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Submanifolds of a quasi constant curvature manifold

By HUAFEI SUN (Kumamoto)

Abstract. In this paper, we study submanifolds in a quasi constant curvature
space and generalize a result due to Chern–doCarmo–Kobayashi and Li–Li.

0. Introduction

Let M be an n-dimensional compact minimal submanifold immersed
into the (n + p)-dimensional unit sphere Sn+p. Denote by S the square of
the length of the second fundamental form of M . The following result is
well known ([1, 2]):

Theorem A. Let M be an n-dimensional compact minimal subman-
ifold in Sn+p. If S satisfies

S ≤ n

1 + 1
2 sgn(p− 1)

,

then M is a totally geodesic submanifold, and the Clifford torus or the
Veronese surface is in S4, where sgn(x) = 1 for x > 0 and sgn(x) = 0 for
x ≤ 0.

The following definition was introduced by Chen and Yano [3].

Definition. A Riemannian manifold is said to be a quasi constant
curvature manifold if its curvature tensor satisfies

KABCD = a (δACδBD − δADδBC)(∗)
+b(δACvBvD−δADvBvD + δBDvAvC−δBCvAvD),
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where a, b are some scalar functions and vA the component of a unit vector
field which is called the generator of the manifold.

By the definition we see that when b ≡ 0, the quasi constant curvature
manifold becomes a constant curvature manifold.

From now on, we use of the following convention on the ranges of the
indices:

1 ≤ A,B, . . . ≤ n + p; 1 ≤ i, j, . . . ≤ n; n + 1 ≤ α, β, . . . ≤ n + p.

The purpose of this paper is to study the case that the ambient space is
a quasi constant curvature manifold Nn+p and to generalize Theorem A.
We obtain

Theorem 1. Let M be an n-dimensional compact minimal subman-

ifold in an (n + p)-dimensional quasi constant curvature manifold Nn+p

and let a, b be constants. Suppose that

(a) a > 0, the generator is orthogonal to M and

S <
na

1 + 1
2 sgn(p− 1)

,

or else that

(b) na + b− n|b| > 0, the generator is parallel to M , and

S <
na + b− n|b|

1 + 1
2 sgn(p− 1)

.

Then each of these two sets of conditions implies that M is a totally

geodesic submanifold.

Theorem 2. Let M be an n-dimensional compact minimal subman-

ifold in an (n + p)-dimensional quasi constant curvature manifold Nn+p.

Suppose a is a positive number. If the generator is orthogonal to M and

S =
na

1 + 1
2 sgn(p− 1)

,

then either M = Sm
(√

m
(n−m)a+m

)
× Sn−m

(√
n−m

ma+n−m

)
or n = p = 2

and with respect to an adapted dual orthonormal frame ω1, ω2, ω3, ω4,
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the connection form (ωAB) of N4, restricted to M , is given by




0 ω12 gω1 gω2

ω21 0 −gω2 gω1

−gω1 gω2 0 2ω12

−gω2 −gω1 −2ω12 0


 , g =

√
1
3
a .

Remark. When a = 1 and b = 0, from Theorems 1, 2 we can get
Theorem A immediately.

The author would like to thank Prof. K. Ogiue for his advice and
encouragement and would like to express his thanks to the referee for
valuable suggestions.

1. Fundamental formulas

Let M be an n-dimensional compact minimal submanifold immersed
in the (n + p)-dimensional quasi constant curvature manifold Nn+p with
the curvature tensor as (∗). Suppose that {eA} is an orthonomal frame
field on Nn+p such that e1, . . . , en are tangent to M , and let {ωA} be the
dual frame field. Then the structure equations of Nn+p are given by

dωA = −
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0,

dωAB = −
∑

C

ωAC ∧ ωCB +
1
2

∑

C,D

KABCDωC ∧ ωB ,

where KABCD satisfies (∗).
Restricting these forms to M , we have

ωα = 0, ωαi =
∑

j

hα
ijωj , hα

ij = hα
ji,

dωi = −
∑

j

ωij ∧ ωj , ωij + ωji = 0,

dωij = −
∑

k

ωik ∧ ωkj +
1
2

∑

k,l

Rijklωk ∧ ωl,



134 Huafei Sun

where

Rijkl = Kijkl +
∑
α

(hα
ikhα

jl − hα
ilh

α
jk),(1.1)

dωαβ = −
∑

γ

ωαγ ∧ ωγβ +
1
2

∑

kl

Rαβklωk ∧ ωl,

Rαβkl = Kαβkl +
∑

i

(hα
kih

β
il − hβ

kih
α
il).

