Submanifolds of a quasi constant curvature manifold

By HUAFEI SUN (Kumamoto)

Abstract

In this paper, we study submanifolds in a quasi constant curvature space and generalize a result due to Chern-do Carmo-Kobayashi and Li-Li.

0. Introduction

Let M be an n-dimensional compact minimal submanifold immersed into the $(n+p)$-dimensional unit sphere S^{n+p}. Denote by S the square of the length of the second fundamental form of M. The following result is well known ([1, 2]):

Theorem A. Let M be an n-dimensional compact minimal submanifold in S^{n+p}. If S satisfies

$$
S \leq \frac{n}{1+\frac{1}{2} \operatorname{sgn}(p-1)}
$$

then M is a totally geodesic submanifold, and the Clifford torus or the Veronese surface is in S^{4}, where $\operatorname{sgn}(x)=1$ for $x>0$ and $\operatorname{sgn}(x)=0$ for $x \leq 0$.

The following definition was introduced by Chen and Yano [3].
Definition. A Riemannian manifold is said to be a quasi constant curvature manifold if its curvature tensor satisfies
(*) $\quad K_{A B C D}=a\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right)$

$$
+b\left(\delta_{A C} v_{B} v_{D}-\delta_{A D} v_{B} v_{D}+\delta_{B D} v_{A} v_{C}-\delta_{B C} v_{A} v_{D}\right)
$$

Mathematics Subject Classification: 53C42.
Key words and phrases: quasi constant curvature, totally geodesic, generator.
The project supported by JSPS.
where a, b are some scalar functions and v_{A} the component of a unit vector field which is called the generator of the manifold.

By the definition we see that when $b \equiv 0$, the quasi constant curvature manifold becomes a constant curvature manifold.

From now on, we use of the following convention on the ranges of the indices:

$$
1 \leq A, B, \ldots \leq n+p ; 1 \leq i, j, \ldots \leq n ; n+1 \leq \alpha, \beta, \ldots \leq n+p
$$

The purpose of this paper is to study the case that the ambient space is a quasi constant curvature manifold N^{n+p} and to generalize Theorem A. We obtain

Theorem 1. Let M be an n-dimensional compact minimal submanifold in an $(n+p)$-dimensional quasi constant curvature manifold N^{n+p} and let a, b be constants. Suppose that (a) $a>0$, the generator is orthogonal to M and

$$
S<\frac{n a}{1+\frac{1}{2} \operatorname{sgn}(p-1)},
$$

or else that
(b) $n a+b-n|b|>0$, the generator is parallel to M, and

$$
S<\frac{n a+b-n|b|}{1+\frac{1}{2} \operatorname{sgn}(p-1)} .
$$

Then each of these two sets of conditions implies that M is a totally geodesic submanifold.

Theorem 2. Let M be an n-dimensional compact minimal submanifold in an $(n+p)$-dimensional quasi constant curvature manifold N^{n+p}. Suppose a is a positive number. If the generator is orthogonal to M and

$$
S=\frac{n a}{1+\frac{1}{2} \operatorname{sgn}(p-1)},
$$

then either $M=S^{m}\left(\sqrt{\frac{m}{(n-m) a+m}}\right) \times S^{n-m}\left(\sqrt{\frac{n-m}{m a+n-m}}\right)$ or $n=p=2$ and with respect to an adapted dual orthonormal frame $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$,
the connection form $\left(\omega_{A B}\right)$ of N^{4}, restricted to M, is given by

$$
\left(\begin{array}{cccc}
0 & \omega_{12} & g \omega_{1} & g \omega_{2} \\
\omega_{21} & 0 & -g \omega_{2} & g \omega_{1} \\
-g \omega_{1} & g \omega_{2} & 0 & 2 \omega_{12} \\
-g \omega_{2} & -g \omega_{1} & -2 \omega_{12} & 0
\end{array}\right), \quad g=\sqrt{\frac{1}{3} a} .
$$

Remark. When $a=1$ and $b=0$, from Theorems 1, 2 we can get Theorem A immediately.

The author would like to thank Prof. K. Ogiue for his advice and encouragement and would like to express his thanks to the referee for valuable suggestions.

