−√3
2

1 1+
√

3
2

]
, r = ‖M−1‖ =

√
3

3 , K = 2, L =

1 +
√

3, IT =
{[

t1
t2

]
∈ Z2

∣∣∣ −2 ≤ t1, t2 ≤ 2
}

, Ā =
{[

0
0

]
,

[
1
1

]
,

[
2
2

]}

and Â =
{[

0
0

]
,

[
0
1

]
,

[
0
2

]}
. The attractors can be seen in Figure 1.

Figure 1.

Figure 2 shows the basin of attraction in a region of Z2. B(p
1
) = gray,

B(p
2
) = black, B(p

4
) = white.

Figure 2.
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Example 2. Let us choose for the same matrix a different digit set.
Let

M =
[

1 −1
−2 −1

]
, A =

{[
0
0

]
,

[−2
−1

]
,

[−1
1

]}
.

In this case the corresponding (different) values are K =
√

3+5
2 , L = 3

√
3+4
2 ,

IT =
{[

t1
t2

]
∈ Z2

∣∣∣ −2 ≤ t1 ≤ 2, −3 ≤ t2 ≤ 3
}

. Figure 3 shows the at-

tractors of the system (M,A).

Figure 3.

Since M∗ = −M therefore it is easy to check that there exist 1- and
2-canonical complete residue systems. It remains for the reader to show
that 1- or 2-canonical number systems do not exist.

Example 3. Let us consider the ring of Gaussian integers Z[i] = {a +

bi | a, b ∈ Z}. Let Θ = A+Bi ∈ Z[i]. Hence M =
[

A −B

B A

]
, t = A2 +B2

and M∗ =
[

A B

−B A

]
. From Theorem 8 it follows that if GCD(A,B) = 1

then there always exist 1- and also 2-canonical CRS.

Let Θ = 2+ i ∈ Z[i]. Then M =
[

2 −1
1 2

]
and t = 5. Let us consider

the canonical digit set A1. In this case the eigenvalues of M are 2± i, the

Jordan transformation matrix S =
[

1 −i

1 i

]
, r = ‖M−1‖ =

√
5

5 , K = 4,

L = 1 +
√

5, IT =
{[

t1
t2

]
∈ Z2

∣∣∣ −2 ≤ t1, t2 ≤ 2
}

. The attractors can be

seen in Figure 4.
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Figure 4.

Figure 5.

Figure 5 shows the basin of attraction in a region of Z2. B(p
1
) =

black, B(p
2
) = white, B(p

3
) = gray.

Example 4. Let our last example be the matrix M =
[−1 −1

1 −1

]

with the digit set A =
{[−3

3

]
,

[
2
−3

]}
. Then the eigenvalues of M are

−1±i, the Jordan transformation matrix S =
[

1 −i

1 i

]
, r = ‖M−1‖ =

√
2

2 ,

K = 3
√

2, L = 3(2+
√

2), IT =
{[

t1
t2

]
∈ Z2

∣∣∣ −7 ≤ t1 ≤ 7, −5 ≤ t2 ≤ 5
}

.

In this case there are two attractors. One of them has period length 3 while
the other one has period length 60 (see [10]).
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8. Further questions and problems

(1) It is known that if p ∈ P then the maximum of the period length of
p can be estimated with the number of integers in the k-dimensional
ball centered at 0 with radius L. Is there a better estimation?

(2) Is there a good upper estimation for the number of the different sets
C(p)?

(3) Give all the invertible expanding linear operators M in Zk for which
there exists a complete residue system A modulo M such that (M,A)
is a number system.

(4) How can we characterize the geometric/algebraic structure of the sets
B(p), p ∈ P?

(5) What can be stated about the attractors in case of special invertible
expanding operators, e.g. matrices generated by the ring of integers
of a given algebraic field?

(6) The problem of characterizing the j-canonical number systems seems
to be very interesting.

A remark to the third problem: It is not true that for a given invert-
ible expanding linear operator M there always exists a complete residue
system A modulo M such that (M,A) is a number system. Let a counter-

example be the matrix M =
[

1 −1
1 1

]
for which there does not exist

any appropriate digit set A =
{[

0
0

]
,

[
a

b

]}
, (a, b ∈ Z) such that (M,A)

would be a number system. It is easy to check that there is always a loop[−b

a

]
→

[−b

a

]
.
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