We call h =
∑

ijα hα
ijωiωjeα and ξ = 1

n

∑
iα hα

iieα the second fundamental
form and the mean curvature vector of the immersion, respectively. M is
said to be minimal, if ξ ≡ 0. Denote by S =

∑
ijα(hα

ij)
2 the square of the

length of h. Define hα
ijk and hα

ijkl by

∑

k

hα
ijkωk = dhα

ij −
∑

k

hα
kjωki −

∑

k

hα
ikωkj −

∑

β

hβ
ijωβα

and by
∑

l

hα
ijklωl = dhα

ijk −
∑

l

hα
ljkωli −

∑

l

hα
ilkωlj −

∑

l

hα
ijlωlk −

∑

β

hβ
ijkωβα,

respectively. We know that

hα
ijk − hα

ikj = Kαikj = −Kαijk(1.2)

and

hα
ijkl − hα

ijlk =
∑
m

himRmjkl +
∑
m

hmjRmikl +
∑

β

hβ
ijRβαkl.(1.3)

2. Proofs of the theorems

In order to prove our theorems, we need the following

Lemma 1 ([1, 2]). Let Hα, α ≥ 2 be symmetric (n × n)-matrices,

Sα = tr H2
α, S =

∑
α Sα. Then

∑

α,β

tr(HαHβ −HβHα)2 −
∑

α,β

(tr HαHβ)2 ≥ − [
1 + 1

2 sgn(p− 1)
]
S2,
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and equality holds if and only if all Hα = 0 or there exist two Hα’s different

from zero. Moreover, if Hn+1 6= 0, Hn+2 6= 0, Hα = 0, α 6= n + 1, n + 2,

then Sn+1 = Sn+2 and there exists an orthogonal (n × n) matrix T such

that

THn+1
tT =




f 0 0
0 −f

0 0


 , THn+2

tT =




0 f 0
f 0
0 0


 ,

where f =
√

S1
2 .

If a and b are constants and M is minimal, then using (∗), (1.1)–(1.3)
we get

(2.1)

1
2
∆S =

∑

i,j,k,α

(hα
ijk)2 +

∑

i,j,α

hα
ij∆hα

ij =
∑

i,j,k,α

(hα
ijk)2

+
∑

i,j,k,m,α

hα
ijh

α
mkRmijk +

∑

i,j,k,m,α

hα
ijh

α
imRmkjk

+
∑

i,j,k,α,β

hα
ijh

β
kiRβαjk +

∑

i,j,k,α

hα
ij∇kKαikj

+
∑

i,j,k,α

hα
ij∇jKαkki =

∑

i,j,k,α

(hα
ijk)2 + naS + bS

∑

k

v2
k

+ nb
∑

i,j,m,α

hα
ijh

α
imvmvj − n

∑

i,j,α

hα
ij∇j(bvαvj)

+
∑

α,β

tr(HαHβ −HβHα)2 −
∑

α,β

(tr HαHβ)2.

Now, if we assume that the generator v =
∑

A vAeA is orthogonal to M ,
then we see that vi = 0 and (2.1) becomes

1
2
∆S =

∑

i,j,k,α

(hα
ijk)2 + naS +

∑

α,β

tr(HαHβ −HβHα)2(2.2)

−
∑

α,β

(trHαHβ)2.
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Applying Lemma 1 to (2.2) we get

1
2
∆S ≥

∑

i,j,k,α

(hα
ijk)2 + naS − [

(1 + 1
2 sgn(p− 1)

]
S2(2.3)

≥ naS − [
1 + 1

2 sgn(p− 1)
]
S2.

When a is a positive number, it follows from the compactness of M and
(2.3) that if

(2.4) S ≤ na

1 + 1
2 sgn(p− 1)

,

then S is a constant and (2.4) leads to

(2.5)
{
na− [

1 + 1
2 sgn(p− 1)

]
S

}
S = 0.

Thus, if

S <
na

1 + t 1
2 sgn(p− 1)

,

then from (2.5) we see that S = 0, hence M is totally geodesic.
If the generator v =

∑
A vAeA is parallel to M , then we see that

vα = 0 and
∑

i v2
i = 1. Applying Lemma 1 to (2.1) we get

(2.6)

1
2
∆S ≥

∑

i,j,k,α

(hα
ijk)2 + naS + bS + nb

∑

i,j,m,α

hα
ijh

α
imvmvj

− [
1 + 1

2 sgn(p− 1)
]
S2.