1. Fundamental formulas

Let M be an n-dimensional compact minimal submanifold immersed in the $(n+p)$-dimensional quasi constant curvature manifold N^{n+p} with the curvature tensor as $(*)$. Suppose that $\left\{e_{A}\right\}$ is an orthonomal frame field on N^{n+p} such that e_{1}, \ldots, e_{n} are tangent to M, and let $\left\{\omega_{A}\right\}$ be the dual frame field. Then the structure equations of N^{n+p} are given by

$$
\begin{aligned}
d \omega_{A} & =-\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \\
d \omega_{A B} & =-\sum_{C} \omega_{A C} \wedge \omega_{C B}+\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{B}
\end{aligned}
$$

where $K_{A B C D}$ satisfies (*).
Restricting these forms to M, we have

$$
\begin{aligned}
\omega_{\alpha} & =0, \quad \omega_{\alpha i}=\sum_{j} h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha}, \\
d \omega_{i} & =-\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0, \\
d \omega_{i j} & =-\sum_{k} \omega_{i k} \wedge \omega_{k j}+\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l},
\end{aligned}
$$

where

$$
\begin{align*}
R_{i j k l} & =K_{i j k l}+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \tag{1.1}\\
d \omega_{\alpha \beta} & =-\sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}+\frac{1}{2} \sum_{k l} R_{\alpha \beta k l} \omega_{k} \wedge \omega_{l} \\
R_{\alpha \beta k l} & =K_{\alpha \beta k l}+\sum_{i}\left(h_{k i}^{\alpha} h_{i l}^{\beta}-h_{k i}^{\beta} h_{i l}^{\alpha}\right) .
\end{align*}
$$

We call $h=\sum_{i j \alpha} h_{i j}^{\alpha} \omega_{i} \omega_{j} e_{\alpha}$ and $\xi=\frac{1}{n} \sum_{i \alpha} h_{i i}^{\alpha} e_{\alpha}$ the second fundamental form and the mean curvature vector of the immersion, respectively. M is said to be minimal, if $\xi \equiv 0$. Denote by $S=\sum_{i j \alpha}\left(h_{i j}^{\alpha}\right)^{2}$ the square of the length of h. Define $h_{i j k}^{\alpha}$ and $h_{i j k l}^{\alpha}$ by

$$
\sum_{k} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}-\sum_{k} h_{k j}^{\alpha} \omega_{k i}-\sum_{k} h_{i k}^{\alpha} \omega_{k j}-\sum_{\beta} h_{i j}^{\beta} \omega_{\beta \alpha}
$$

and by

$$
\sum_{l} h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}-\sum_{l} h_{l j k}^{\alpha} \omega_{l i}-\sum_{l} h_{i l k}^{\alpha} \omega_{l j}-\sum_{l} h_{i j l}^{\alpha} \omega_{l k}-\sum_{\beta} h_{i j k}^{\beta} \omega_{\beta \alpha},
$$

respectively. We know that

$$
\begin{equation*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha}=K_{\alpha i k j}=-K_{\alpha i j k} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m} h_{i m} R_{m j k l}+\sum_{m} h_{m j} R_{m i k l}+\sum_{\beta} h_{i j}^{\beta} R_{\beta \alpha k l} . \tag{1.3}
\end{equation*}
$$

2. Proofs of the theorems

In order to prove our theorems, we need the following
Lemma 1 ([1, 2]). Let $H_{\alpha}, \alpha \geq 2$ be symmetric $(n \times n)$-matrices, $S_{\alpha}=\operatorname{tr} H_{\alpha}^{2}, S=\sum_{\alpha} S_{\alpha}$. Then

$$
\sum_{\alpha, \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}-\sum_{\alpha, \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \geq-\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S^{2},
$$

and equality holds if and only if all $H_{\alpha}=0$ or there exist two H_{α} 's different from zero. Moreover, if $H_{n+1} \neq 0, H_{n+2} \neq 0, H_{\alpha}=0, \alpha \neq n+1, n+2$, then $S_{n+1}=S_{n+2}$ and there exists an orthogonal $(n \times n)$ matrix T such that

$$
T H_{n+1}^{t} T=\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & -f & \\
0 & & 0
\end{array}\right), \quad T H_{n+2}{ }^{t} T=\left(\begin{array}{ccc}
0 & f & 0 \\
f & 0 & \\
0 & & 0
\end{array}\right),
$$

where $f=\sqrt{\frac{S_{1}}{2}}$.
If a and b are constants and M is minimal, then using (*), (1.1)-(1.3) we get

$$
\begin{align*}
\frac{1}{2} \Delta S= & \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i, j, \alpha} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha}=\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2} \\
& +\sum_{i, j, k, m, \alpha} h_{i j}^{\alpha} h_{m k}^{\alpha} R_{m i j k}+\sum_{i, j, k, m, \alpha} h_{i j}^{\alpha} h_{i m}^{\alpha} R_{m k j k} \\
& +\sum_{i, j, k, \alpha, \beta} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k}+\sum_{i, j, k, \alpha} h_{i j}^{\alpha} \nabla_{k} K_{\alpha i k j} \tag{2.1}\\
& +\sum_{i, j, k, \alpha} h_{i j}^{\alpha} \nabla_{j} K_{\alpha k k i}=\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+b S \sum_{k} v_{k}^{2} \\
& +n b \sum_{i, j, m, \alpha} h_{i j}^{\alpha} h_{i m}^{\alpha} v_{m} v_{j}-n \sum_{i, j, \alpha} h_{i j}^{\alpha} \nabla_{j}\left(b v_{\alpha} v_{j}\right) \\
& +\sum_{\alpha, \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}-\sum_{\alpha, \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} .
\end{align*}
$$

