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Transcendence and algebraic independence
connected with Mahler type numbers

By PETER BUNDSCHUH (Köln), PETER JAU-SHYONG SHIUE∗ (Las Vegas)

and XIUYUAN YU (Zheijiang)

Abstract. Let g, h ≥ 2 be fixed integers and let H(b) denote the digit expansion
of the positive integer b in base h. For a given infinite sequence A = (an)∞n=0 of non-
negative integers, we consider the real number Mh(g; A) defined by the digit expansion

Mh(g; A) := 0.H (ga1 ) . . . H (gan ) . . . in base h.

We prove transcendence and algebraic independence results on numbers including
Mh(g; A).

1. Introduction and results

Let g, h ≥ 2 be fixed integers and let H(b) denote the digit expansion
of the positive integer b in the base h. For a given infinite sequence A =
(an)∞n=0 of non-negative integers, we consider the real number Mh(g;A)
defined by the digit expansion

Mh(g; A) := 0.H (ga0)H (ga1) . . . H (gan) . . .

in the base h. This means that the digit expansion of Mh(g; A) is obtained
by concatenation of the digit expansions H (ga0), H (ga1), . . . .

In 1981 Mahler [5] proved the irrationality of M10(g;N0), where N0

is the sequence (n)∞n=0. Bundschuh [2] solved the case of an arbitrary
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base h ≥ 2. Shan [10] provided a much simpler proof for Bundschuh’s re-
sult, and shortly thereafter, Niederreiter [6], Shan and Wang [11] and
Yu [15] gave generalizations to different kinds of unbounded sequences A.

Of particular interest is the method of proof of [11], in that Mh(g; A) is
irrational if A is strictly increasing. The irrationality assertion is deduced
from a result on the finiteness of the number of integer solutions (x, y)
of the Thue equation axr − byr = c with non-zero integers a, b, c and
r satisfying ab > 0 and r ≥ 3. Such a link between the irrationality of
Mahler type numbers Mh(g; A) and the finiteness question for a certain
diophantine equation appeared already in the proof of [2]. This conclusion
was later much more exploited by the work of Becker [1], Sander [9]
and Shorey and Tijdeman [13] on the same subject.

After this short survey of irrationality results on Mahler type numbers
we will now give a more explicit expression for these Mh(g : A). This
expression allows us to define a function, holomorphic in the unit disk,
which we wish to investigate here from the arithmetical point of view.
More precisely, we shall prove transcendence and algebraic independence
results on numbers including Mh(g; A) under stronger hypotheses on g, h
and A than in the pure irrationality case.

Let A = (an)∞n=0 be a sequence as before and write gan in the base h
as

(1) gan =
kn∑

j=0

δ
(n)
j hj

with digits δ
(n)
j ∈ {0, . . . , h− 1} and δ

(n)
kn

6= 0. Clearly we have

(2) kn =
[
an

log g

log h

]
.

For n = 0, 1, . . . , we now define polynomials

∆n(z) :=
kn∑

j=0

δ
(n)
kn−jz

j

and a power series

(3) f(z;A) :=
∞∑

n=0

∆n(z)zk0+···+kn−1+n+1

with radius of convergence 1.
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From ∆n

(
1
h

)
= ganh−kn we see

f

(
1
h

;A
)

=
∞∑

n=0

ganh−(k0+···+kn+n+1) = Mh(g; A).

Our main result on transcendence of the values of the function f(z; A) is
contained in the following

Theorem 1. Let g, h ≥ 2 be fixed, multiplicatively dependent inte-

gers, and let the sequence A = (an)∞n=0 of non-negative integers satisfy the

conditions

lim sup
n→∞

an

a0 + · · ·+ an−1
= ∞(4)

and

lim inf
n→∞

a0 + · · ·+ an−1

n
> 0.(5)

If the function f(z; A) is defined in |z| < 1 by (3), then the number

f(α; A) is transcendental for each algebraic α satisfying

(i) α is real and 0 < α < 1
or

(ii) 0 < |α| ≤ 1
h

or

(iii) 0 < |α| < 1 under the additional hypothesis

(6) lim
n→∞

an = ∞.

Remarks. 1. It is easily seen that, if A satisfies

(7) lim
n→∞

an

a0 + · · ·+ an−1
= ∞,

then all three conditions (4), (5) and (6) hold. Therefore, under hypothesis
(7) f(α; A) is transcendental for each non-zero algebraic α in the unit disk.

2. It should be noted that (4), (5) and (6) together do not imply (7),
as can be easily seen form the following example: Take an := 2n if n is a
power of 2, and an := n, otherwise.
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3. None of the conditions (4), (5) implies the other. This is evident
from the two sequences an := 1 for all n, and an := n if n is of the shape
22

m

with some non-negative integer m and an := 0 otherwise.

Concerning algebraic independence we assert

Theorem 2. Let g, h and A be as in Theorem 1, but with the hypo-
thesis (7). If α1, . . . , αt are non-zero algebraic numbers of distinct absolute
values in the unit disk, and if ` is any non-negative integer, then the
numbers

f (λ) (ατ ; A) (τ = 1, . . . , t; λ = 0, . . . , `)

are algebraically independent (over Q, the set of rational numbers). In
particular, f (α1; A) , . . . , f (αt; A) are algebraically independent.

