Publ. Math. Debrecen 56 / 1-2 (2000), 131–139

Submanifolds of a quasi constant curvature manifold

By HUAFEI SUN (Kumamoto)

Abstract. In this paper, we study submanifolds in a quasi constant curvature space and generalize a result due to Chern–do Carmo–Kobayashi and Li–Li.

0. Introduction

Let M be an n-dimensional compact minimal submanifold immersed into the (n + p)-dimensional unit sphere S^{n+p} . Denote by S the square of the length of the second fundamental form of M. The following result is well known ([1, 2]):

Theorem A. Let M be an n-dimensional compact minimal submanifold in S^{n+p} . If S satisfies

$$S \le \frac{n}{1 + \frac{1}{2}\operatorname{sgn}(p-1)},$$

then M is a totally geodesic submanifold, and the Clifford torus or the Veronese surface is in S^4 , where $\operatorname{sgn}(x) = 1$ for x > 0 and $\operatorname{sgn}(x) = 0$ for $x \leq 0$.

The following definition was introduced by CHEN and YANO [3].

Definition. A Riemannian manifold is said to be a quasi constant curvature manifold if its curvature tensor satisfies

$$(*) K_{ABCD} = a \left(\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC} \right) + b \left(\delta_{AC} v_B v_D - \delta_{AD} v_B v_D + \delta_{BD} v_A v_C - \delta_{BC} v_A v_D \right),$$

Mathematics Subject Classification: 53C42.

Key words and phrases: quasi constant curvature, totally geodesic, generator. The project supported by JSPS.

Huafei Sun

where a, b are some scalar functions and v_A the component of a unit vector field which is called the generator of the manifold.

By the definition we see that when $b \equiv 0$, the quasi constant curvature manifold becomes a constant curvature manifold.

From now on, we use of the following convention on the ranges of the indices:

$$1 \leq A, B, \ldots \leq n+p; \ 1 \leq i, j, \ldots \leq n; \ n+1 \leq \alpha, \beta, \ldots \leq n+p.$$

The purpose of this paper is to study the case that the ambient space is a quasi constant curvature manifold N^{n+p} and to generalize Theorem A. We obtain

Theorem 1. Let M be an n-dimensional compact minimal submanifold in an (n + p)-dimensional quasi constant curvature manifold N^{n+p} and let a, b be constants. Suppose that

(a) a > 0, the generator is orthogonal to M and

$$S < \frac{na}{1 + \frac{1}{2}\operatorname{sgn}(p-1)}$$

or else that

(b) na + b - n|b| > 0, the generator is parallel to M, and

$$S < \frac{na+b-n|b|}{1+\frac{1}{2}\operatorname{sgn}(p-1)}$$

Then each of these two sets of conditions implies that M is a totally geodesic submanifold.

Theorem 2. Let M be an n-dimensional compact minimal submanifold in an (n + p)-dimensional quasi constant curvature manifold N^{n+p} . Suppose a is a positive number. If the generator is orthogonal to M and

$$S = \frac{na}{1 + \frac{1}{2}\operatorname{sgn}(p-1)},$$

then either $M = S^m\left(\sqrt{\frac{m}{(n-m)a+m}}\right) \times S^{n-m}\left(\sqrt{\frac{n-m}{ma+n-m}}\right)$ or n = p = 2and with respect to an adapted dual orthonormal frame $\omega_1, \omega_2, \omega_3, \omega_4$,

the connection form (ω_{AB}) of N^4 , restricted to M, is given by

$$\begin{pmatrix} 0 & \omega_{12} & g\omega_1 & g\omega_2 \\ \omega_{21} & 0 & -g\omega_2 & g\omega_1 \\ -g\omega_1 & g\omega_2 & 0 & 2\omega_{12} \\ -g\omega_2 & -g\omega_1 & -2\omega_{12} & 0 \end{pmatrix}, \quad g = \sqrt{\frac{1}{3}a}.$$

Remark. When a = 1 and b = 0, from Theorems 1, 2 we can get Theorem A immediately.

The author would like to thank Prof. K. OGIUE for his advice and encouragement and would like to express his thanks to the referee for valuable suggestions.

1. Fundamental formulas

Let M be an n-dimensional compact minimal submanifold immersed in the (n + p)-dimensional quasi constant curvature manifold N^{n+p} with the curvature tensor as (*). Suppose that $\{e_A\}$ is an orthonomal frame field on N^{n+p} such that e_1, \ldots, e_n are tangent to M, and let $\{\omega_A\}$ be the dual frame field. Then the structure equations of N^{n+p} are given by

$$d\omega_A = -\sum_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} + \omega_{BA} = 0,$$

$$d\omega_{AB} = -\sum_C \omega_{AC} \wedge \omega_{CB} + \frac{1}{2} \sum_{C,D} K_{ABCD} \omega_C \wedge \omega_B,$$

where K_{ABCD} satisfies (*).