Now, if we assume that the generator $v=\sum_{A} v_{A} e_{A}$ is orthogonal to M, then we see that $v_{i}=0$ and (2.1) becomes

$$
\begin{align*}
\frac{1}{2} \Delta S= & \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+\sum_{\alpha, \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \tag{2.2}\\
& -\sum_{\alpha, \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} .
\end{align*}
$$

Applying Lemma 1 to (2.2) we get

$$
\begin{gather*}
\frac{1}{2} \Delta S \geq \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S-\left[\left(1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S^{2}\right. \tag{2.3}\\
\geq n a S-\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S^{2}
\end{gather*}
$$

When a is a positive number, it follows from the compactness of M and (2.3) that if

$$
\begin{equation*}
S \leq \frac{n a}{1+\frac{1}{2} \operatorname{sgn}(p-1)} \tag{2.4}
\end{equation*}
$$

then S is a constant and (2.4) leads to

$$
\begin{equation*}
\left\{n a-\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S\right\} S=0 \tag{2.5}
\end{equation*}
$$

Thus, if

$$
S<\frac{n a}{1+t \frac{1}{2} \operatorname{sgn}(p-1)}
$$

then from (2.5) we see that $S=0$, hence M is totally geodesic.
If the generator $v=\sum_{A} v_{A} e_{A}$ is parallel to M, then we see that $v_{\alpha}=0$ and $\sum_{i} v_{i}^{2}=1$. Applying Lemma 1 to (2.1) we get

$$
\begin{gather*}
\frac{1}{2} \Delta S \geq \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+b S+n b \sum_{i, j, m, \alpha} h_{i j}^{\alpha} h_{i m}^{\alpha} v_{m} v_{j} \tag{2.6}\\
-\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S^{2}
\end{gather*}
$$

We claim that, for any α

$$
\sum_{i, j, m} h_{i j}^{\alpha} h_{i m}^{\alpha} v_{m} v_{j} \leq \sum_{i, j}\left(h_{i j}^{\alpha}\right)^{2}
$$

In fact, since both sides of the formula above are independent of e_{i}, we can choose e_{1}, \ldots, e_{n} such that $h_{i j}^{\alpha}=h_{i i}^{\alpha} \delta_{i j}$ for fixed α, and hence

$$
\sum_{i j m} h_{i j}^{\alpha} h_{i m}^{\alpha} v_{m} v_{j}=\sum_{i}\left(h_{i i}^{\alpha}\right)^{2} v_{i}^{2} \leq \sum_{i}\left(h_{i i}^{\alpha}\right)^{2} \sum_{i} v_{i}^{2}=\sum_{i j}\left(h_{i j}^{\alpha}\right)^{2}
$$

Thus

$$
\begin{equation*}
\sum_{i, j, m, \alpha} h_{i j}^{\alpha} h_{i m}^{\alpha} v_{m} v_{j} \leq \sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2}=S . \tag{2.7}
\end{equation*}
$$

Combining (2.7) with (2.6) we get

$$
\begin{align*}
& \frac{1}{2} \Delta S \geq \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+n S-n b S-\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S^{2} \tag{2.8}\\
& \quad \geq\left\{n a+b-n|b|-\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S\right\} S
\end{align*}
$$

Using the same arguments as above we see that if

$$
S<\frac{n a+b-n|b|}{1+\frac{1}{2} \operatorname{sgn}(p-1)},
$$

then M is totally geodesic. This completes the proof of Theorem 1.
By (1.1), the scalar curvature of M satisfies

$$
R=(n-1)\left(n a+2 b \sum_{i} v_{i}^{2}\right)-S
$$

which shows that if the generator is orthogonal to M, then

$$
\begin{equation*}
R=(n-1) n a-S \tag{2.9}
\end{equation*}
$$

and if the generator is parallel to M, then we have

$$
\begin{equation*}
R=(n-1)(n a+2 b)-S \tag{2.10}
\end{equation*}
$$

Therefore, combining (2.9) with (2.10), Theorem 1 implies the
Corollary. Let M be an n-dimensional compact minimal submanifold in an $(n+p)$-dimensional quasi constant curvature manifold N^{n+p} and let a and b be constants. Suppose that
(a) $a>0$, the generator is orthogonal to M, and