Remark 4. It is almost sure that condition (7) here can be weakened
to the simultaneous conditions (4), (5) and (6) from Theorem 1, but we
do not intend to explore this question further.

2. Some auxiliary results

Since both theorems are concerned with the case of multiplicatively
dependent g, h ≥ 2, we suppose from now on

(8) gr = hs

with some positive integers r, s. The importance of this hypothesis in our
context is revealed in

Lemma 1. If (8) holds, then for any integer a ≥ 0 exactly one digit in
the canonical h-adic expansion of ga is different from zero, and moreover
one has

ga = βh[as/r]

with some β ∈ {1, . . . , h− 1}.
Proof. Suppose g = pµ1

1 . . . pµm
m , h = pν1

1 . . . pνm
m with different primes

p1, . . . , pm and positive exponents µ, ν. From (8) we conclude rµi = sνi

for i = 1, . . . ,m and thus aµi = a s
r νi for the same i. Therefore we have

aµi =
[
a s

r

]
νi + λi with some λi ∈ {0, . . . , νi − 1} and from

ga = paµ1
1 . . . paµm

m = pλ1
1 . . . pλm

m h[as/r]

we get the assertion of Lemma 1. ¤
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Lemma 2. Suppose that (8) holds, then the function f(z;A) from (3)
has the shape

(9) f(z;A) =
∞∑

n=0

βnzen

with βn ∈ {1, . . . , h−1} and en := k0+· · ·+kn−1+n+1 where kn =
[
an

s
r

]
for n = 0, 1, . . . . For the same n and for any complex number z with |z| < 1
the equality

(10)
∣∣∣∣f(z; A)−

n∑

i=0

βiz
ei

∣∣∣∣ = βn+1|z|en+1

(
1 + γ

h− 1
1− |z| |z|

1+kn+1

)

holds; here γ = γ(n, z) is a real number satisfying |γ| ≤ 1. If 0 < |z| < 1
and ki > 0 for at least one i ≥ n + 2 hold, then one can even guarantee
|γ| < 1.

Proof. From (2) and (8) we get kn =
[
an

s
r

]
, and therefore gan =

βnhkn with βn ∈ {1, . . . , h − 1}, from Lemma 1. Of course, this means
that we have δ

(n)
j = 0 for j = 0, . . . , kn − 1 and δ

(n)
kn

= βn in (1). Thus (3)
implies (9).

From the estimate

(11)
∣∣∣∣

∞∑

i=n+2

βiz
ei

∣∣∣∣ ≤ (h− 1)|z|en+2/(1− |z|),

(with strong inequality for 0 < |z| < 1 and if ei+1 − ei > 1 for at least one
i ≥ n + 2) we easily deduce

(12)
∣∣∣∣
∣∣∣f(z,A)−

n∑

i=0

βiz
ei

∣∣∣− βn+1|z|en+1

∣∣∣∣ ≤ (h− 1)
|z|en+2

1− |z| ,

and this implies (10). Note here that strong inequality in (11) leads to
strong inequality in (12), giving |γ| < 1. ¤

Remark 5. If g and h are multiplicatively dependent integers, and if
the sequence A = (an)∞n=0 is unbounded, then f

(
1
h , A

)
= Mh(g;A) is

irrational, and this is exactly Niederreiter’s Theorem 1 [6]. Namely, since
en+1−en = kn +1 > an

s
r and since A is not bounded, the canonical h-adic

expansion of the numbers under consideration has arbitrarily long gaps.

The next lemma contains just a Liouville type estimate, a proof of
which can be found, e.g. in Shidlovskii’s book [12], p. 32.
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Lemma 3. For distinct algebraic numbers ξ and η the following in-
equality holds:

|ξ − η| > c∂(ξ)H(ξ)−∂(η).

Here c is a positive real constant depending only on η, and ∂( · ), H( · )
denote the degree and the (usual) height of an algebraic number, respec-
tively.

The following lemma can be found in Cijsouw’s dissertation [4], p. 3.

Lemma 4. The inequality

H(ξ) ≤ (
2ν(ξ)max

(
1, ξ

))∂(ξ)

holds for any algebraic number ξ. Here ν( · ) and · denote the denomi-
nator and the house (i.e. the maximum of the absolute values of ξ and of
all its conjugates) of an algebraic number.

Finally, for the proof of Theorem 2, we quote Corollary 2 from [3] as

Lemma 5. Let (en)∞n=0 denote a strictly increasing sequence of non-
negative integers, and let (βn)∞n=0 denote a sequence of non-zero algebraic
numbers. Suppose that the power series

∑∞
n=0 βnzen has radius of con-

vergence R > 0 and defines the function f(z) in |z| < R. Put Sn :=
[Q (β0, . . . , βn) : Q], Bn := max

(
1, β0 , · · · , βn

)
, Nn := lcm(ν(β0), . . .