Restricting these forms to M, we have

$$\omega_{\alpha} = 0, \quad \omega_{\alpha i} = \sum_{j} h_{ij}^{\alpha} \omega_{j}, \quad h_{ij}^{\alpha} = h_{ji}^{\alpha},$$
$$d\omega_{i} = -\sum_{j} \omega_{ij} \wedge \omega_{j}, \quad \omega_{ij} + \omega_{ji} = 0,$$
$$d\omega_{ij} = -\sum_{k} \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_{k} \wedge \omega_{l},$$

Huafei Sun

where

(1.1)
$$R_{ijkl} = K_{ijkl} + \sum_{\alpha} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$
$$d\omega_{\alpha\beta} = -\sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} + \frac{1}{2} \sum_{kl} R_{\alpha\beta kl} \omega_k \wedge \omega_l,$$
$$R_{\alpha\beta kl} = K_{\alpha\beta kl} + \sum_{i} (h_{ki}^{\alpha} h_{il}^{\beta} - h_{ki}^{\beta} h_{il}^{\alpha}).$$

We call $h = \sum_{ij\alpha} h_{ij}^{\alpha} \omega_i \omega_j e_{\alpha}$ and $\xi = \frac{1}{n} \sum_{i\alpha} h_{ii}^{\alpha} e_{\alpha}$ the second fundamental form and the mean curvature vector of the immersion, respectively. M is said to be minimal, if $\xi \equiv 0$. Denote by $S = \sum_{ij\alpha} (h_{ij}^{\alpha})^2$ the square of the length of h. Define h_{ijk}^{α} and h_{ijkl}^{α} by

$$\sum_{k} h_{ijk}^{\alpha} \omega_{k} = dh_{ij}^{\alpha} - \sum_{k} h_{kj}^{\alpha} \omega_{ki} - \sum_{k} h_{ik}^{\alpha} \omega_{kj} - \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha}$$

and by

$$\sum_{l} h_{ijkl}^{\alpha} \omega_{l} = dh_{ijk}^{\alpha} - \sum_{l} h_{ljk}^{\alpha} \omega_{li} - \sum_{l} h_{ilk}^{\alpha} \omega_{lj} - \sum_{l} h_{ijl}^{\alpha} \omega_{lk} - \sum_{\beta} h_{ijk}^{\beta} \omega_{\beta\alpha}$$

respectively. We know that

(1.2)
$$h_{ijk}^{\alpha} - h_{ikj}^{\alpha} = K_{\alpha ikj} = -K_{\alpha ijk}$$

and

(1.3)
$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{im} R_{mjkl} + \sum_{m} h_{mj} R_{mikl} + \sum_{\beta} h_{ij}^{\beta} R_{\beta\alpha kl}.$$

2. Proofs of the theorems

In order to prove our theorems, we need the following

Lemma 1 ([1, 2]). Let H_{α} , $\alpha \geq 2$ be symmetric $(n \times n)$ -matrices, $S_{\alpha} = \operatorname{tr} H_{\alpha}^2$, $S = \sum_{\alpha} S_{\alpha}$. Then

$$\sum_{\alpha,\beta} \operatorname{tr}(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})^2 - \sum_{\alpha,\beta} (\operatorname{tr}H_{\alpha}H_{\beta})^2 \ge -\left[1 + \frac{1}{2}\operatorname{sgn}(p-1)\right]S^2,$$

and equality holds if and only if all $H_{\alpha} = 0$ or there exist two H_{α} 's different from zero. Moreover, if $H_{n+1} \neq 0$, $H_{n+2} \neq 0$, $H_{\alpha} = 0$, $\alpha \neq n+1, n+2$, then $S_{n+1} = S_{n+2}$ and there exists an orthogonal $(n \times n)$ matrix T such that

$$TH_{n+1}{}^{t}T = \begin{pmatrix} f & 0 & 0 \\ 0 & -f & \\ 0 & 0 \end{pmatrix}, \quad TH_{n+2}{}^{t}T = \begin{pmatrix} 0 & f & 0 \\ f & 0 & \\ 0 & 0 \end{pmatrix},$$

where $f = \sqrt{\frac{S_1}{2}}$.