$$
R>n a\left[n-1-\frac{1}{1+\frac{1}{2} \operatorname{sgn}(p-1)}\right]
$$

or else that
(b) $n a+b-n|b|>0$, the generator is parallel to M and

$$
R>(n-1)(n a+2 b)-\frac{n a+b-n|b|}{1+\frac{1}{2} \operatorname{sgn}(p-1)} .
$$

Then each of these two sets of conditions implies that M is a totally geodesic submanifold.

Proof of Theorem 2. If

$$
\begin{equation*}
S=\frac{n a}{1+\frac{1}{2} \operatorname{sgn}(p-1)}, \tag{2.11}
\end{equation*}
$$

and $p=1$, (2.3) and (2.11) show that $\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}=0$. We can choose e_{1}, \ldots, e_{n} so that $h_{i j}^{n+1}=h_{i i}^{n+1} \delta_{i j}$. Since $v_{i}=0$ and using the same method as in [1] we get

$$
\begin{equation*}
h_{i i}^{n+1} h_{j j}^{n+1}=-a \tag{2.12}
\end{equation*}
$$

for $h_{i i}^{n+1} \neq h_{j j}^{n+1}$. (2.12) implies that M has two distinct principal curvatures λ, μ and these satisfy

$$
m \lambda+(n-m) \mu=0, \quad m \lambda^{2}+(n-m) \mu^{2}=n a, \quad \lambda \mu=-a,
$$

hence

$$
\lambda^{2}+1=\frac{(n-m) a+m}{m}, \quad \mu^{2}+1=\frac{m a+n-m}{n-m} .
$$

So by the same arguments as in [1] we see that M is locally congruent to $S^{m}\left(\sqrt{\frac{m}{(n-m) a+m}}\right) \times S^{n-m}\left(\sqrt{\frac{n-m}{m a+n-m}}\right)$.

On the other hand, for $p \geq 2$, (2.2), (2.3) and (2.6) imply that $\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}=0$ and the equality

$$
\sum_{\alpha, \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}-\sum_{\alpha, \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2}=-\frac{3}{2} S^{2}
$$

holds. Thus applying Lemma 1 we may assume that

$$
H_{n+1}=\left(\begin{array}{ccc}
g & 0 & 0 \\
0 & -g & \\
0 & & 0
\end{array}\right), \quad H_{n+2}=\left(\begin{array}{ccc}
0 & g & 0 \\
g & 0 & \\
0 & & 0
\end{array}\right)
$$

where we have $g=\sqrt{\frac{S_{1}}{2}}=\sqrt{\frac{1}{6} n a}$. Noting that $v_{i}=0$, and using the method of [1], we get $n=p=2$. Thus we have

$$
\omega_{13}=\omega_{24}=\sqrt{\frac{1}{3}} a \omega_{1}, \quad \omega_{14}=\sqrt{\frac{1}{3} a \omega_{2}}, \quad \omega_{23}=-\sqrt{\frac{1}{3}} a \omega_{2}, \quad \omega_{34}=2 \omega_{12},
$$

and so with respect to an adapted dual orthonormal frame field ω_{1}, ω_{2}, ω_{3}, ω_{4}, the connection forms $\left\{\omega_{A B}\right\}$ of N^{4}, restricted to M, are given by

$$
\left(\begin{array}{cccc}
0 & \omega_{12} & g \omega_{1} & g \omega_{2} \\
\omega_{12} & 0 & -g \omega_{2} & g \omega_{1} \\
-g \omega_{1} & g \omega_{2} & 0 & 2 \omega_{12} \\
-g \omega_{2} & -g \omega_{1} & -2 \omega_{12} & 0
\end{array}\right), \quad g=\sqrt{\frac{1}{3} a} .
$$

This completes the proof of Theorem 2.
When $a=1, b=0$, it follows from Theorems 1 and 2 that we can immediately prove Theorem A of the Introduction.

References

[1] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Berlin, Heidelberg, New York, 1970, 60-65.
[2] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. 58 (1992), 582-594.
[3] B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor N.S. 26 (1972), 318-322.

```
HUAFEI SUN
DEPARTMENT OF MATHEMATICS
KUMAMOTO UNIVERSITY
KUMAMOTO
JAPAN
```

(Received September 18, 1998; revised February 22, 1999)