. . . , ν(βn)) and suppose that

(13) lim
n→∞

Sn (en + log BnNn)
/
en+1 = 0

holds. If α1, . . . , αt are non-zero algebraic numbers of distinct absolute
values less than R, and if ` is any non-negative integer, then the numbers
f (λ)(ατ ) (τ = 1, . . . , t; λ = 0, . . . , `) are algebraically independent.

3. Proof of the theorems

In this section c1, c2, . . . always denote positive real constants which
are independent of n.

Proof of Theorem 1. From Lemma 2, more precisely from (5), we
get

(14)
∣∣∣∣f(z; A)−

n∑

i=0

βiz
ei

∣∣∣∣ ≤ c1|z|en+1
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for any n ≥ 0 and for any complex z with |z| < 1. We now assume that
there is an algebraic number α with one of the conditions (i), (ii), or (iii),
such that f(α; A) is also algebraic. This α will be fixed for the remaining
part of the proof.

Next we have to make sure that the left-hand side of inequality (14),
evaluated at z = α, is non-zero for every sufficiently large n. In case (i)
this is trivial, even for all n. In the case (ii) we have for the expression on
the right-hand side of (10), again evaluated at z = α,

(15) |γ| h− 1
1− |α| |α|

1+kn+1 ≤ |γ|h−kn+1 < 1

for every n ≥ 0. Here we are allowed to use |γ| < 1 in this case, since we
have ki > 0 infinitely often, by conditions (4) and (5). Therefore, from (10)
again, we see the non-vanishing of the left-hand side of (14) at α for each
n ≥ 0. Finally, in the case (iii) the inequality |γ| h−1

1−|α| |α|1+kn+1 < 1 in (15)
is satisfied for any α with |α| < 1 if n is large enough, by 1+kn+1 > an+1

s
r

and hypothesis (6).
Now we are in a position to deduce a contradiction by estimating

the left-hand side of (14) at z = α from below, applying Lemma 3 to
η := f(α; A), ξ :=

∑n
i=0 βiα

ei . For this it is clear that we have to bound
H(ξ) from above, and to do so we use Lemma 4: Independently of n, all
numbers ξ belong to the algebraic number field Q(α), and then we have
∂(ξ) ≤ ∂(α). If ν := ν(α) is the denominator of α, then νenξ is an algebraic
integer, and thus we have ν(ξ) ≤ νen . Finally, from the definition of ξ and
the house of an algebraic number, we have

ξ ≤
n∑

i=0

βi α
ei ≤ h

n∑

i=0

(
max

(
2, α

))ei ≤ c2 exp(c3en).

Combining the last estimates we deduce from Lemma 4

H(ξ) ≤ (2νen max (1, c2e
c3en))∂(α) ≤ c4 exp (c5en) .

Now the generalized Liouville inequality from Lemma 3 implies

(16)
∣∣∣∣f(α;A)−

n∑

i=0

βiα
ei

∣∣∣∣ > c6 exp (−c7en)
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for all sufficiently large n. Combining (14) (for z = α) and (16), and taking
logarithm, we find

en+1 log
1
|α| < c7en + log

c1

c6
.

This implies that the sequence
(

en+1
en

)
is bounded above. By en+1 − en =

kn + 1, this means that the quotients

(17)

kn + 1
en

>
an

s
r

(a0 + · · ·+ an−1) s
r + n + 1

≥ an

(a0 + · · ·+ an−1) + 2r
s n

are bounded above. By condition (5), the inequality a0 + · · ·+ an−1 ≥ tn

holds for all large enough n, where t > 0 is an appropriate real constant.
We deduce from (17) that an

a0+···+an−1
is bounded above, and this contra-

dicts condition (4) of our Theorem 1, which is therefore proved. ¤

Proof of Theorem 2. We apply Lemma 5 with R = 1, Sn = 1,
Bn = max (β0, . . . , βn) (< h), Nn = 1 for all n such that condition (13) in
Lemma 5 is equivalent to limn→∞ en

en+1
= 0 or to limn→∞ kn+1

en
= ∞. The

truth of this last relation is seen from (17), since condition (7) implies (5),
and then inequality (17) says that kn+1

en
is bounded below by a constant

positive factor times an

a0+···+an−1
for all large n. But this last quotient

tends to infinity as n →∞, by (7), so that Theorem 2 is proved. ¤

4. Two function-theoretical remarks on f(z; A)

Here we suppose condition (8) so that f(z; A) from (3) is of the
form (9).

1. From en+1 − en > an
s
r we see that the power series of f(z; A) has ar-

bitrarily long gaps, if condition (6) holds. But then we can conclude
from a result of Ostrowski [8] that f(z;A) has at least one singu-
larity on |z| = 1 which is not a pole, and thus, this function cannot
be rational. Using a slightly earlier theorem of Szegő [14] on power
series with only finitely many distinct coefficients, we can even deduce
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from (6) that f(z;A) cannot be continued analytically across the unit
circle.

2. If both conditions (4) and (5) hold, then it is evident from (17) that the
sequence

(
kn+1

en

)
and therefore

(
en+1
en

)
is unbounded. But then we

deduce from another result of Ostrowski [7] that the function f(z;A)
must be hypertranscendental, i.e., it does not satisfy any algebraic
differential equation.
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