If a and b are constants and M is minimal, then using (*), (1.1)–(1.3) we get

$$(2.1) \frac{1}{2}\Delta S = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^{2} + \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^{2} + \sum_{i,j,k,m,\alpha} h_{ij}^{\alpha} h_{mk}^{\alpha} R_{mijk} + \sum_{i,j,k,m,\alpha} h_{ij}^{\alpha} h_{im}^{\alpha} R_{mkjk} + \sum_{i,j,k,\alpha,\beta} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\beta\alpha jk} + \sum_{i,j,k,\alpha} h_{ij}^{\alpha} \nabla_{k} K_{\alpha ikj} + \sum_{i,j,k,\alpha} h_{ij}^{\alpha} \nabla_{j} K_{\alpha kki} = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^{2} + naS + bS \sum_{k} v_{k}^{2} + nb \sum_{i,j,m,\alpha} h_{ij}^{\alpha} h_{im}^{\alpha} v_{m} v_{j} - n \sum_{i,j,\alpha} h_{ij}^{\alpha} \nabla_{j} (bv_{\alpha} v_{j}) + \sum_{\alpha,\beta} \operatorname{tr}(H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha})^{2} - \sum_{\alpha,\beta} (\operatorname{tr} H_{\alpha} H_{\beta})^{2}.$$

Now, if we assume that the generator $v = \sum_A v_A e_A$ is orthogonal to M, then we see that $v_i = 0$ and (2.1) becomes

(2.2)
$$\frac{1}{2}\Delta S = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + naS + \sum_{\alpha,\beta} \operatorname{tr}(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})^2 - \sum_{\alpha,\beta} (\operatorname{tr} H_{\alpha}H_{\beta})^2.$$

Applying Lemma 1 to (2.2) we get

(2.3)
$$\frac{1}{2}\Delta S \ge \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + naS - \left[(1 + \frac{1}{2}\operatorname{sgn}(p-1) \right] S^2$$
$$\ge naS - \left[1 + \frac{1}{2}\operatorname{sgn}(p-1) \right] S^2.$$

When a is a positive number, it follows from the compactness of M and (2.3) that if

(2.4)
$$S \le \frac{na}{1 + \frac{1}{2}\operatorname{sgn}(p-1)},$$

then S is a constant and (2.4) leads to

(2.5)
$$\left\{ na - \left[1 + \frac{1}{2} \operatorname{sgn}(p-1) \right] S \right\} S = 0.$$

Thus, if

$$S < \frac{na}{1 + t\frac{1}{2}\operatorname{sgn}(p-1)},$$

then from (2.5) we see that S = 0, hence M is totally geodesic.

If the generator $v = \sum_A v_A e_A$ is parallel to M, then we see that $v_{\alpha} = 0$ and $\sum_i v_i^2 = 1$. Applying Lemma 1 to (2.1) we get

(2.6)
$$\frac{1}{2}\Delta S \ge \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + naS + bS + nb \sum_{i,j,m,\alpha} h_{ij}^{\alpha} h_{im}^{\alpha} v_m v_j - \left[1 + \frac{1}{2}\operatorname{sgn}(p-1)\right] S^2.$$

We claim that, for any α

$$\sum_{i,j,m} h_{ij}^{\alpha} h_{im}^{\alpha} v_m v_j \le \sum_{i,j} (h_{ij}^{\alpha})^2.$$

In fact, since both sides of the formula above are independent of e_i , we can choose e_1, \ldots, e_n such that $h_{ij}^{\alpha} = h_{ii}^{\alpha} \delta_{ij}$ for fixed α , and hence

$$\sum_{ijm} h_{ij}^{\alpha} h_{im}^{\alpha} v_m v_j = \sum_i (h_{ii}^{\alpha})^2 v_i^2 \le \sum_i (h_{ii}^{\alpha})^2 \sum_i v_i^2 = \sum_{ij} (h_{ij}^{\alpha})^2.$$

Thus

(2.7)
$$\sum_{i,j,m,\alpha} h_{ij}^{\alpha} h_{im}^{\alpha} v_m v_j \le \sum_{i,j,\alpha} (h_{ij}^{\alpha})^2 = S.$$

Combining (2.7) with (2.6) we get

(2.8)
$$\frac{1}{2}\Delta S \ge \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + naS + nS - nbS - \left[1 + \frac{1}{2}\operatorname{sgn}(p-1)\right]S^2 \\\ge \left\{na + b - n|b| - \left[1 + \frac{1}{2}\operatorname{sgn}(p-1)\right]S\right\}S.$$

Using the same arguments as above we see that if

$$S < \frac{na+b-n|b|}{1+\frac{1}{2}\operatorname{sgn}(p-1)},$$

then M is totally geodesic. This completes the proof of Theorem 1.