We claim that, for any α

∑

i,j,m

hα
ijh

α
imvmvj ≤

∑

i,j

(hα
ij)

2.

In fact, since both sides of the formula above are independent of ei, we
can choose e1, . . . , en such that hα

ij = hα
iiδij for fixed α, and hence

∑

ijm

hα
ijh

α
imvmvj =

∑

i

(hα
ii)

2v2
i ≤

∑

i

(hα
ii)

2
∑

i

v2
i =

∑

ij

(hα
ij)

2.
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Thus

(2.7)
∑

i,j,m,α

hα
ijh

α
imvmvj ≤

∑

i,j,α

(hα
ij)

2 = S.

Combining (2.7) with (2.6) we get

(2.8)

1
2
∆S ≥

∑

i,j,k,α

(hα
ijk)2+naS + nS − nbS− [

1 + 1
2 sgn(p− 1)

]
S2

≥ {
na + b− n|b| − [

1 + 1
2 sgn(p− 1)

]
S

}
S.

Using the same arguments as above we see that if

S <
na + b− n|b|

1 + 1
2 sgn(p− 1)

,

then M is totally geodesic. This completes the proof of Theorem 1.
By (1.1), the scalar curvature of M satisfies

R = (n− 1)
(

na + 2b
∑

i

v2
i

)
− S,

which shows that if the generator is orthogonal to M , then

(2.9) R = (n− 1)na− S

and if the generator is parallel to M , then we have

(2.10) R = (n− 1)(na + 2b)− S.

Therefore, combining (2.9) with (2.10), Theorem 1 implies the

Corollary. Let M be an n-dimensional compact minimal submanifold

in an (n+ p)-dimensional quasi constant curvature manifold Nn+p and let

a and b be constants. Suppose that

(a) a > 0, the generator is orthogonal to M , and

R > na

[
n− 1− 1

1 + 1
2 sgn(p− 1)

]

or else that
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(b) na + b− n|b| > 0, the generator is parallel to M and

R > (n− 1)(na + 2b)− na + b− n|b|
1 + 1

2 sgn(p− 1)
.

Then each of these two sets of conditions implies that M is a totally

geodesic submanifold.

Proof of Theorem 2. If

(2.11) S =
na

1 + 1
2 sgn(p− 1)

,

and p = 1, (2.3) and (2.11) show that
∑

i,j,k,α(hα
ijk)2 = 0. We can choose

e1, . . . , en so that hn+1
ij = hn+1

ii δij . Since vi = 0 and using the same method
as in [1] we get

(2.12) hn+1
ii hn+1

jj = −a

for hn+1
ii 6= hn+1

jj . (2.12) implies that M has two distinct principal curva-
tures λ, µ and these satisfy

mλ + (n−m)µ = 0, mλ2 + (n−m)µ2 = na, λµ = −a,

hence

λ2 + 1 =
(n−m)a + m

m
, µ2 + 1 =

ma + n−m

n−m
.

So by the same arguments as in [1] we see that M is locally congruent to

Sm

(√
m

(n−m)a+m

)
× Sn−m

(√
n−m

ma+n−m

)
.

On the other hand, for p ≥ 2, (2.2), (2.3) and (2.6) imply that∑
i,j,k,α(hα

ijk)2 = 0 and the equality

∑

α,β

tr(HαHβ −HβHα)2 −
∑

α,β

(tr HαHβ)2 = −3
2
S2

holds. Thus applying Lemma 1 we may assume that

Hn+1 =




g 0 0
0 −g

0 0


 , Hn+2 =




0 g 0
g 0
0 0


 ,
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where we have g =
√

S1
2 =

√
1
6na. Noting that vi = 0, and using the

method of [1], we get n = p = 2. Thus we have

ω13 = ω24 =

√
1
3
aω1, ω14 =

√
1
3
aω2, ω23 = −

√
1
3
aω2, ω34 = 2ω12,

and so with respect to an adapted dual orthonormal frame field ω1, ω2,
ω3, ω4, the connection forms {ωAB} of N4, restricted to M , are given by




0 ω12 gω1 gω2

ω12 0 −gω2 gω1

−gω1 gω2 0 2ω12

−gω2 −gω1 −2ω12 0


 , g =

√
1
3
a.

This completes the proof of Theorem 2. ¤

When a = 1, b = 0, it follows from Theorems 1 and 2 that we can
immediately prove Theorem A of the Introduction.
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