By (1.1), the scalar curvature of M satisfies

$$R = (n-1)\left(na + 2b\sum_{i} v_i^2\right) - S,$$

which shows that if the generator is orthogonal to M, then

(2.9)
$$R = (n-1)na - S$$

and if the generator is parallel to M, then we have

(2.10)
$$R = (n-1)(na+2b) - S.$$

Therefore, combining (2.9) with (2.10), Theorem 1 implies the

Corollary. Let M be an n-dimensional compact minimal submanifold in an (n+p)-dimensional quasi constant curvature manifold N^{n+p} and let a and b be constants. Suppose that

(a) a > 0, the generator is orthogonal to M, and

$$R>na\left[n-1-\frac{1}{1+\frac{1}{2}\operatorname{sgn}(p-1)}\right]$$

or else that

Huafei Sun

(b) na + b - n|b| > 0, the generator is parallel to M and

$$R > (n-1)(na+2b) - \frac{na+b-n|b|}{1+\frac{1}{2}\operatorname{sgn}(p-1)}$$

Then each of these two sets of conditions implies that M is a totally geodesic submanifold.

PROOF of Theorem 2. If

(2.11)
$$S = \frac{na}{1 + \frac{1}{2}\operatorname{sgn}(p-1)},$$

and p = 1, (2.3) and (2.11) show that $\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 = 0$. We can choose e_1, \ldots, e_n so that $h_{ij}^{n+1} = h_{ii}^{n+1} \delta_{ij}$. Since $v_i = 0$ and using the same method as in [1] we get

(2.12)
$$h_{ii}^{n+1}h_{jj}^{n+1} = -a$$

for $h_{ii}^{n+1} \neq h_{jj}^{n+1}$. (2.12) implies that M has two distinct principal curvatures λ , μ and these satisfy

$$m\lambda + (n-m)\mu = 0$$
, $m\lambda^2 + (n-m)\mu^2 = na$, $\lambda\mu = -a$,

hence

$$\lambda^{2} + 1 = \frac{(n-m)a+m}{m}, \quad \mu^{2} + 1 = \frac{ma+n-m}{n-m}$$

So by the same arguments as in [1] we see that M is locally congruent to $S^m\left(\sqrt{\frac{m}{(n-m)a+m}}\right) \times S^{n-m}\left(\sqrt{\frac{n-m}{ma+n-m}}\right).$

On the other hand, for $p \geq 2$, (2.2), (2.3) and (2.6) imply that $\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 = 0$ and the equality

$$\sum_{\alpha,\beta} \operatorname{tr}(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})^{2} - \sum_{\alpha,\beta} (\operatorname{tr}H_{\alpha}H_{\beta})^{2} = -\frac{3}{2}S^{2}$$

holds. Thus applying Lemma 1 we may assume that

$$H_{n+1} = \begin{pmatrix} g & 0 & 0 \\ 0 & -g & \\ 0 & 0 \end{pmatrix}, \quad H_{n+2} = \begin{pmatrix} 0 & g & 0 \\ g & 0 & \\ 0 & 0 \end{pmatrix}$$

where we have $g = \sqrt{\frac{S_1}{2}} = \sqrt{\frac{1}{6}na}$. Noting that $v_i = 0$, and using the method of [1], we get n = p = 2. Thus we have

$$\omega_{13} = \omega_{24} = \sqrt{\frac{1}{3}a}\omega_1, \quad \omega_{14} = \sqrt{\frac{1}{3}a}\omega_2, \quad \omega_{23} = -\sqrt{\frac{1}{3}a}\omega_2, \quad \omega_{34} = 2\omega_{12},$$

and so with respect to an adapted dual orthonormal frame field ω_1 , ω_2 , ω_3 , ω_4 , the connection forms $\{\omega_{AB}\}$ of N^4 , restricted to M, are given by

$$\begin{pmatrix} 0 & \omega_{12} & g\omega_1 & g\omega_2 \\ \omega_{12} & 0 & -g\omega_2 & g\omega_1 \\ -g\omega_1 & g\omega_2 & 0 & 2\omega_{12} \\ -g\omega_2 & -g\omega_1 & -2\omega_{12} & 0 \end{pmatrix}, \quad g = \sqrt{\frac{1}{3}a}.$$

This completes the proof of Theorem 2.

When a = 1, b = 0, it follows from Theorems 1 and 2 that we can immediately prove Theorem A of the Introduction.

References

- S. S. CHERN, M. DO CARMO and S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, *Berlin, Heidelberg, New York*, 1970, 60–65.
- [2] A. M. LI and J. M. LI, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. 58 (1992), 582–594.
- [3] B. Y. CHEN and K. YANO, Hypersurfaces of a conformally flat space, *Tensor N.S.* 26 (1972), 318-322.

HUAFEI SUN DEPARTMENT OF MATHEMATICS KUMAMOTO UNIVERSITY KUMAMOTO JAPAN

(Received September 18, 1998; revised February 22, 1999)